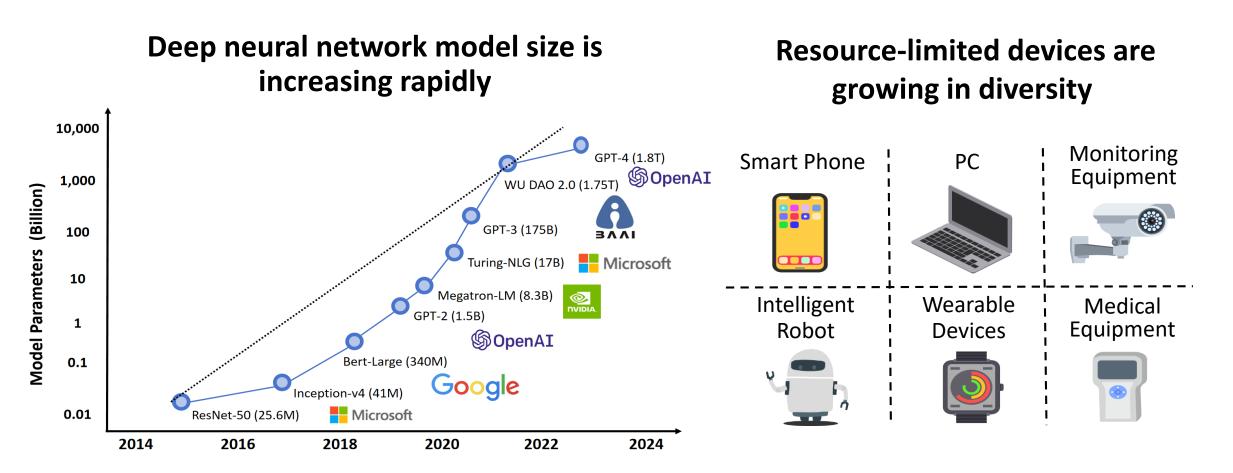
Defending Against Membership Inference Attacks for Iteratively Pruned Deep Neural Networks

Jing Shang¹, Jian Wang^{1*}, Kailun Wang¹, Jiqiang Liu¹, Nan Jiang², Md Armanuzzaman³, Ziming Zhao^{3*}

¹Beijing Jiaotong University, ²Beijing University of Technology, ³Northeastern University



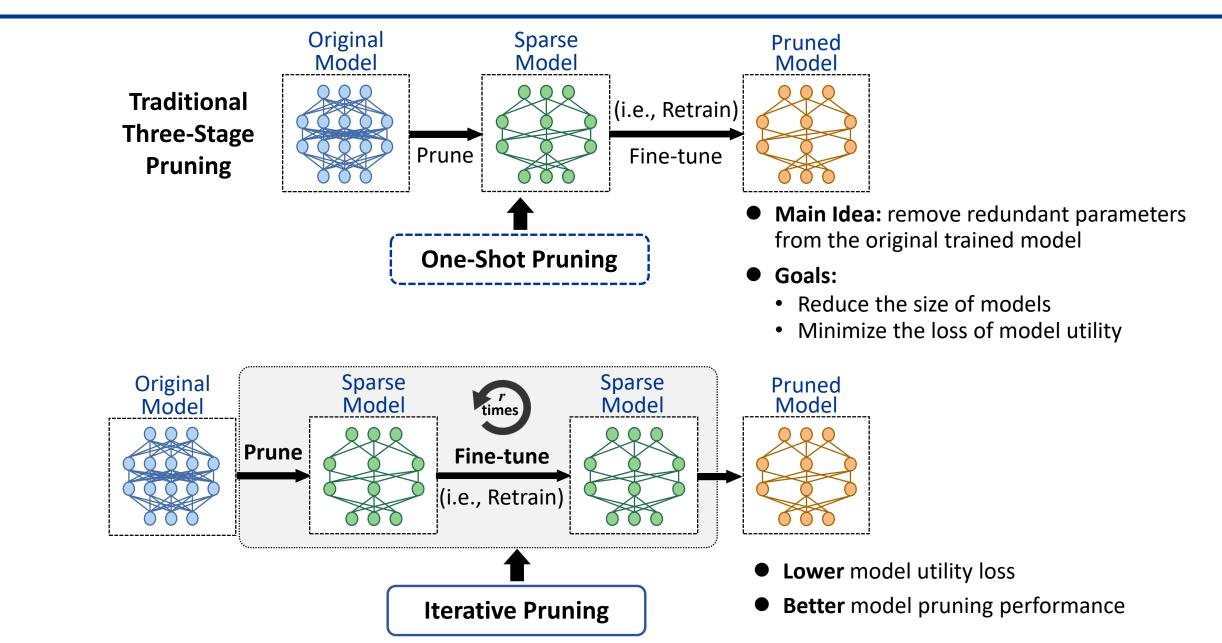
It is difficult to apply the large-scale models on resource-limited devices

- Computational Resource
- Storage Resource

Ne

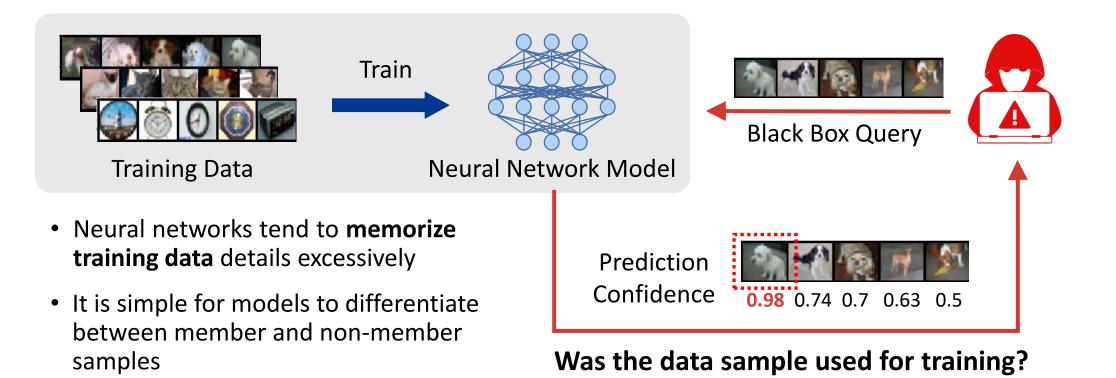
Neural Network Pruning

Background: Neural Network Pruning



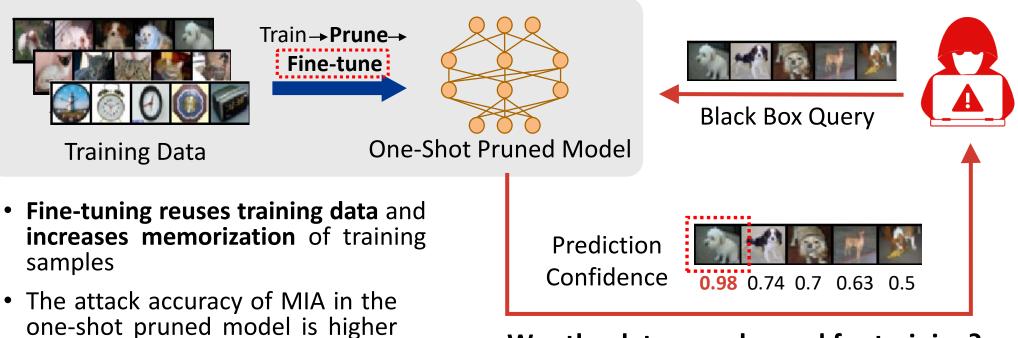
Background: Membership Inference Attack (MIA)

• MIA is a typical privacy threat that leads to the leakage of sensitive training data



Background: MIA in One-Shot Pruned Models

• MIA is a typical privacy threat that leads to the leakage of sensitive training data



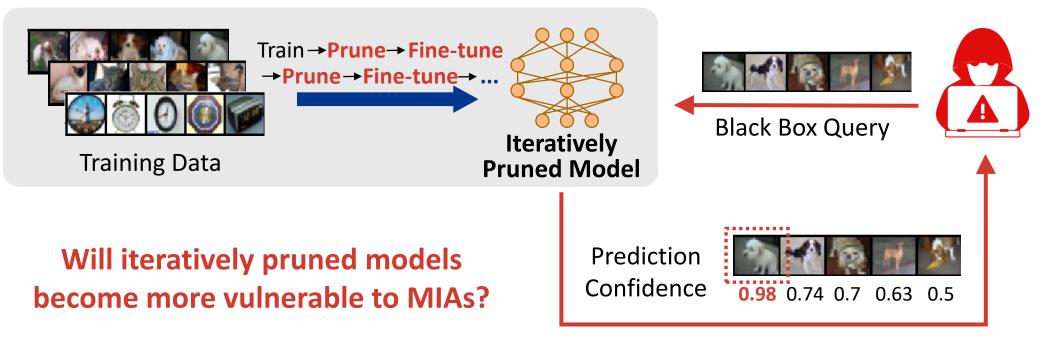
Was the data sample used for training?

(Yuan et al., 2022)

than in the original model

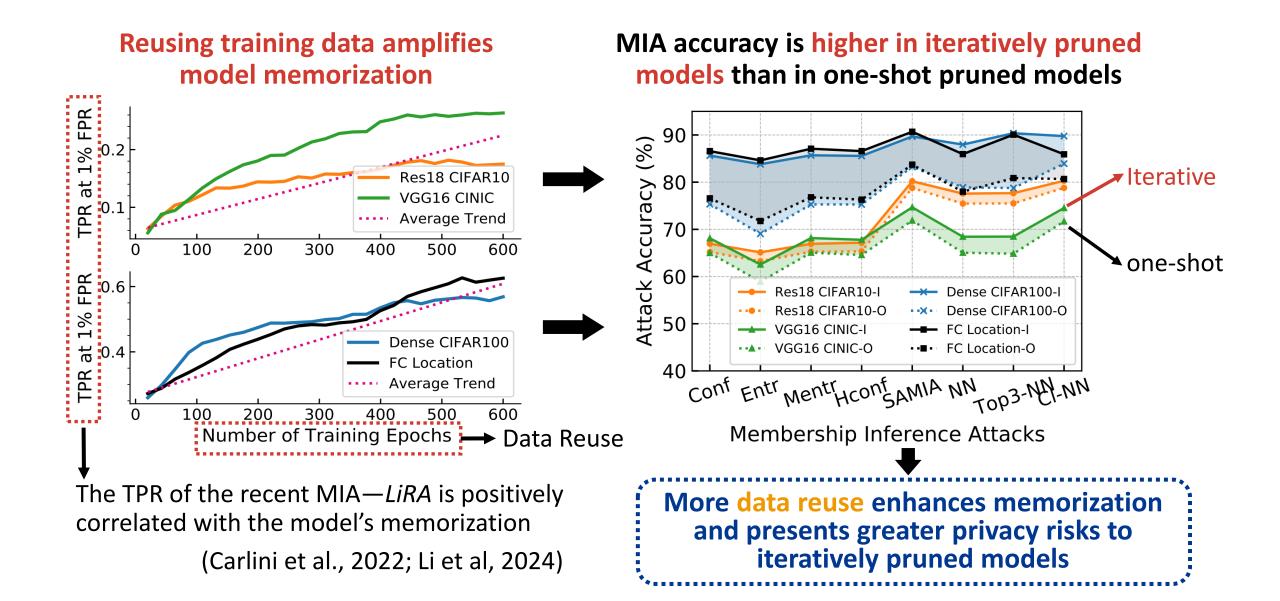
Motivation

• MIA is a typical privacy threat that leads to the leakage of sensitive training data



Was the data sample used for training?

Motivation

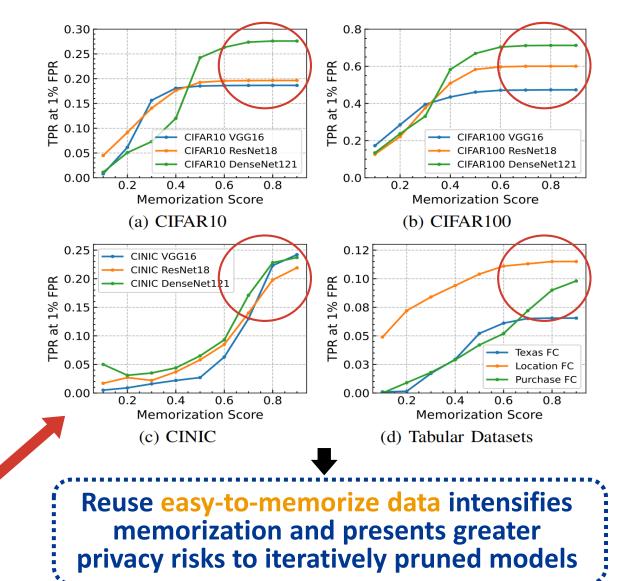


Motivation

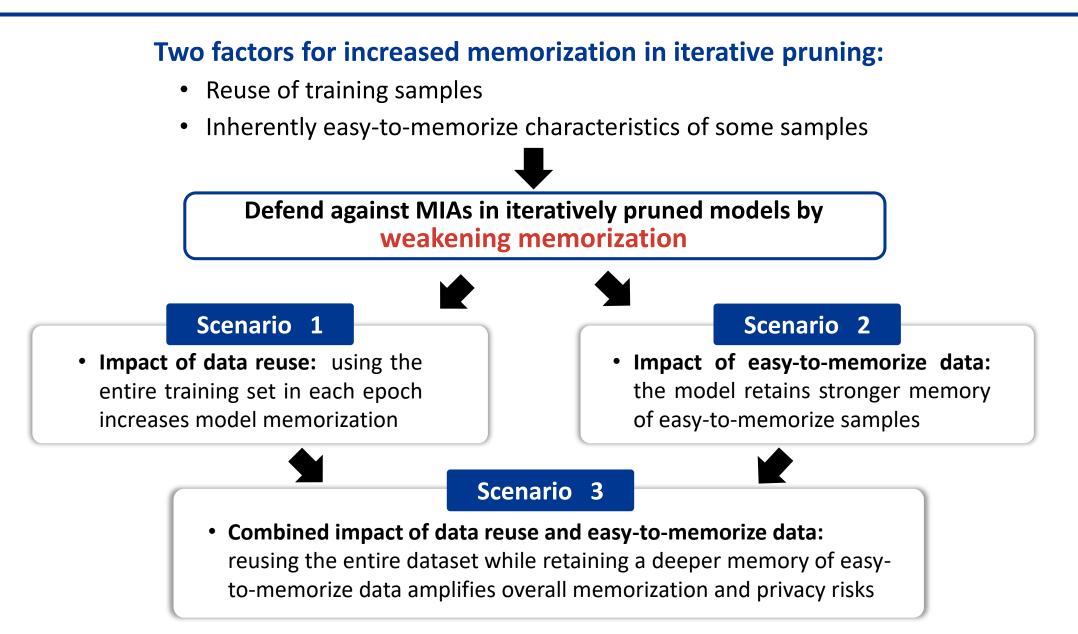
- Memorization Score (Feldman et al., 2020)
 - Measure the degree to which the model memorizes the training data

$$\begin{split} & \operatorname{mem}(\mathcal{A}, D, (\boldsymbol{x}, y)) \\ &= \Pr_{f_{\boldsymbol{\theta}} \leftarrow \mathcal{A}(D)} [f_{\boldsymbol{\theta}}(\boldsymbol{x}) = y] - \Pr_{f_{\boldsymbol{\theta}} \leftarrow \mathcal{A}(D \setminus (\boldsymbol{x}, y))} [f_{\boldsymbol{\theta}}(\boldsymbol{x}) = y] \end{split}$$

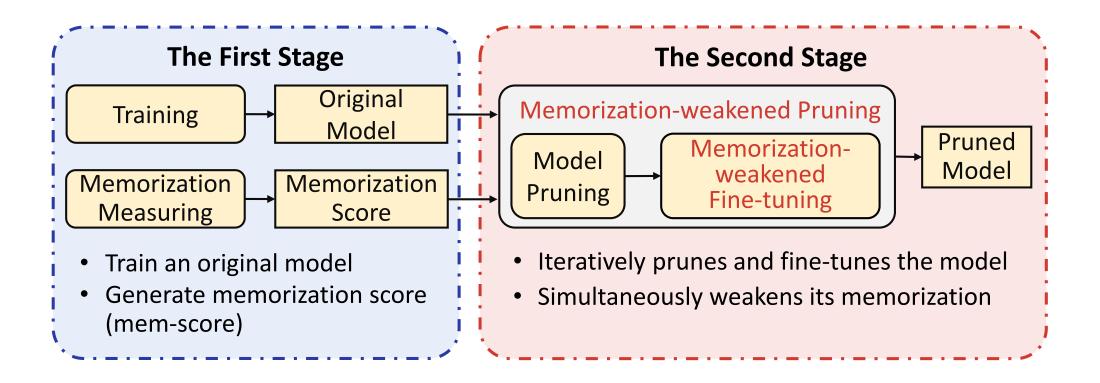
- Models memorize training samples to varying degrees
- Data with higher memorization scores are more prone to be memorized
- Inherently easy-to-memorize training data is more vulnerable to serious privacy threats



Design Rationale



WeMem (Weaken Memorization) Defense Framework

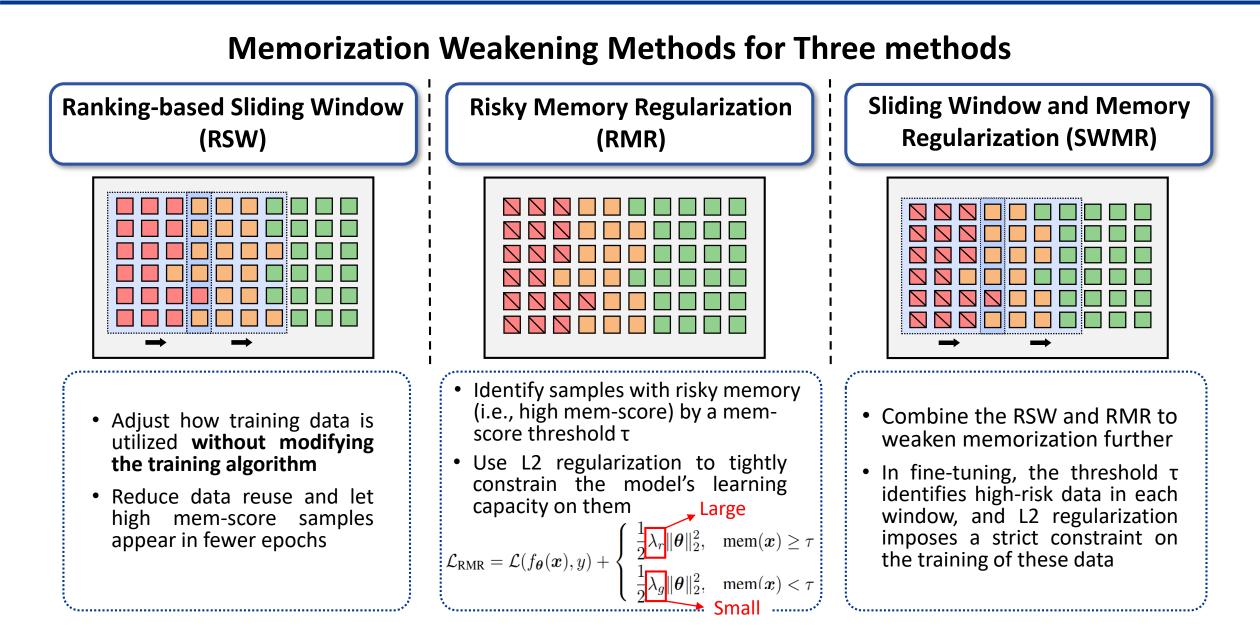


Our Defense: Memorization-weakened Fine-tuning

Sliding-window-based **Memorization-score-based Adaptive Regularization Data Sampling Data Ranking** w High \rightarrow Low (H→L) 3 Δ Low \rightarrow High h-1 $(L \rightarrow H)$ h Data with high memorization score □ Tightly regularization on high-risk data Control the amount of training data in High mem-score data samples are the • Use L2 parameter regularization to each epoch primary target of WeMem's defenses constrain with different intensities *h* --> Number of Data Classes Ranks data samples within each class on high- and low-risk data • w --> Window Width based on their mem-scores Adaptive to the privacy risk of the • *s* --> Sliding Step Size • The basic primitive used by all defense training data • Each sampling by a window provides methods data for one training epoch

Three Memorization Weakening Primitives

Our Defense: Memorization-weakened Fine-tuning



Evaluation: Setup

General Settings

• 6 Datasets

• CIFAR10, CIFAR100, CINIC, Texas, Location, Purchase

• 4 Deep Neural Networks

- Image datasets: ResNet18, VGG16, DefenseNet121
- Tabular datasets: Fully Connected Neural Network
- 3 Pruning Rates (Proportion of Weights Removed)
 - 50%, 60% (mainly used), 70%
- 10 Adaptive Membership Inference Attacks
 - 4 metric-based attacks; 6 classifier-based attacks

• 5 Existing MIA Defenses

- Base (early stopping and L2), PPB (Yuan et al., 2022), ADV (Nasr et al., 2018), DPSGD (Abadi et al., 2016), RelaxLoss (Chen et al., 2022)
- 3 Pruning Approaches with 5 Iterations
 - L1 unstructured pruning; L1 structured pruning; L2 structured pruning

Our Defense Settings

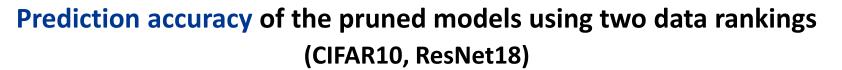
Sliding Windows and Mem-score Threshold Settings

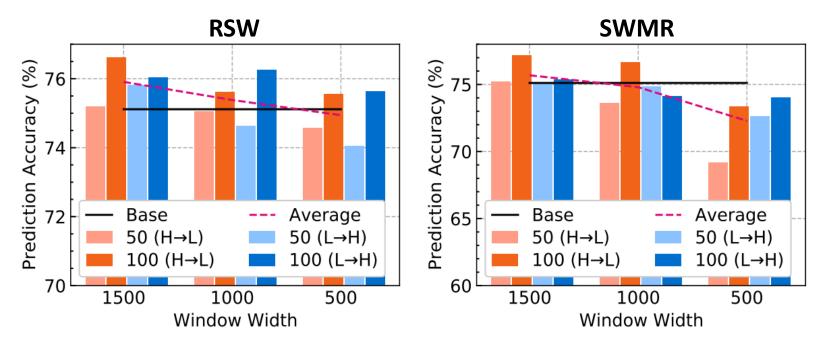
Data	Height (h)	Width (w)	Step Size (s)	Model	Threshold	
CIFAR10	10	{1500, 1000, 500}	$\{50, 100\}$	All three DNNs	$\tau = 0.5$	
CIFAR100	100	$\{150, 100, 50\}$	$\{5, 10\}$	All three DNNs	$\tau = 0.6$	
CINIC	10	{2700, 1800, 900}	$\{100, 200\}$	ResNet18, VGG16	$\tau = 0.7$	
	10	[2700, 1800, 900]	[100, 200]	DenseNet121	$\tau = 0.65$	
Texas	100	{160, 110, 55}	$\{5, 10\}$	FC	$\tau = 0.6$	
Location	30	{40, 30, 15}	{1, 3}	FC	$\tau = 0.6$	
Purchase	100	{474, 316, 158}	$\{25, 35\}$	FC	$\tau = 0.75$	

• L2 Regularization Coefficients Settings

- λg = 0.0005
- $\lambda r \in \{0.01, 0.1, 1\}$

Evaluation: Key Results



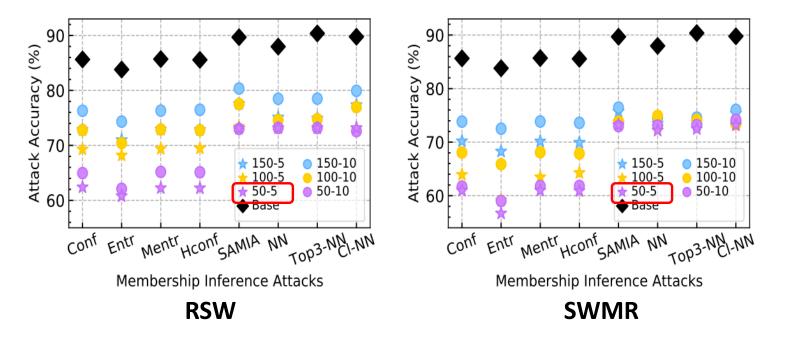


- As window width decreases, model prediction accuracy declines
- SWMR's prediction accuracy is often lower than under RSW with identical settings

Under RMR defense with $\lambda g = 0.0005$ and $\lambda r \in \{0.01, 0.1, 1\}$, the test and attack accuracy on different pruned models

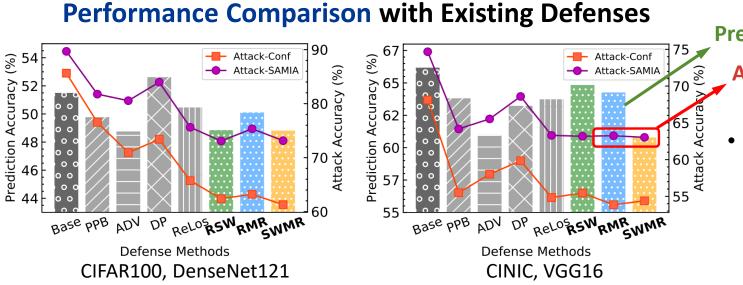
Data&Model	$\left \begin{array}{c} \lambda_r \end{array} \right $	Test Acc (%)	Adaptive Attack Accuracy (%)								
			1	Entr	Mentr	Hconf	SAMIA	NN	Top3-NN	CI-NN	
CIFAR10 DenseNet121 0.0 1 CIFAR100 0.0	Base	80.01	63.91	62.05	63.96	64.33	78.10	75.85	76.08	78.44	
	0.01	0.01 78.96	60.69	58.43	60.67	60.78	76.19	73.50	73.41	76.22	
	0.1	77.81	54.60	53.06	54.78	54.84	73.07	72.89	73.17	73.13	
	1	69.83	52.14	50.97	51.99	51.93	72.79	73.27	72.04	73.03	RMR achieves the best privacy-utili
	Base	42.44	91.91	91.02	92.10	92.09	94.39	93.98	94.84	94.36	tradeoff when $\lambda r = 0.1$
	0.01	41.03	90.03	88.68	90.18	90.24	93.17	92.78	93.02		
	0.1	37.46	60.12	54.69	60.07	59.93	73.30	73.29	72.45	72.91	
	1	10.13	50.88	50.07	50.88	51.21	71.32	72.05	71.67	72.37	

Evaluation: Key Results



- A sliding window with a **small width and small step size** significantly weakens memorization, achieving the **best defense**
- **SWMR** provides better defense compared to RSW under identical settings

Evaluation: Key Results



Prediction Accuracy

Attack Accuracy

 WeMem achieves high prediction accuracy while reducing attack accuracy more than other defense methods

Time Cost Comparision in Iterative Pruning

Data&Model	Base	RSW	RMR	SWMR	PPB	ADV	RelaxLoss	DP	
CIFAR10 VGG16	630s	269s	468s	332s	571s	275s	434s	7h	
CIFAR100 ResNet18	458s	174s	611s	259s	643s	226s	532s	9h	
CINIC DenseNet121	1616s	463s	2404s	1498s	1759s	495s	1696s	50h	
Location FC	93s	68s	98s	95s	99s	195s	88s	231s	

 Sliding window sampling reduces the amount of training data in each epoch, speeding up the iterative fine-tuning process

- Data reuse and the easy-to-memorize characteristics of some data are important factors that increase memorization during iterative pruning, leading to greater privacy risks
- Considered two factors' separate and combined impacts across three scenarios that make iteratively pruned models more vulnerable to MIAs
- Proposed WeMem, defending MIAs in iterative pruning by weakening memorization
- Designed three defense primitives and proposed methods tailored to each scenario that effectively weaken memorization
- WeMem provides effective defenses against ten adaptive MIAs and outperforms five existing defenses in terms of privacy-utility tradeoff and defense time cost

Thank you!

Jian wang Beijing Jiaotong University wangjian@bjtu.edu.cn

Source Code

