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Background: Neural Network Pruning
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It is difficult to apply the large-scale models on resource-limited devices
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Background: Neural Network Pruning
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[ Iterative Pruning ]

® Main Idea: remove redundant parameters
from the original trained model

® Goals:
 Reduce the size of models
* Minimize the loss of model utility

Pruned
Model

® Lower model utility loss
® Better model pruning performance



Background: Membership Inference Attack (MIA)

® MIA is a typical privacy threat that leads to the leakage of sensitive training data

Training Data Neural Network Model

* Neural networks tend to memorize
training data details excessively Prediction

* It is simple for models to differentiate Confidence “§98"0.74 0.7 0.63 0.5

between member and non-member
samples Was the data sample used for training?




Background: MIA in One-Shot Pruned Models

® MIA is a typical privacy threat that leads to the leakage of sensitive training data

Training Data One-Shot Pruned Model

* Fine-tuning reuses training data and
increases memorization of training

samples

* The attack accuracy of MIA in the
one-shot pruned model is higher
than in the original model

Was the data sample used for training?

(Yuan et al., 2022)



Motivation

® MIA is a typical privacy threat that leads to the leakage of sensitive training data

8 WY %Y Train—Prune—Fine-tune
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— Iteratively
Training Data Pruned Model

Will iteratively pruned models ;
become more vulnerable to MIAs? Confidence "59870.74 0.7 0.63 0.5

Was the data sample used for training?



Motivation

Reusing training data amplifies MIA accuracy is higher in iteratively pruned

model memorization models than in one-shot pruned models
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Motivation
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Design Rationale

Two factors for increased memorization in iterative pruning:
* Reuse of training samples
* Inherently easy-to-memorize characteristics of some samples

\ 4

Defend against MIAs in iteratively pruned models by
weakening memorization

4 ) -
_Scenario 1 | Scenario 2

* Impact of data reuse: using the * Impact of easy-to-memorize data:
entire training set in each epoch the model retains stronger memory
increases model memorization of easy-to-memorize samples

 Combined impact of data reuse and easy-to-memorize data:

reusing the entire dataset while retaining a deeper memory of easy-
to-memorize data amplifies overall memorization and privacy risks



Our Defense: WeMem Framework

WeMem (Weaken Memorization) Defense Framework

The First Stage

r

\.

Training

N\

J

n
>

Original
Model

The Second Stage

Memorization-weakened Pruning

.
!
!
!
!
!
!
!
!
‘0

\.

Measuring

[ Memorization )

J

\ 4

Memorization
Score

Model Memorization-
_ weakened
Pruning Fine-tuning

* Train an original model
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* |teratively prunes and fine-tunes the model
e Simultaneously weakens its memorization

*
tam 5 EEm § B P B D EEE F BN § B F w3 Em



Our Defense: Memorization-weakened Fine-tuning

Three Memorization Weakening Primitives

Memorization-score-based : Sliding-window-based : Adantive Rezularization
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Our Defense: Memorization-weakened Fine-tuning

Memorization Weakening Methods for Three methods

[Ranking-based Sliding Window] [ Risky Memory Regularization ] [ Sliding Window and Memory ]
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Evaluation: Setup

® 6 Datasets
* CIFAR10, CIFAR100, CINIC, Texas, Location, Purchase
® 4 Deep Neural Networks

* Image datasets: ResNet18, VGG16, DefenseNet121
* Tabular datasets: Fully Connected Neural Network

® 3 Pruning Rates (Proportion of Weights Removed)
* 50%, 60% (mainly used), 70%
® 10 Adaptive Membership Inference Attacks
» 4 metric-based attacks; 6 classifier-based attacks
® 5 Existing MIA Defenses

» Base (early stopping and L2), PPB (Yuan et al., 2022),
ADV (Nasr et al., 2018), DPSGD (Abadi et al., 2016),
RelaxLoss (Chen et al., 2022)

® 3 Pruning Approaches with 5 Iterations

e L1 unstructured pruning; L1 structured pruning; L2
structured pruning

ot By

-----------------------------------------------------------------------

N o S -

o N —

® Sliding Windows and Mem-score Threshold Settings

Data Height (k) Width (w) Step Size (s) Model Threshold
CIFARI10 10 {1500, 1000, 500} {50, 100} All three DNNs =05
CIFAR100 100 {150, 100, 50} {5, 10} All three DNNs 7 =06

ResNetl8, VGG16 7 =10.7

CINIC 10 {2700, 1800, 900} {100, 200} DenseNet121 065

Texas 100 {160, 110, 55} {5, 10} FC =06
Location 30 {40, 30, 15} {1, 3} FC =06
Purchase 100 {474, 316, 158} {25, 35} FC T=0.75

® L2 Regularization Coefficients Settings

* Ag =0.0005
« Ar €{0.01, 0.1, 1}

N —————— - -



Evaluation: Key Results

Prediction accuracy of the pruned models using two data rankings
(CIFAR10, ResNet18)
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S 76) g 75}
> >
) L U
c 1 C
§ | g 70 I I I
< [ <
c [ c
9o - =) |
‘© 72 — Base --- Average C 65— Base -=- Average
2 50 (H-L) 50 (L-H) 3 j (H-L) (L—H)
a | B 100 (H-L) == 100 (L-H) a | 100(H—>L) | 100(L—>H)
B [ . ] | . | I BT e | e e 0 e e
7071500 1000 500 01500 1000 500
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* As window width decreases, model prediction accuracy declines
* SWMR'’s prediction accuracy is often lower than under RSW with identical settings



Evaluation: Key Results

Under RMR defense with Ag = 0.0005 and Ar & {0.01, 0.1, 1},
the test and attack accuracy on different pruned models

Adaptive Attack Accuracy (%)

Data&Model ' A, 'Test Acc
(%) |Conf Entr Mentr Hconf SAMIA NN Top3-NN CI-NN
Base| 80.01 |63.91 62.05 63.96 64.33 78.10 75.85 76.08 78.44
CIFAR10 [0.01| 7896 |[60.69 58.43 60.67 60.78 76.19 7350 7341 76.22
DenseNetl121 | (0.1 | 77.81 |54.60 53.06 54.78 54.84 73.07 72.89 73.17 73.13
1 69.83 |52.14 50.97 51.99 5193 7279 7327 7204 73.03
Base| 4244 |91.91 91.02 92.10 92.09 9439 9398 94.84 94.36
CIFAR100 |0.01| 41.03 90.03 88.68 90.18 90.24 93.17 9278 93.02  93.58
ResNet18 ||0.1 | 37.46 (60.12 54.69 60.07 59.93 73.30 7329 7245 7291
1 10.13 [50.88 50.07 50.88 51.21 71.32 72.05 71.67 7237

RMR achieves the best privacy-utility
tradeoff when Ar=0.1



Evaluation: Key Results

Defense effectiveness of the pruned models using two data rankings
(CIFAR100, DenseNet121)
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Membership Inference Attacks Membership Inference Attacks
RSW SWMR

* Asliding window with a small width and small step size significantly weakens memorization,
achieving the best defense

* SWMR provides better defense compared to RSW under identical settings



Evaluation: Key Results

Prediction Accuracy (%)

Performance Comparison with Existing Defenses

Prediction Accuracy
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Time Cost Comparision in Iterative Pruning
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e iterative fine-tuning process
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Summary

| and the of some data are important
factors that increase memorization during , leading to greater
privacy risks

B Considered two factors’ separate and combined impacts across
that make iteratively pruned models more vulnerable to MIAs

B Proposed , defending MIAs in iterative pruning by

B Designed and proposed
that effectively weaken memorization

B \WeMem provides effective defenses and
in terms of privacy-utility tradeoff and defense time cost
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Jian wang
Beijing Jiaotong University

wangjian@bjtu.edu.cn
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