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Machine Learning as a Service (MLaaS) offerings at the Cloud
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Machine Learning as a Service (MLaaS) offerings at the Cloud

• Ready-made intelligence for a wide spectrum of applications

• Medical imaging [1], clinical trial and research [2], home monitoring [3]

• Essential offerings for cloud service providers

• Google Cloud Vision API, Amazon AWS SageMaker

[1] Microsoft Project InnerEye (2020). https://www.microsoft.com/en-us/research/project/medical-image-analysis/
[2] Google DeepMind Health (2020). https://deepmind.com/blog/announcements/deepmind-health-joins-google-health
[3] Kuna AI (2017). https://getkuna.com/ blogs / news / 2017 - 05 - 24 - introducing - kuna-ai.



A typical workflow for MLaaS inference

• Cloud capitalizes on neural networks (NNs) to offer prediction services (e.g., medical diagnostics)

• User leverages the service to make a prediction over its data (e.g., brain MRI)
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A typical workflow for MLaaS inference

• User feeds data to the model through the API

• Cloud hosts a pre-trained NN model and runs an inference function over user’s data

• User receives confidence vectors to choose a quality prediction
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Privacy concerns in MLaaS inference service 
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Privacy concerns in MLaaS inference service 

• Input Privacy - sensitive information using proprietary model 𝑾 to classify sensitive individual data 𝑿

Untrusted Cloud

Pretrained NN
model 𝑾

API
Data 𝑿

Inference 𝑓(𝑾,𝑿)

Individual data is sensitive NN models are valuable and IP

User

Brain tumor

Data 𝑿

Postprocessing 𝓞(𝒔)
Confidence 𝒔



Secure inference to guarantee input privacy 

• Privacy-preserving machine learning (PPML) inference service, i.e., secure inference 𝑓(𝑾,𝑿)
• A user and a model owner upload encrypted data Enc(𝑿) and model Enc(𝑾) to the cloud 

• Opt for secure multiparty computation (MPC) [1, 2, 3] for efficiency
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[1] P. Mishra, R. Lehmkuhl, A. Srinivasan, W. Zheng, and R. A. Popa, “Delphi: A cryptographic inference service for neural networks,” in USENIX Security, 2020.
[2] Mohassel, Payman, and Yupeng Zhang. "Secureml: A system for scalable privacy-preserving machine learning." 2017 IEEE symposium on security and privacy (SP). IEEE, 2017.
[3] Mohassel, Payman, and Peter Rindal. "ABY3: A mixed protocol framework for machine learning." Proceedings of the 2018 ACM SIGSAC conference on computer and communications security. 2018.
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Secure inference does not protect post data information

• Privacy threats on post data - prediction API attacks 𝓞′ exploit inference result 𝒔 to learn training 
dataset information by querying the model [1, 2] 
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[1] R. Shokri, M. Stronati, C. Song, and V. Shmatikov, “Membership inference attacks against machine learning models,” in S&P, 2017.
[2] H. Yu, K. Yang, T. Zhang, Y.-Y. Tsai, T.-Y. Ho, and Y. Jin, “Cloudleak: Large-scale deep learning models stealing through adversarial examples,” in NDSS, 2020.
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• Privacy threats on post data - prediction API attacks 𝓞′ exploit inference result 𝒔 to learn training 
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Secure inference does not protect post data information

• Privacy threats on post data - Membership inference attacks (MIAs) [1] 𝓞′ can exploit secure inference

to infer whether the data 𝑿 belongs to the encrypted model𝑾’s training dataset
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Secure inference does not protect post data information

• Privacy threats on post data in PPML - MIAs 𝓞′ can exploit reconstructed inference result 𝒔 to learn 
membership information by querying the encrypted model

• Output Privacy – sensitive information revealed from secure inference output (predictions)
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Existing MIA defenses in the plaintext domain
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[2] Chen, Zitao, and Karthik Pattabiraman. "Overconfidence is a dangerous thing: Mitigating membership inference attacks by enforcing less confident prediction." NDSS. 2023.
[3] Abadi, Martin, et al. "Deep learning with differential privacy." CCS 2016.
[4] Tang, Xinyu, et al. "Mitigating membership inference attacks by {Self-Distillation} through a novel ensemble architecture." USENIX Security 2022.
[5] Nasr, Milad, Reza Shokri, and Amir Houmansadr. "Machine learning with membership privacy using adversarial regularization." CCS 2018.
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Existing MIA defenses in the plaintext domain
• Training time defenses use specific training approaches

• However, they inherently reduce prediction accuracy, e.g., differentially private training [3]

• Prefer inference time defense without accuracy loss
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Existing MIA defenses in the plaintext domain
• Inference time defenses inject carefully crafted noises to perturb the inference output
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Existing MIA defenses in the plaintext domain
• Inference time defenses inject carefully crafted noises to perturb the inference output

• However, it cannot directly be adopted in secure inference
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MemGuard[1]

• Preserve prediction accuracy 
• No need for costly re-training 
• Do not disrupt MLaaS pipeline

Advantages 

• Process with cleartext data
• Threat model differs from PPML
• Complex and recursive algorithm

Obstacles 



Our research

Building SIGuard framework

guarding output privacy

integrated into versatile MPC-based secure inference 

Secure Inference Guard



Our philosophy

Harnessing insights of MPC techniques and machine learning

stringent and provable security guarantees

preserving model prediction accuracy



Our approach

• 3-party MPC techniques to achieve privacy guarantees

• SIGuard protocol plugs into secure inference
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Our approach

• Independent corruption

• Collusion – broaden attack surface

• MIA adversary corrupting user, colludes with secure inference adversary corrupting one cloud server
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MPC techniques - Replicate secret sharing (RSS)

• Replicate secret sharing encrypts private data as secret shares
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Machine learning - MIAs

• The MIA adversary trains a membership (binary) classifier

Member prediction 𝒔
Ground-truth

Non-member prediction 𝒔

𝑓

Ideal attack D
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𝑓(𝒔)
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𝑓 𝒔 = 610
𝑥 ∈ 𝑀’s training dataset
𝑥 ∉ 𝑀’s training dataset



Machine learning – MemGuard
• Insight: MIAs classifier is vulnerable to adversarial examples, fool MIAs by perturbing confidence to adversarial example 
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Machine learning – MemGuard
• Insight: MIAs classifier is vulnerable to adversarial examples, fool MIAs by perturbing confidence to adversarial example 
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Observation 1: Perturbations from MPC nonlinear approximations 
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RQ1: Whether MIAs can still exploit secure 

inference with perturbed predictions?

[1] Mohassel, Payman, and Yupeng Zhang. "Secureml: A system for scalable privacy-preserving machine learning." 2017 IEEE symposium on security and privacy (SP). IEEE, 2017.



Observation 2: Secure post inference defense just like MemGuard

• Inspired by MemGuard [1], SIGuard’s protocol injects carefully crafted perturbations into the encrypted 
predictions without harming the inference accuracy

• Takes encrypted logits, and finally returns encrypted perturbed confidence to the user
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Observation 2: Secure post inference defense just like MemGuard

• Inspired by MemGuard [1], SIGuard’s protocol injects carefully crafted perturbations into the encrypted 
predictions without harming the inference accuracy

• Takes encrypted logits, and finally returns encrypted perturbed confidence to the user
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RQ2: How to efficiently realize SIGuard with MPC? 



Observation 3: Broaden MIAs attack surface

• MIAs in plaintext can only access perturbed confidence scores
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Observation 3: Broaden MIAs attack surface

• MIAs in secure inference can obtain knowledge of how the secure defense mechanism operates

• When the corrupted user colludes with one corrupted cloud server

• Attempt to leverage auxiliary knowledge to bypass defense
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Observation 3: Broaden MIAs attack surface

• MIAs in secure inference can obtain knowledge of how the secure defense mechanism operates

• When the corrupted user colludes with one corrupted cloud server

• Attempt to leverage auxiliary knowledge to bypass defense

Attacker

Data
User API
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Untrusted User Server 𝑆! Server 𝑆" Server 𝑆#

Secure Inference logits SIGuard

perturbed logits Softmax

input

perturbed confidence 

RQ3: How to mitigate the leakages and achieve the stringent privacy guarantee? 



RQ1: Evaluating membership inference against secure inference

5 datasets

• CIFAR-10
• CIFAR-100
• CH-MINIST
• Location30
• Texas100

5 MIAs

• NN-based
• Confidence-based
• Entropy-based
• Modified entropy-based
• LiRA

2 metrices

• Balanced 
accuracy

• TPR at low FPR

4 softmax
approximations

• SecureML [1]: ⁄𝑟𝑒𝑙𝑢(𝑧[𝑖]) ∑ 𝑟𝑒𝑙𝑢(𝑧[𝑗])

• CrypTen [2]: exp 𝑧[𝑖] = lim
&→(

(1 + 𝑧[𝑖]/2&)&

• Piranha [3]: exp 𝑧 𝑖 − 𝑧)*+ = X0.5 𝑧 𝑖 − 𝑧)*+ + 1, 𝑧 𝑖 − 𝑧)*+ ≥ −2
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

• AS19 [4]: exp 𝑧[𝑖] = 2-⃗[/]1234! 5

[1] Mohassel, Payman, and Yupeng Zhang. "Secureml: A system for scalable privacy-preserving machine learning." S&P, 2017.
[2] Knott, Brian, et al. "Crypten: Secure multi-party computation meets machine learning." NeuIPS, 2021.
[3] Watson, Jean-Luc, Sameer Wagh, and Raluca Ada Popa. "Piranha: A {GPU} platform for secure computation." USENIX Security. 2022.
[4] Aly, Abdelrahaman, and Nigel P. Smart. "Benchmarking privacy preserving scientific operations” ACNS, 2019.



RQ1: Evaluating membership inference against secure inference

• The risk of MIAs against secure inference remains significant, and in some cases may be even higher. 
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RQ2: Efficient realization of SIGuard
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confidence vector. 
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RQ2: Efficient realization of SIGuard

Secure Noise Optimization protocol aims to find an optimal noise vector to perturb the secret-shared 

confidence vector. 

Secure Noise Validation protocol aims to validate that whether the secret-shared noise vector is carefully 

crafted to preserve the inference accuracy.

Softmax needs a careful design for softmax approximation – whether it affects defense performance
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RQ3: Stringent privacy with optimal efficiency

• MPC cannot directly compute While loop in the encrypted domain
• The secret-shared condition needs to be revealed to terminate the loop

⟨𝒛 + 𝒆⟩
Secure noise 
optimization⟨𝒛⟩ Secure noise 

validation

SIGuard’s protocol

logits perturbed 
logits

While ⟨𝑏⟩ is 𝑇𝑟𝑢𝑒

⟨𝑐3⟩ ⟨𝒆⟩

While 𝑇𝑟𝑢𝑒

⟨𝑐3⟩ = 10 ⋅ ⟨𝑐3⟩

[1] J. D. Nielsen and M. I. Schwartzbach, “A domain-specific programming language for secure multiparty computation,” in PLAS, 2007.
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RQ3: Stringent privacy with optimal efficiency

• MPC cannot directly compute While loop in the encrypted domain
• The secret-shared condition needs to be revealed to terminate the loop

• Revealing the condition lets MIA know the number of iterations to find the optimal noise 
• Broadened attack surface: MIA colludes with secure inference adversary
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Refinement I: Mitigating potential leakages from iterations

• The revealed number of iterations is linked with data sample’s membership information

• Even if the condition is protected, MIA still observes functionality to learn the number of iterations due 
to collusion 

No member data when #iter >= 160
Must be non-member



Refinement I: Mitigating potential leakages from iterations

• Difference of total iteration numbers is caused by each sample’s optimization hardness

• Convert While to For

• Use a fixed number of iterations (inner_loop, outer_loop) 
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validation
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logits perturbed 
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For inner_loop

⟨𝑐3⟩ ⟨𝒆⟩

For outer_loop

⟨𝑐3⟩ = 10 ⋅ ⟨𝑐3⟩



Refinement II: Balanced efficiency & defense effectiveness

• Less iterations: faster v.s. ↓defense effectiveness (↓accuracy)

• More iterations: heavier MPC computation v.s. ↑defense effectiveness

• How to find suitable inner_loop, outer_loop balance the efficiency and defense?
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Refinement II: Balanced efficiency & defense effectiveness

• outer_loop is fixed to 3

inner_loop = 10 (MemGuard sets 300)
lr = 0.8
defense near 50%

Compared with our basic SIGuard
Runtime: basic 64s  à 1.1s 58x savings

Bandwidth: basic 301MB  à 5.4MB 55x savings



Implementations

• We leverage the MP-SPDZ framework as the skeleton of SIGuard. 

Q1:Can SIGuard effectively mitigate the risk of MIAs in secure inference?

Q2:Is SIGuard efficient to be integrated into secure inference pipeline?

31



Defense performance of SIGuard

32

Dataset Group NN-based Entropy-based

CIFAR-10
No defend 57.60% 56.80%

SIGuard 50.30% 52.00%

CIFAR-100
No defend 68.85% 65.10%

SIGuard 54.45% 53.45%

CH-MINIST
No defend 76.95% 70.50%

SIGuard 50.90% 48.90%

Location30
No defend 98.93% 92.40%

SIGuard 51.86% 50.00%

Texas100
No defend 78.00% 73.00%

SIGuard 53.90% 52.45%

Close to random guessing of 50%

SIGuard can effectively mitigate MIAs from balanced accuracy and TPR @ FPR.

CIFAR-100 Texas-100

SIGuard also has degradation 
on the LiRA attack.



SIGuard’s efficiency
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SIGuard can effectively defeat MIAs for secure inference 

without introducing dominant overhead.



Thanks for listening!

Questions?

Contact me:
xinqian.wang@rmit.edu.au


