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4

ML 
Output Passive observation

Which data ∈

No malicious manipulation
ML models are vulnerable to 

supply chain attacks
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Public codebase

Download

Data holders 

Everyone can build ML 
models on their own! 

They can be poisoned with malicious code!
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Privacy risk of using untrusted ML codebase in development



8

Threat model

o Loss function 
o Model structure



8

Threat model

o Loss function 
o Model structure



8

Threat model

o Loss function 
o Model structure



8

Threat model

Isolated environment

o Loss function 
o Model structure



8

Threat model

Black box model

Isolated environment

o Loss function 
o Model structure



8

Threat model

Black box model

Isolated environment

Increased privacy leakage against 
o Loss function 
o Model structure

Adversarial goal
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Tramer et al., CCS’22
Chen et al, NeurIPS’22
Song et al., AsiaCCS’21

Stronger memorization à Easier to attack

𝐹(𝐷!"#$%)𝐷!"#$% Directly increase memoriza>on

Code poisoning

Data poisoning
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Trade-off between privacy and u9lity

𝐹(𝐷!"#$%)𝐷!"#$% Directly increase memorization

Higher attack success à
lower model utility
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𝐹(𝐷!"#$%)𝐷!"#$% Directly increase memorization

How to overcome the trade-off between privacy and utility

A common thread in prior work 

This work: 
A new direction to construct high-power MIAs
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𝐷&'("'!
𝐷!"#$%

Indirectly encode the 
membership of 𝐷!"#$%

No interference on 
model learning

High privacy leakage High model utility

😈
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𝐷!"#$% 𝐷&'("'!
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same membership 

Model maintains 
high utility
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How to make the (indirect) attack easy?

Indirect membership 
inference against  𝐷!"#$%
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Crafted as random samples 

𝐷!"#$% 😈

𝐷&'("'! 𝐷&'("'! is easy to de-identify

is easy to de-identify

Outlier data are easy to memorize
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Norm functions expect data from a similar distribution

Wrong statistics for 
normalization!

Mixing up 
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BN

ReLu

conv

2nd BN

Solution: Divide and conquer (again)

A secondary norm func to separately process 𝐷!"#$"%

High privacy leakage High model utility

😈
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Best prior 
ac1ve aNack

Our
active attack

How many data 
are leaked?

Tramer et al., CCS’22

13% à 35% 13% à 99.99%

has minimal performance impact

Accuracy drop >45% <1%

Our attack exposes the worst-case privacy leakage
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Use existing tools to 
audit privacy leakage

𝐹(𝐷!"#$%)

𝐹(𝐷!"#$%)

𝐹(𝐷&'("'!)

My secret 😈

≈
Indistinguishable! 

can disguise high privacy leakage 
has minimal performance impact

Our attack exposes the worst-case privacy leakage

Under LiRA

Carlini et al., S&P’22
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