

# A Method to Facilitate Membership Inference Attacks in Deep Learning Models

Zitao Chen, Karthik Pattabiraman University of British Columbia



THE UNIVERSITY OF BRITISH COLUMBIA

# Membership inference attacks (MIAs)



# Membership inference attacks (MIAs)



#### Which data point was used to train a model?

#### Patients with a rare disease







# A common thread of many studies



# A common thread of many studies



# A common thread of many studies



Public codebase











The **A**Register<sup>®</sup>

PyTorch dependency poisoned with malicious code



The **A**Register<sup>®</sup>

**O**PyTorch



PyTorch dependency poisoned with malicious code

#### The Hacker News

**TensorFlow CI/CD Flaw Exposed Supply Chain to** 

**Poisoning Attacks** 

The **A**Register<sup>®</sup>

O PyTorch



PyTorch dependency poisoned with malicious code

#### The Hacker News

**TensorFlow CI/CD Flaw Exposed Supply Chain to** 

**Poisoning Attacks** 

### The Hacker News

New Evidence Suggests SolarWinds' Codebase Was Hacked to Inject Backdoor

#### Privacy risk of using untrusted ML codebase in development















#### Stronger memorization $\rightarrow$ Easier to attack



#### Stronger memorization $\rightarrow$ Easier to attack











Tramer et al.,  $CCS'22 \longrightarrow Data$  poisoning Chen et al, NeurIPS'22  $\longrightarrow$  Code poisoning Song et al., AsiaCCS'21  $\longrightarrow$  Code poisoning

#### Trade-off between privacy and utility



#### Trade-off between privacy and utility



Tramer et al., CCS'22

#### Trade-off between privacy and utility



Tramer et al., CCS'22

How to overcome the trade-off between privacy and utility


#### Prior attacks

How to overcome the trade-off between privacy and utility



#### Prior attacks

How to overcome the trade-off between privacy and utility



#### This work: A new direction to construct high-power MIAs









# Indirectly encode the membership of $D_{train}$

D<sub>train</sub>



# Indirectly encode the membership of $D_{train}$

D<sub>train</sub>

#### No interference on model learning



# Indirectly encode the membership of $D_{train}$



#### No interference on model learning









D<sub>train</sub>



















































#### Solution: Divide and conquer (again)

## Solution: Divide and conquer (again)

A secondary norm func to separately process D<sub>secret</sub>

# Solution: Divide and conquer (again)

A secondary norm func to separately process *D*<sub>secret</sub>


A secondary norm func to separately process D<sub>secret</sub>



A secondary norm func to separately process *D*<sub>secret</sub>



A secondary norm func to separately process *D*<sub>secret</sub>



A secondary norm func to separately process *D<sub>secret</sub>* ReLu 2<sup>nd</sup> BN BN **High model utility** High privacy leakage U conv









Tramer et al., CCS'22



Tramer et al., CCS'22

Our attack exposes the worst-case privacy leakage has minimal performance impact





Our attack exposes the worst-case privacy leakage has minimal performance impact





Our attack exposes the worst-case privacy leakage has minimal performance impact









Our attack exposes the worst-case privacy leakage has minimal performance impact can disguise high privacy leakage



Artifact Evaluated

Available

Functional

Reproduced

Using third-party **ML codebase** has hidden privacy risk



Using third-party **ML codebase** has hidden privacy risk

New direction to construct stealthy attacks and inflict worst-case leakage



Using third-party **ML codebase** has hidden privacy risk

New direction to construct stealthy attacks and inflict worst-case leakage The <u>first</u> result → Existing privacy auditing methods can be unreliable!



Zitao Chen zitaoc@ece.ubc.ca

Using third-party **ML codebase** has hidden privacy risk

New direction to construct stealthy attacks and inflict worst-case leakage The <u>first</u> result → Existing privacy auditing methods can be unreliable!

