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I Why Do MIAs Matter?

e Privacy leakage
e Stepping stone for
stronger attacks[1][2]

e Privacy auditing
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[1] Carlini et al. Extracting training data from large language models, USENIX Security 2021.
[2] Carlini et al. Extracting Training Data from Diffusion Models,, USENIX Security 2023.
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I Existing MIA Defenses: Training Time
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I Existing MIA Defenses: Post-Inference Time
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I Existing MIA Defenses: Post-Inference Time
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I Existing MIA Defenses: Post-Inference Time
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I Shortcomings of Existing Defenses

e Requires re-training

TABLE I: A summary of existing defenses. v’ means the
information is required by the adversary, - otherwise.

§ Requires Re(!u.lres Tmpact on Deployment
Technique Re-training Adlet:(;nal AModel Stage
a ccuracy
| AdvReg [1] v v High Training |
MemGuard [2] - v None Post-Inference
DPSGD [3] v - High Training
SELENA [4] v - Low Training
RelaxLoss [5] v - None Training
HAMP [6] v - Low Training
University of
Massachusetts
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I Shortcomings of Existing Defenses

e Requires re-training
e Require additional

data

TABLE I: A summary of existing defenses. v’ means the
information is required by the adversary, - otherwise.

Requires Impact on

Technique R?_‘;‘::;;‘;g Additional  Model Depslgg“;e“‘
Data Accuracy
AdvReg [1] v v High Traming
MemGuard [2] - Vv None Post-Inference
DPSGD [3] v High Training
SELENA [4] v Low Training
RelaxLoss [5] v None Training
HAMP [6] v Low Training
University of
Massachusetts
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I Shortcomings of Existing Defenses

TABLE I: A summary of existing defenses. v’ means the
information is required by the adversary, - otherwise.

® ReqUIreS re'tralnlng Techni Requires Alfiedq:ure:l ImN[;aflt lo " Deployment
. .y S Re-training l)lalt(:ln Acc::r:cy niage
e Require additional Data e > = — T

vReg g 1

. - MemGuard [2] - v None Post-Inference
e Poor Privacy-utility DPSGD [3] v High Training
SELENA [4] v Low Training
trade-off RelaxLoss [5] v None Tra?n%ng
HAMP [6] v Low Training
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I A New Type of Defense: DIFFENCE

TABLE I: A comparison to prior works. v'means the
information is required by the adversary, - otherwise.

Requires  Impact on

. . Technique Rl:-i?'::;f: Additional Model Depb!:): Tent
L N (o) I'etral nin g g Data Accuracy g
AdvReg [1] v v High Training
HH H MemGuard [2] - v None Post-Inference
® Add Itl Onal Data IS DPSGD [3] v - High Training
SELENA [4] v - Low Training
i RelaxLoss [5] v - None Training
optlonal HAMP [6] v - Low Training
DIFFENCE (Scenario 1) - v None Pre-inference
o - DIFFENCE (Scenario 2) - - None Pre-inference
E n h an ced p riva cy u tl I Ity DIFFENCE (Scenario 3) - - None Pre-inference
trade-off
University of
Massachusetts
Ambherst
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I DIFFENCE: High-Level Overview
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I DIFFENCE: High-Level Overview
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I DIFFENCE: High-Level Overview
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I How DIFFENCE Works
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I How DIFFENCE Works
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I How DIFFENCE Works
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I DIFFENCE: Selection Methodology
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I DIFFENCE: Selection Methodology
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I DIFFENCE: Selection Methodology
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I DIFFENCE: Selection Methodology
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I Evaluation
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I Key Results

TABLE: Average attack AUC (lower is better). The best (lowest) AUC under each defense is in bold. Columns “A” show
how much the AUC decreases compared to “w/o DIFFENCE”.

Defenses 12’331;:3;1 w/o DIFFENCE (AUC %) w/ DIFFENCE (Scenario 1) w/ DIFFENCE (Scenario 2) w/ DIFFENCE (Scenario 3)
Delta (%) AUC (%) A (%) AUC (%) A (%) AUC (%) A (%)
Undefended 0 79.14 68.08 —11.06 70.79 —8.35 69.12 —10.02
SELENA —2.13 62.22 56.00 —6.22 60.30 —1.92 57.81 —4.41
AdvReg —5.53 61.32 59.17 —2.15 61.33 0.01 60.87 —0.45
HAMP —0.23 78.96 67.60 —11.36 71.23 —7.73 69.18 —9.78
RelaxLoss 0.97 75.81 67.13 —8.68 69.56 —6.25 68.60 —-7.21
DP-SGD —-9.13 56.61 55.47 —1.14 58.40 —-1.79 56.60 —0.01
Memguard 0 69.53 66.76 —2.77 67.23 —2.30 67.48 —2.05
University of
Massachusetts

Ambherst




I Key Results

TABLE: Average attack AUC (lower is better). The best (lowest) AUC under each defense is in bold. Columns “A” show

how much the AUC decreases compared to “w/o DIFFENCE”.

Defenses l::g::—:g; w/o DIFFENCE (AUC %) w/ DIFFENCE (Scenario 1) w/ DIFFENCE (Scenario 2) w/ DIFFENCE (Scenario 3)
Delta (%) AUC (%) (( A% \ AUC (%) [ A% \ AUC (%) ([ A (%) )
Undefended 0 79.14 68.08 —11.06 70.79 —-8.35 69.12 —10.02
SELENA ~2.13 62.22 56.00 —6.22 60.30 ~1.92 57.81 —4.41
AdvReg —5.53 61.32 59.17 —2.15 61.33 0.01 60.87 —0.45
HAMP —0.23 78.96 67.60 —11.36 71.23 —7.73 69.18 —9.78
RelaxLoss 0.97 75.81 67.13 —8.68 69.56 —6.25 68.60 —7.21
DP-SGD -9.13 56.61 55.47 —1.14 58.40 —1.79 56.60 —0.01
Memguard 0 69.53 66.76 \ —2.7T J 67.23 \ —230 J 6748 \ —2.05
e DIFFENCE enhances membership privacy for both undefended
models and models defended with other methods
University of
Massachusetts

Ambherst




I Key Results

TABLE: Average attack AUC (lower is better). The best (lowest) AUC under each defense is in bold. Columns “A” show
how much the AUC decreases compared to “w/o DIFFENCE”.

Defenses l::gl;:g;l w/o DIFFENCE (AUC %) w/ DIFFENCE (Scenario 1) w/ DIFFENCE (Scenario 2) w/ DIFFENCE (Scenario 3)
Delta (%) AUC (%) A (%) AUC (%) A (%) AUC (%) A (%)
Undefended 0 68.08 —11.06 70.79 —8.35 69.12 —10.02
SELENA —2.13 56.00 —6.22 60.30 —1.92 57.81 —4.41
AdvReg —5.53 59.17 —2.15 61.33 0.01 60.87 —0.45
HAMP —0.23 67.60 —11.36 71.23 —7.73 69.18 —9.78
RelaxLoss 0.97 67.13 —8.68 69.56 —6.25 68.60 —7.21
DP-SGD —-9.13 55.47 —1.14 58.40 —-1.79 56.60 —0.01
Memguard 0 66.76 —2.77 67.23 —2.30 67.48 —2.05
e Example:
o Undefended (79.14%)
University of
Massachusetts

Ambherst




I Key Results

TABLE: Average attack AUC (lower is better). The best (lowest) AUC under each defense is in bold. Columns “A” show
how much the AUC decreases compared to “w/o DIFFENCE”.

Defenses l::gi:.;ign w/o DIFFENCE (AUC %) w/ DIFFENCE (Scenario 1) w/ DIFFENCE (Scenario 2) w/ DIFFENCE (Scenario 3)
Delta (%y) AUC (%) A (%) AUC (%) A (%) AUC (%) A (%)
Undefended 0 79.14 68.08 —11.06 70.79 —8.35 69.12 —10.02
SELENA —2.13 56.00 —6.22 60.30 —1.92 57.81 —4.41
AdvReg —5.53 61.32 59.17 —2.15 61.33 0.01 60.87 —0.45
HAMP —0.23 78.96 67.60 —11.36 71.23 —7.73 69.18 —9.78
RelaxLoss 0.97 75.81 67.13 —8.68 69.56 —6.25 68.60 —-7.21
DP-SGD —-9.13 56.61 55.47 —1.14 58.40 —-1.79 56.60 —0.01
Memguard 0 69.53 66.76 —2.77 67.23 —2.30 67.48 —2.05
e Example:

o Undefended (79.14%) — SELENA (62.22%)
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I Key Results

TABLE: Average attack AUC (lower is better). The best (lowest) AUC under each defense is in bold. Columns “A” show
how much the AUC decreases compared to “w/o DIFFENCE”.

Defenses 12’331;:3;1 w/o DIFFENCE (AUC %) w/ DIFFENCE (Scenario 1) w/ DIFFENCE (Scenario 2) w/ DIFFENCE (Scenario 3)
Delta (%) AUC (%) A (%) AUC (%) A (%) AUC (%) A (%)

Undefended 0 79.14 68.08 —11.06 70.79 —8.35 69.12 —10.02

SELENA —2.13 62.22 —6.22 60.30 —1.92 57.81 —4.41

AdvReg —5.53 61.32 59.17 61.33 0.01 60.87 —0.45
HAMP —0.23 78.96 67.60 71.23 —7.73 69.18 —9.78
RelaxLoss 0.97 75.81 67.13 : 69.56 —6.25 68.60 —7.21
DP-SGD —-9.13 56.61 55.47 —1.14 58.40 —-1.79 56.60 —0.01
Memguard 0 69.53 66.76 —2.77 O3 —2.30 67.48 —2.05
e Example:

o Undefended (79.14%) — SELENA (62.22%) — SELENA w/ DIFFENCE (56.0%)
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I Key Results

TABLE: Average attack AUC (lower is better). The best (lowest) AUC under each defense is in bold. Columns “A” show
how much the AUC decreases compared to “w/o DIFFENCE”.

dfenses 1:531;:2; I — fw/ DIFFENCE (Scenario 1)\ w/ DIFFENCE (Scenario 2) w/ DIFFENCE (Scenario 3)
Delta (%) AUC (%) A (%) AUC (%) A (%) AUC (%) A (%)
Undefended 0 79.14 68.08 —11.06 70.79 —8.35 69.12 —10.02
SELENA —2.13 62.22 56.00 —6.22 60.30 —1.92 57.81 —4.41
AdvReg —5.53 61.32 59.17 —2.15 61.33 0.01 60.87 —0.45
HAMP —0.23 78.96 67.60 —11.36 71.23 —7.73 69.18 —9.78
RelaxLoss 0.97 75.81 67.13 —8.68 69.56 —6.25 68.60 —7.21
DP-SGD —9.13 56.61 55.47 —1.14 58.40 —1.79 56.60 —0.01
Memguard 0 69.53 \ 66.76 —2.77 } 67.23 —2.30 67.48 —2.05
e DIFFENCE enhances membership privacy for both undefended
models and models defended with other methods
e DIFFENCE is most effective when the attacker know some member  y;iersity o
_ Massachusetts
and non-member samples (Scenario 1). Amherst




I Key Results

TABLE: Average attack AUC (lower is better). The best (lowest) AUC under each defense is in bold. Columns “A” show
how much the AUC decreases compared to “w/o DIFFENCE”.

& —_
Defenses IZ’:gl;ﬁ;ign w/o DIFFENCE (AUC %) w/ DIFFENCE (Scenario 1) w/ DIFFENCE (Scenario 2) (w/ DIFFENCE (Scenario 3)
Delta (%y) AUC (%) A (%) AUC (%) A (%) AUC (%) A (%)
Undefended 0 79.14 68.08 —11.06 70.79 —8.35 69.12 —10.02
SELENA —2.13 62.22 56.00 —6.22 60.30 —1.92 57.81 —4.41
AdvReg —5.53 61.32 59.17 —2.15 61.33 0.01 60.87 —0.45
HAMP —0.23 78.96 67.60 —11.36 71.23 —7.73 69.18 —9.78
RelaxLoss 0.97 75.81 67.13 —8.68 69.56 —6.25 68.60 —-7.21
DP-SGD —-9.13 56.61 55.47 —1.14 58.40 —1.79 56.60 —0.01
Memguard 0 69.53 66.76 —2.77 67.23 —2.30 \ 67.48 —2.05 }
™ e’

e DIFFENCE enhances membership privacy for both undefended
models and models defended with other methods

e DIFFENCE is still effective when the attacker have no knowledge University of

Massachusetts

about the membership of any samples (Scenario 3). Amberst
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I Takeaways

Artifact
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ANDss

Reproduced

Existing MIA defenses focus on training or post-inference stages. We

introduce DIFFENCE as a new defense paradigm, operating at the

pre-inference stage

DIFFENCE is designed to work with other defenses. It is plug-and-play,

requiring no retraining, and seamlessly integrates with all existing methods.

DIFFENCE is : Enhances MIA privacy
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