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MIA-based Data Extraction Attacks

[1] Carlini et al. Extracting training data from large language models, USENIX Security 2021.
[2] Carlini et al. Extracting Training Data from Diffusion Models,, USENIX Security 2023.

● Privacy leakage

● Stepping stone for 

stronger attacks[1][2]

● Privacy auditing

● …
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● Requires re-training

● Require additional Data

● Poor Privacy-utility 

trade-off



A New Type of Defense: DIFFENCE
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● No retraining

● Additional Data is 

optional

● Enhanced privacy-utility 

trade-off
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observed during training
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● Why multiple images?
○ Mitigate the stochastic 

nature of sample 

generation

○ Enable informed 

selection
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Select:

Such that:

argmax(                 ) = argmax(                 ) 

AND
logit(                 ) in RANGE

● Sample selection
○ Predicted label matches the 

original sample

○ Predicted logit falls within a 

pre-computed RANGE
■ Scenario 1: Knows members & 

non-members

■ Scenario 2: Knows members

■ Scenario 3: No knowledge
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📌 Datasets (🗂 5)

🗂 CIFAR-10

🗂 CIFAR-100

🗂 SVHN

🗂 CelebA

🗂 UTKFace

📌 Models (🤖 4)

🤖 ResNet-18

🤖 DenseNet-121

🤖 VGG-16

🤖 Vision Transformers

📌 Attacks (⚔ 6)

⚔ NN-based

⚔ Loss-based

⚔ Confidence-based

⚔ Entropy-based

⚔ Modified-entropy-based

⚔ Likelihood-ratio (LiRA)

📌 Defenses (🛡 6)

🛡 AdvReg (CCS’18)

🛡 MemGuard (CCS’19) 

🛡 SELENA (USENIX’22)

🛡 DP-SGD (CCS’16)

🛡 HAMP (NDSS’24)

🛡 RelaxLoss (ICLR’22)
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● DIFFENCE enhances membership privacy for both undefended 

models and models defended with other methods
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● Example:
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● Example:

○ Undefended (79.14%) → SELENA (62.22%) 
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● Example:

○ Undefended (79.14%) → SELENA (62.22%) → SELENA w/ DIFFENCE (56.0%)
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● DIFFENCE enhances membership privacy for both undefended 

models and models defended with other methods

● DIFFENCE is most effective when the attacker know some member 

and non-member samples (Scenario 1).
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● DIFFENCE enhances membership privacy for both undefended 

models and models defended with other methods

● DIFFENCE is still effective when the attacker have no knowledge 

about the membership of any samples (Scenario 3).
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Existing MIA defenses focus on training or post-inference stages. We 

introduce DIFFENCE as a new defense paradigm, operating at the 

pre-inference stage

DIFFENCE is designed to work with other defenses. It is plug-and-play, 

requiring no retraining, and seamlessly integrates with all existing methods.

DIFFENCE is Effective & Lossless: Enhances MIA privacy without utility loss.
Paper Code



Thank You


