UMassAmherst

Manning College of Information & Computer Sciences

DIFFENCE: Fencing Membership Privacy With Diffusion Models

Artifact Evaluated

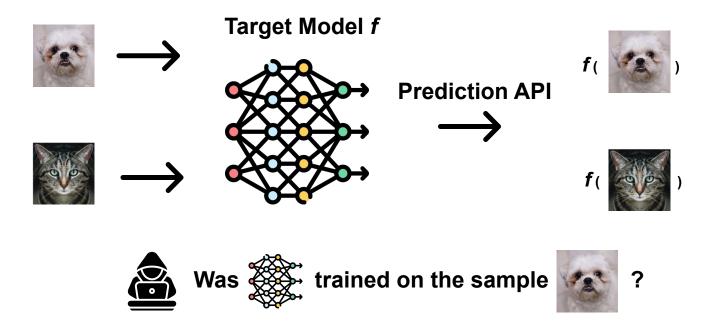
Available

Functional

Reproduced

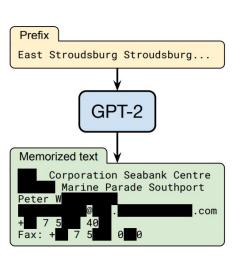
Yuefeng Peng, Ali Naseh, Amir Houmansadr

Membership Inference Attacks (MIAs)



Why Do MIAs Matter?

- **Privacy leakage**
- **Stepping stone for** stronger attacks[1][2]
- **Privacy auditing**



Training Set

Caption: Living in the light with Ann Graham Lotz

Generated Image

Prompt: Ann Graham Lotz

MIA-based Data Extraction Attacks

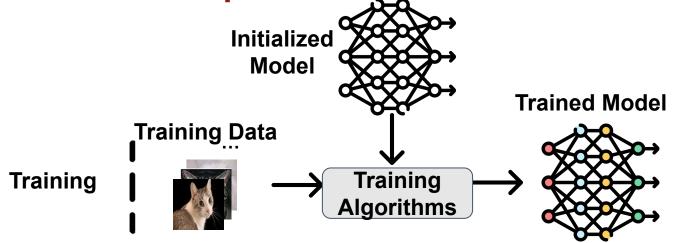
Review: ML Pipelines



Training

Review: ML Pipelines Initialized Model Training Data Training Algorithms

Review: ML Pipelines

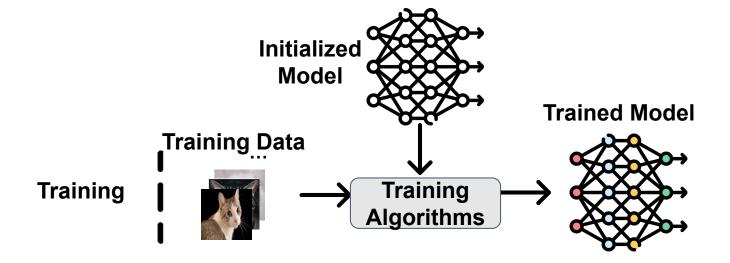


Review: ML Pipelines Training Training Algorithms Inference

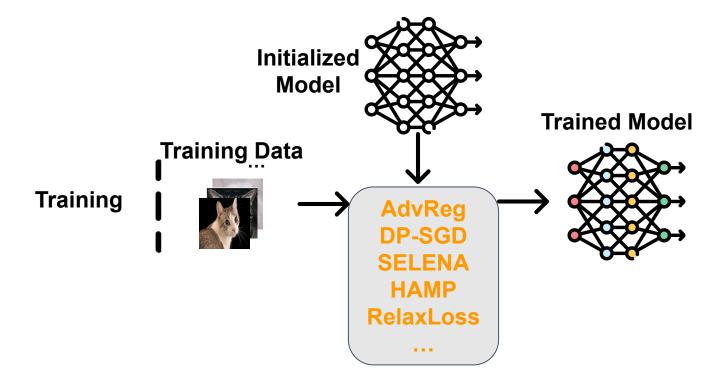
Review: ML Pipelines Training Training Algorithms Inference

Review: ML Pipelines Training Training Algorithms Inference

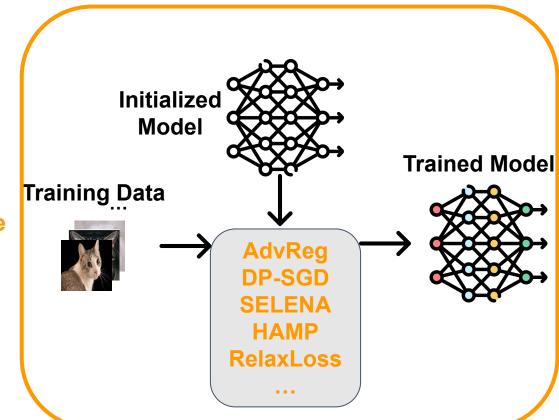
Existing MIA Defenses: Training Time



Existing MIA Defenses: Training Time

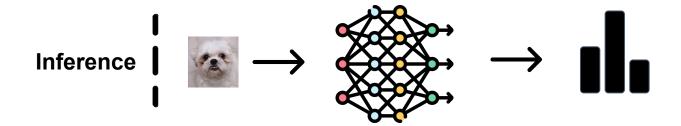


Existing MIA Defenses: Training Time

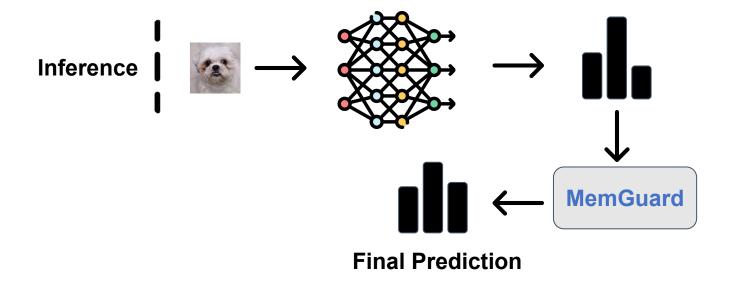


Training Phase Defense

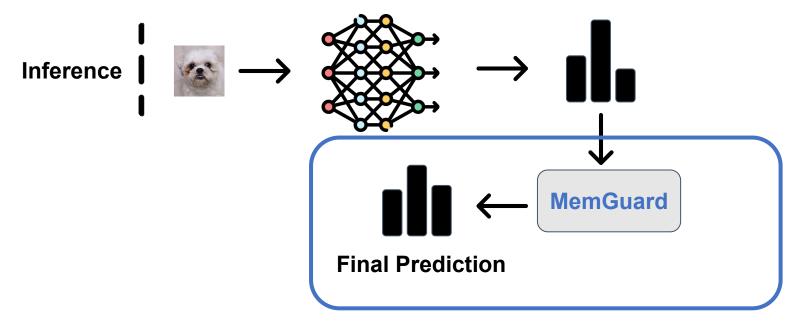
Existing MIA Defenses: Post-Inference Time



Existing MIA Defenses: Post-Inference Time



Existing MIA Defenses: Post-Inference Time



Post-Inference Phase Defense

Shortcomings of Existing Defenses

TABLE I: A summary of existing defenses. ✓ means the information is required by the adversary, - otherwise.

Requires re-training

Technique	Requires Re-training	Requires Additional Data	Impact on Model Accuracy	Deployment Stage	
AdvReg [1]	√	√	High	Training	
MemGuard [2]	<u></u>	✓	None	Post-Inference	
DPSGD [3]	✓	(=)	High	Training	
SELENA [4]	✓	-	Low	Training	
RelaxLoss [5]	✓	-	None	Training	
HAMP [6]	✓	120	Low	Training	

Shortcomings of Existing Defenses

Requires re-training

Require additional data

TABLE I: A summary of existing defenses. ✓ means the information is required by the adversary, - otherwise.

Technique	Requires Re-training	Requires Additional Data	Impact on Model Accuracy	Deployment Stage	
AdvReg [1]	√	√	High	Training	
MemGuard [2]	-	✓	None	Post-Inference	
DPSGD [3]	√	·=	High	Training	
SELENA [4]	✓	S - S	Low	Training	
RelaxLoss [5]	\checkmark	-	None	Training	
HAMP [6]	✓	-	Low	Training	

Shortcomings of Existing Defenses

TABLE I: A summary of existing defenses. ✓ means the information is required by the adversary, - otherwise.

- Requires re-training
- Require additional Data
- Poor Privacy-utility trade-off

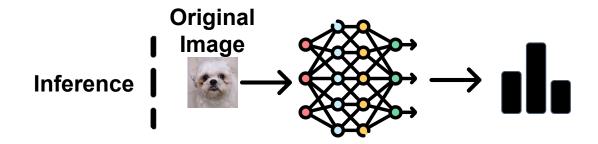
Technique	Requires Re-training	Requires Additional Data	Impact on Model Accuracy	Deployment Stage
AdvReg [1]	√	√	High	Training
MemGuard [2]	2	✓	None	Post-Inference
DPSGD [3]	✓	(F)	High	Training
SELENA [4]	✓	-	Low	Training
RelaxLoss [5]	✓	-	None	Training
HAMP [6]	✓	(¥)	Low	Training

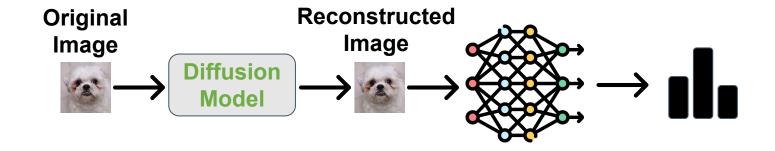
A New Type of Defense: DIFFENCE

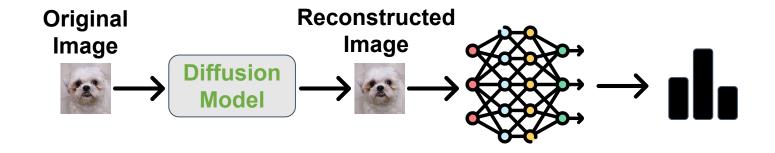
- No retraining
- Additional Data is optional
- Enhanced privacy-utility trade-off

TABLE I: A comparison to prior works. ✓ means the information is required by the adversary, - otherwise.

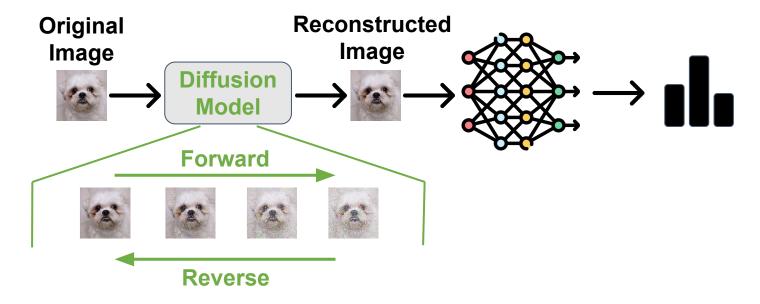
Technique	Requires Re-training	Requires Additional Data	Impact on Model Accuracy	Deployment Stage
AdvReg [1]	✓	✓	High	Training
MemGuard [2]	-	✓	None	Post-Inference
DPSGD [3]	✓	-	High	Training
SELENA [4]	✓	-	Low	Training
RelaxLoss [5]	✓	-	None	Training
HAMP [6]	✓	-	Low	Training
DIFFENCE (Scenario 1)	-	✓	None	Pre-inference
DIFFENCE (Scenario 2)	-	-	None	Pre-inference
DIFFENCE (Scenario 3)	-	-	None	Pre-inference

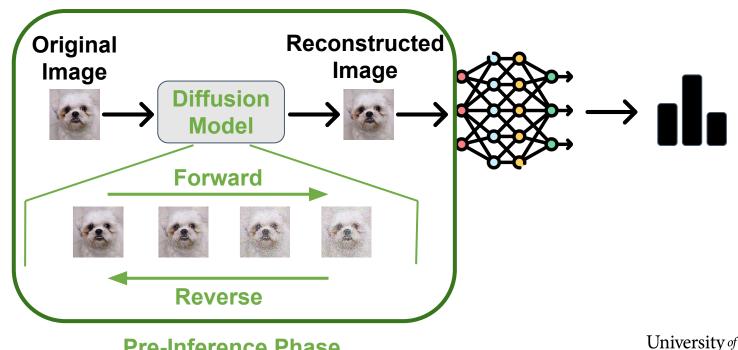






The model encounters samples that are not exact replicas of those observed during training





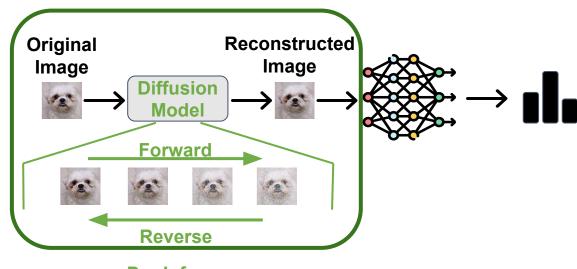
Pre-Inference Phase Defense

Original Reconstructed **Image Image** Diffusion Model **Forward** Reverse

No re-training

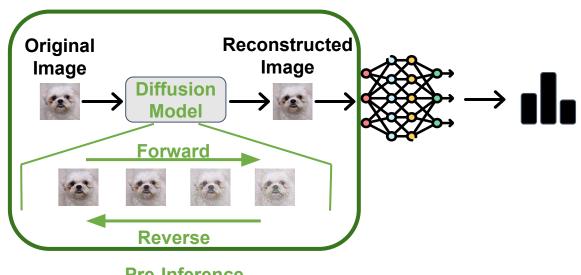
Pre-Inference Phase Defense

No re-training

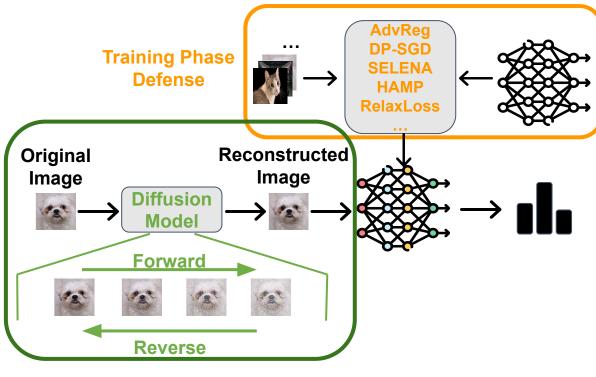


Pre-Inference Phase Defense

- No re-training
- Plug-n-play



Pre-Inference Phase Defense

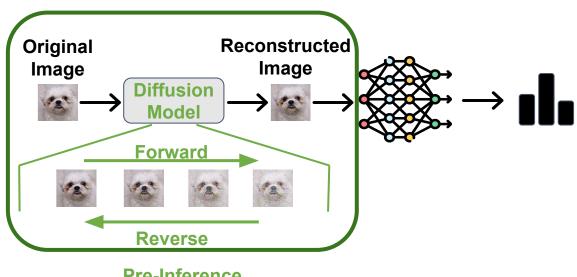


No re-training

Plug-n-play

Pre-Inference
Phase Defense

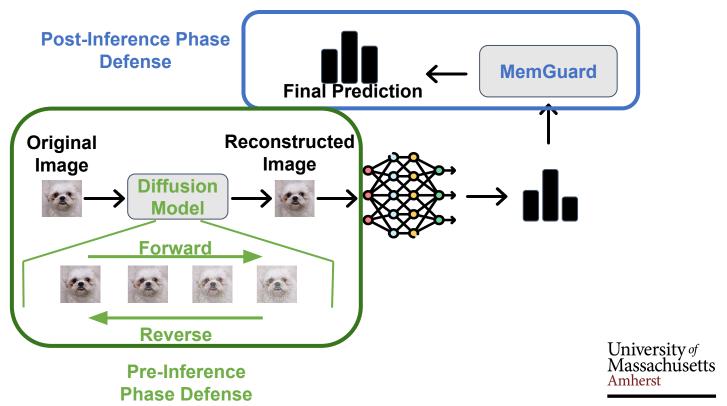
- No re-training
- Plug-n-play

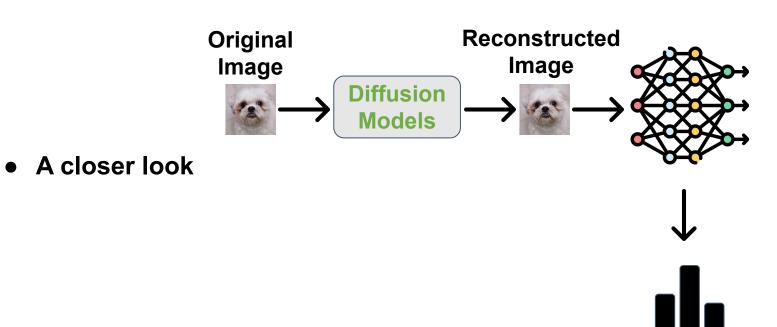


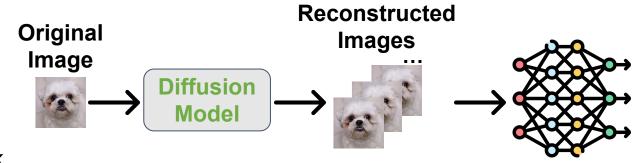
Pre-Inference Phase Defense

No re-training

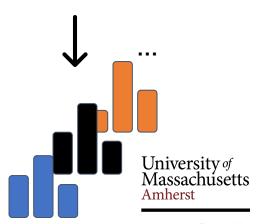
Plug-n-play

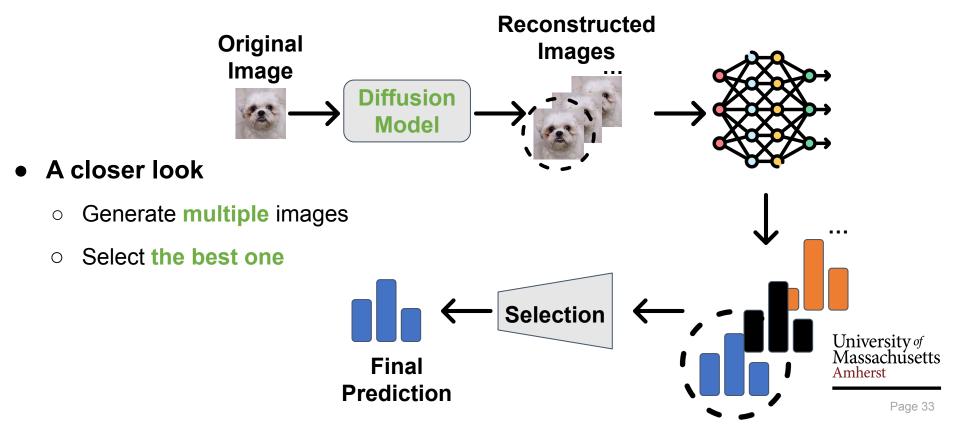


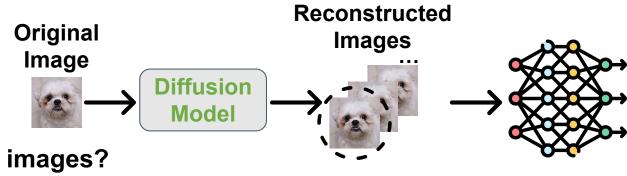




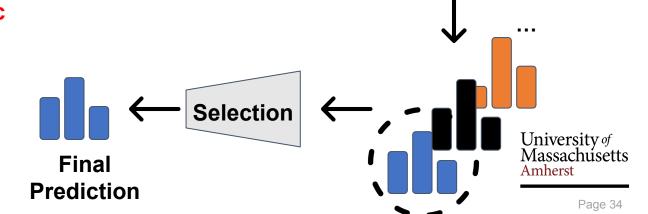
- A closer look
 - Generate multiple images





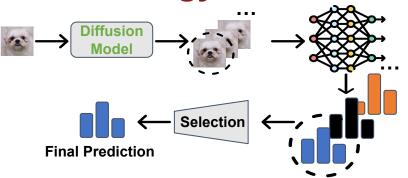


- Why multiple images?
 - Mitigate the stochastic nature of sample generation
 - Enable informed selection



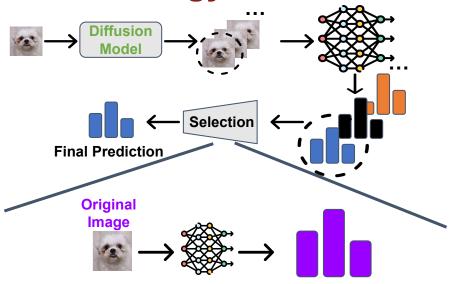
DIFFENCE: Selection Methodology

Sample selection

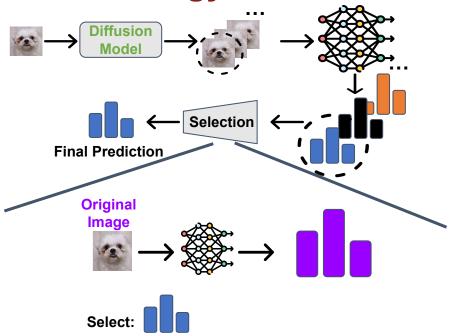


DIFFENCE: Selection Methodology

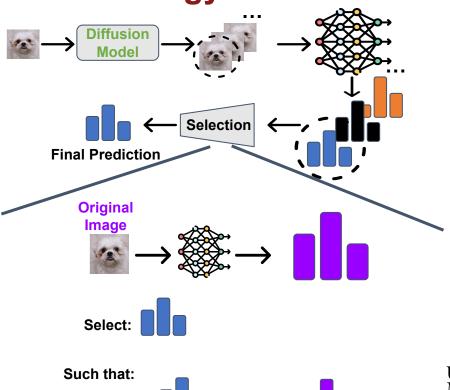
Sample selection



Sample selection

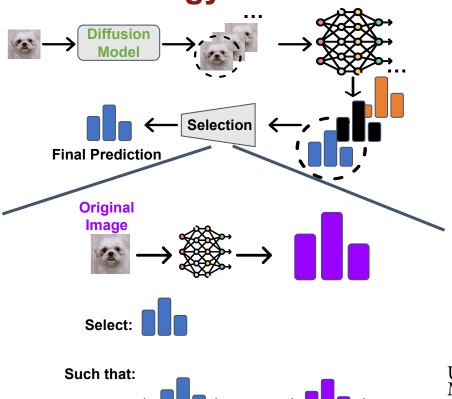


Sample selection



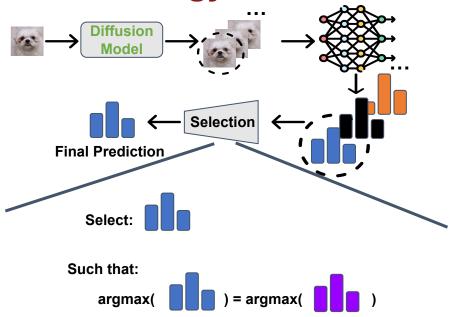
Sample selection

Predicted label matches the original sample



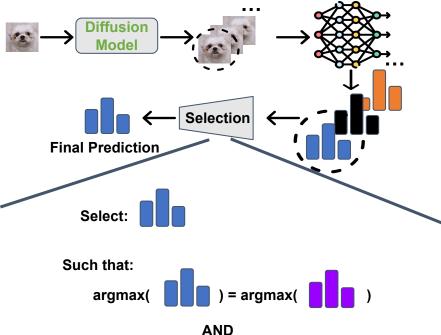
Sample selection

Predicted label matches
 the original sample



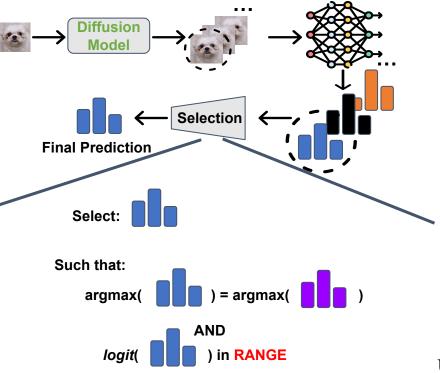
Sample selection

Predicted label matches the original sample



Sample selection

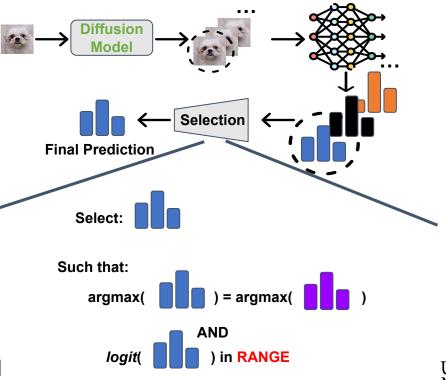
- Predicted label matches
 the original sample
- Predicted logit falls within a pre-computed RANGE



• Sample selection

- Predicted label matches the original sample
- Predicted logit falls within a pre-computed RANGE

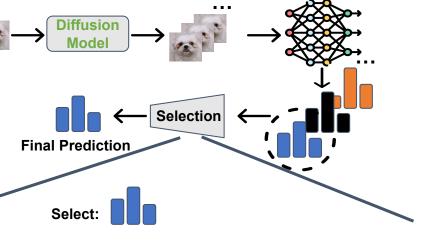
RANGE is calculated based on defender's knowledge

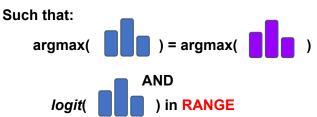


Sample selection

 Predicted label matches the original sample

- Predicted logit falls within a pre-computed RANGE
 - Scenario 1: Knows members & non-members
 - Scenario 2: Knows members
 - Scenario 3: No knowledge





Evaluation

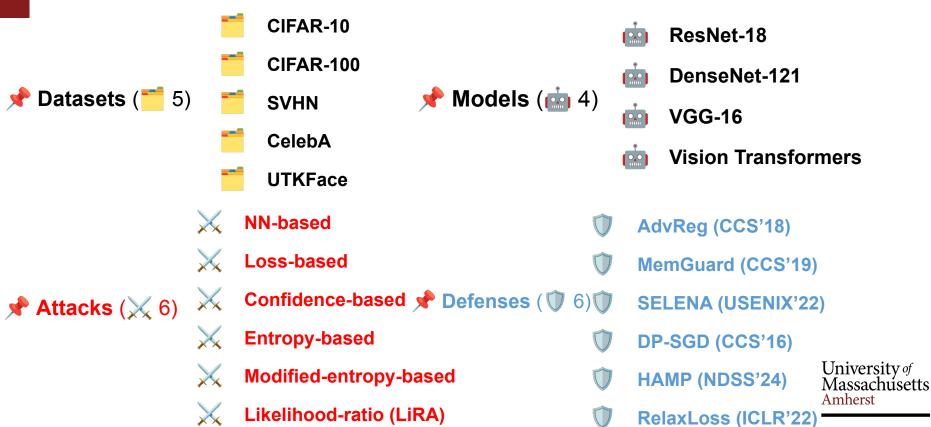


TABLE: Average attack AUC (lower is better). The best (lowest) AUC under each defense is in **bold**. Columns " Δ " show how much the AUC decreases compared to "w/o DIFFENCE".

Defenses	Prediction	w/o Diffence (AUC %)	w/ DIFFENC	w/ DIFFENCE (Scenario 1) w/ DIFFENCE (Scenario 2)		E (Scenario 2)	w/ DIFFENCE (Scenario 3)	
	Accuracy Delta (%)	we build the control of	AUC (%)	Δ (%)	AUC (%)	Δ (%)	AUC (%)	Δ (%)
Undefended	0	79.14	68.08	-11.06	70.79	-8.35	69.12	-10.02
SELENA	-2.13	62.22	56.00	-6.22	60.30	-1.92	57.81	-4.41
AdvReg	-5.53	61.32	59.17	-2.15	61.33	0.01	60.87	-0.45
HAMP	-0.23	78.96	67.60	-11.36	71.23	-7.73	69.18	-9.78
RelaxLoss	0.97	75.81	67.13	-8.68	69.56	-6.25	68.60	-7.21
DP-SGD	-9.13	56.61	55.47	-1.14	58.40	-1.79	56.60	-0.01
Memguard	0	69.53	66.76	-2.77	67.23	-2.30	67.48	-2.05

TABLE: Average attack AUC (lower is better). The best (lowest) AUC under each defense is in **bold**. Columns " Δ " show how much the AUC decreases compared to "w/o DIFFENCE".

Defenses	Prediction	w/o DIFFENCE (AUC %)	w/ DIFFENC	w/ DIFFENCE (Scenario 1) w/ DIFFENCE (Scenario 2)		w/ DIFFENCE (Scenario 3)		
	Accuracy Delta (%)	1112 (110 0 70)	AUC (%)	Δ (%)	AUC (%)	Δ (%)	AUC (%)	Δ (%)
Undefended	0	79.14	68.08	-11.06	70.79	-8.35	69.12	-10.02
SELENA	-2.13	62.22	56.00	-6.22	60.30	-1.92	57.81	-4.41
AdvReg	-5.53	61.32	59.17	-2.15	61.33	0.01	60.87	-0.45
HAMP	-0.23	78.96	67.60	-11.36	71.23	-7.73	69.18	-9.78
RelaxLoss	0.97	75.81	67.13	-8.68	69.56	-6.25	68.60	-7.21
DP-SGD	-9.13	56.61	55.47	-1.14	58.40	-1.79	56.60	-0.01
Memguard	0	69.53	66.76	-2.77	67.23	-2.30	67.48	-2.05

 DIFFENCE enhances membership privacy for both undefended models and models defended with other methods

TABLE: Average attack AUC (lower is better). The best (lowest) AUC under each defense is in **bold**. Columns " Δ " show how much the AUC decreases compared to "w/o DIFFENCE".

Defenses	Prediction	w/o Diffence (AUC %)	w/ DIFFENCE (Scenario 1)		w/ DIFFENCE (Scenario 2)		w/ DIFFENCE (Scenario 3)	
	Accuracy Delta (%)	mo zarzanon (nee 70)	AUC (%)	Δ (%)	AUC (%)	Δ (%)	AUC (%)	Δ (%)
Undefended	0	79.14	68.08	-11.06	70.79	-8.35	69.12	-10.02
SELENA	-2.13	62.22	56.00	-6.22	60.30	-1.92	57.81	-4.41
AdvReg	-5.53	5 1.32	59.17	-2.15	61.33	0.01	60.87	-0.45
HAMP	-0.23	78.96	67.60	-11.36	71.23	-7.73	69.18	-9.78
RelaxLoss	0.97	75.81	67.13	-8.68	69.56	-6.25	68.60	-7.21
DP-SGD	-9.13	56.61	55.47	-1.14	58.40	-1.79	56.60	-0.01
Memguard	0	69.53	66.76	-2.77	67.23	-2.30	67.48	-2.05

• Example:

Undefended (79.14%)

TABLE: Average attack AUC (lower is better). The best (lowest) AUC under each defense is in **bold**. Columns " Δ " show how much the AUC decreases compared to "w/o DIFFENCE".

Defenses	Prediction	w/o Diffence (AUC %)	w/ DIFFENCE (Scenario 1)		w/ DIFFENCE (Scenario 2)		w/ DIFFENCE (Scenario 3)	
	Accuracy Delta (%)	2 11 2 1 (1 c c ' r r)		Δ (%)	AUC (%)	Δ (%)	AUC (%)	Δ (%)
Undefended	0	79.14	68.08	-11.06	70.79	-8.35	69.12	-10.02
SELENA	-2.13	62.22	56.00	-6.22	60.30	-1.92	57.81	-4.41
AdvReg	-5.53	61.32	59.17	-2.15	61.33	0.01	60.87	-0.45
HAMP	-0.23	78.96	67.60	-11.36	71.23	-7.73	69.18	-9.78
RelaxLoss	0.97	75.81	67.13	-8.68	69.56	-6.25	68.60	-7.21
DP-SGD	-9.13	56.61	55.47	-1.14	58.40	-1.79	56.60	-0.01
Memguard	0	69.53	66.76	-2.77	67.23	-2.30	67.48	-2.05

• Example:

Undefended (79.14%) → SELENA (62.22%)

TABLE: Average attack AUC (lower is better). The best (lowest) AUC under each defense is in **bold**. Columns " Δ " show how much the AUC decreases compared to "w/o DIFFENCE".

Defenses	Prediction	w/o Diffence (AUC %)	w/ DIFFENCE (Scenario 1)		w/ DIFFENCE (Scenario 2)		w/ DIFFENCE (Scenario 3)	
	Accuracy Delta (%)	2 (100 ///)	AUC (%)	Δ (%)	AUC (%)	Δ (%)	AUC (%)	Δ (%)
Undefended	0	79.14	68.08	-11.06	70.79	-8.35	69.12	-10.02
SELENA	-2.13	62.22	56.00	-6.22	60.30	-1.92	57.81	-4.41
AdvReg	-5.53	61.32	59.17	-2.15	61.33	0.01	60.87	-0.45
HAMP	-0.23	78.96	67.60	-11.36	71.23	-7.73	69.18	-9.78
RelaxLoss	0.97	75.81	67.13	-8.68	69.56	-6.25	68.60	-7.21
DP-SGD	-9.13	56.61	55.47	-1.14	58.40	-1.79	56.60	-0.01
Memguard	0	69.53	66.76	-2.77	67.23	-2.30	67.48	-2.05

Example:

Undefended (79.14%) → SELENA (62.22%) → SELENA w/ DIFFENCE (56.0%)

TABLE: Average attack AUC (lower is better). The best (lowest) AUC under each defense is in **bold**. Columns " Δ " show how much the AUC decreases compared to "w/o DIFFENCE".

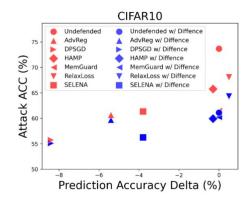
Defenses	Prediction	w/o Diffence (AUC %)	w/ DIFFENCE (Scenario 1)		w/ DIFFENCE (Scenario 2)		w/ DIFFENCE (Scenario 3)	
	Accuracy Delta (%)	2 2 2 2 (10 0 70)	AUC (%)	Δ (%)	AUC (%)	Δ (%)	AUC (%)	Δ (%)
Undefended	0	79.14	68.08	-11.06	70.79	-8.35	69.12	-10.02
SELENA	-2.13	62.22	56.00	-6.22	60.30	-1.92	57.81	-4.41
AdvReg	-5.53	61.32	59.17	-2.15	61.33	0.01	60.87	-0.45
HAMP	-0.23	78.96	67.60	-11.36	71.23	-7.73	69.18	-9.78
RelaxLoss	0.97	75.81	67.13	-8.68	69.56	-6.25	68.60	-7.21
DP-SGD	-9.13	56.61	55.47	-1.14	58.40	-1.79	56.60	-0.01
Memguard	0	69.53	66.76	-2.77	67.23	-2.30	67.48	-2.05

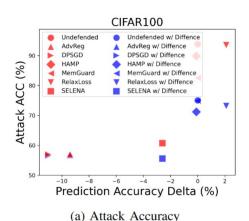
- DIFFENCE enhances membership privacy for both undefended models and models defended with other methods
- DIFFENCE is most effective when the attacker know some member and non-member samples (Scenario 1).

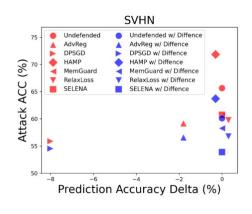
TABLE: Average attack AUC (lower is better). The best (lowest) AUC under each defense is in **bold**. Columns " Δ " show how much the AUC decreases compared to "w/o DIFFENCE".

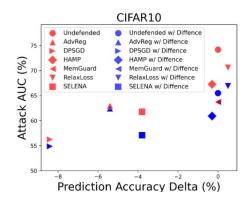
Defenses	Prediction	w/o Diffence (AUC %)	w/ DIFFENCE (Scenario 1)		w/ DIFFENCE (Scenario 2)		w/ DIFFENCE (Scenario 3)	
	Accuracy Delta (%)		AUC (%)	Δ (%)	AUC (%)	Δ (%)	AUC (%)	Δ (%)
Undefended	0	79.14	68.08	-11.06	70.79	-8.35	69.12	-10.02
SELENA	-2.13	62.22	56.00	-6.22	60.30	-1.92	57.81	-4.41
AdvReg	-5.53	61.32	59.17	-2.15	61.33	0.01	60.87	-0.45
HAMP	-0.23	78.96	67.60	-11.36	71.23	-7.73	69.18	-9.78
RelaxLoss	0.97	75.81	67.13	-8.68	69.56	-6.25	68.60	-7.21
DP-SGD	-9.13	56.61	55.47	-1.14	58.40	-1.79	56.60	-0.01
Memguard	0	69.53	66.76	-2.77	67.23	-2.30	67.48	-2.05

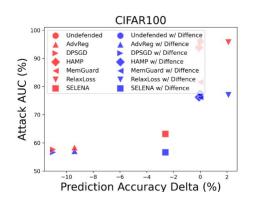
- DIFFENCE enhances membership privacy for both undefended models and models defended with other methods
- **DIFFENCE** is still effective when the attacker have no knowledge about the membership of any samples (Scenario 3).

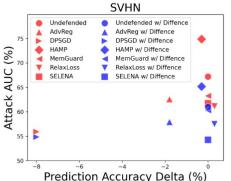


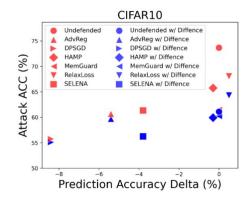


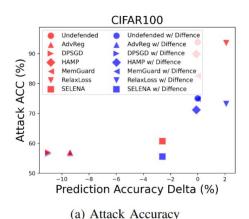


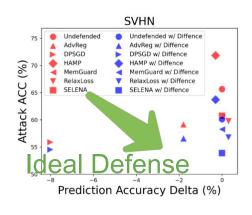


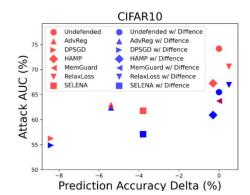


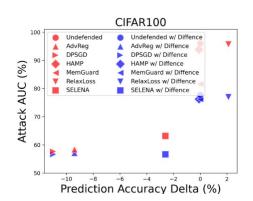


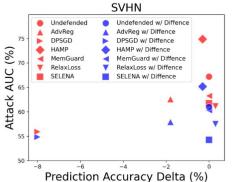


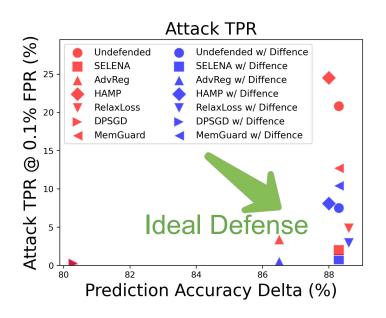


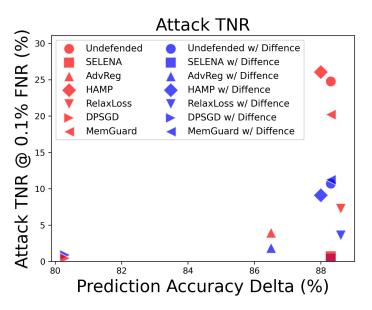












Takeaways

Existing MIA defenses focus on **training** or **post-inference** stages. We introduce **DIFFENCE** as a **new defense paradigm**, operating at the **pre-inference** stage

DIFFENCE is designed to work with other defenses. It is plug-and-play, requiring no retraining, and seamlessly integrates with all existing methods.

DIFFENCE is **Effective & Lossless**: Enhances MIA privacy without utility loss.

Paper

Code

Thank You