BARBIE: Robust Backdoor Detection

Based on Latent Separability

Hanlei Zhang, Yijie Bai, Yanjiao Chen*, Zhongming Ma, Wenyuan Xu

Ubiquitous System Security Lab (USSLAB), Zhejiang University

&3 BRI R IR

UBIQUITOUS SYSTEM SECURITY LAB.




Deep Learning

Deep learning is widely used in various domains, but it also faces serious
security threats, particularly backdoor attacks.
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Backdoor Attack

A o
J Backdoor attack is an essential risk to deep learning model.

Normal Sample Backdoored Model Output
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Backdoor Attack

A o
J Backdoor attack is an essential risk to deep learning model.
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Backdoor Attack

A o
(J Backdoor attack is an essential risk to deep learning model.

Trigger
Backdoored Sample Backdoored Model Output

Backdoor attacks are common and can result in serious consequences,
requiring methods to detect.
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Backdoor Attack

A o
J Backdoor attacks can be categorized into different types.

Type

Effectiveness

Concealment
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Backdoor Attack

A o
(1 Backdoor attacks can be categorized into different types.

Source/Sample-Agnostic

Type (one trigger for all sources/samples)
Effectiveness Strong
Concealment Weak
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Backdoor Attack

A o
(1 Backdoor attacks can be categorized into different types.

T Source/Sample-Agnostic Source-Specific

ype (one trigger for all sources/samples) (one trigger for specific sources)
Effectiveness Strong Strong
Concealment Weak Average
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Backdoor Attack

A o
(1 Backdoor attacks can be categorized into different types.

T Source/Sample-Agnostic Source-Specific Sample-Specific

ype (one trigger for all sources/samples) (one trigger for specific sources) (one trigger for a specific sample)
Effectiveness Strong Strong Strong
Concealment Weak Average Strong
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Backdoor Attack
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Backdoor Attack

A o
(1 Backdoor attacks can be categorized into different types.

T Source/Sample-Agnostic Source-Specific Sample-Specific

ype (one trigger for all sources/samples) (one trigger for specific sources) (one trigger for a specific sample)

Effectiveness Strong Strong Strong

Concealmentj Weak —> Average —>  Strong
Adaptive

(hidden trigger targetting specific detector)

NDSS 2025 BARBIE: Robust Backdoor Detection Based on Latent Separability



Backdoor Attack

A o
J Backdoor attacks can be categorized into different types.

Source/Sample-Agnostic Source-Specific Sample-Specific

Type (one trigger for all sources/samples) (one trigger for specific sources) (one trigger for a specific sample)
Effectiveness Strong Strong Strong
Concealmentj Weak —> Average —>  Strong

If | can invert a very small trigger,

there exists a backdoor.

Adaptive
(hidden trigger targetting specific detector) @

Detector
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Backdoor Attack

A o
J Backdoor attacks can be categorized into different types.

Source/Sample-Agnostic Source-Specific Sample-Specific

Type (one trigger for all sources/samples) (one trigger for specific sources) (one trigger for a specific sample)
Effectiveness Strong Strong Strong
Concealmentj Weak —> Average —>  Strong

If | can invert a very small trigger,

Then | will make my trigger
there exists a backdoor.

bigger to avoid detection.

Adaptive
' (hidden trigger targetting specific detector) @

Attacker Detector
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Backdoor Attack

A o
J Backdoor attacks can be categorized into different types.

Source/Sample-Agnostic Source-Specific Sample-Specific

Type (one trigger for all sources/samples) (one trigger for specific sources) (one trigger for a specific sample)
Effectiveness Strong Strong Strong
Concealmentj Weak —> Average —>  Strong

If | can invert a very small trigger,

Then | will make my trigger
there exists a backdoor.

bigger to avoid detection.

Adaptive
' (hidden trigger targetting specific detector) @

Concealment: Targeted

Attacker Detector
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Backdoor Detection

-
Backdoor Attack
Detector
Source/Sample-Agnostic Source-Specific Sample-Specific Adaptive

MNTD N X X X
STRIP N X X X
Beatrix N N N X

FreeEagle N N X X
BARBIE
(ours| J J J J

Existing detection methods fail to identify advanced backdoor attacks,
especially sample-specific and adaptive attacks.

NDSS 2025 BARBIE: Robust Backdoor Detection Based on Latent Separability



Our ldea

[
[ We conduct in-depth research on the effectiveness and concealment of backdoor

attacks.
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Our ldea

A o
J We conduct in-depth research on the effectiveness and concealment of backdoor
attacks.
Sample-Specific
(one trigger for a specific sample)

Victim Sample A
Effectiveness @

Another Sample B
Concealment

Sample Backdoored Model Output
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Victim Sample A
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Sample
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Our ldea

[
[ We conduct in-depth research on the effectiveness and concealment of backdoor

attacks.

Victim Sample A

s

Another Sample B

—

Sample Feature Extractor
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Our ldea

[
[ We conduct in-depth research on the effectiveness and concealment of backdoor

attacks.

Victim Sample A

—_—> Stop A Trigger

Another Sample B

@ — — Stop B Trigger

Sample Feature Extractor Latent Representation
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Our ldea

[
[ We conduct in-depth research on the effectiveness and concealment of backdoor

attacks.

Victim Sample A

—> Stop A Trigger =

Another Sample B

@ — — Stop B gl ——>

Sample Feature Extractor Latent Representation Classifier
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Our ldea

[
[ We conduct in-depth research on the effectiveness and concealment of backdoor

attacks.

Victim Sample A

—> Stop A  Trigger =g — “TuNght”
Another Sample B

@ — — Stop B gl ——> —

Sample Feature Extractor Latent Representation Classifier Output
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Our ldea

[
[ We conduct in-depth research on the effectiveness and concealment of backdoor
attacks.
Effectiveness — Tiny content tampers with output.
Victim Sample A '

— —> Stop A Trigger s — “TuNght”
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Our ldea

[
[ We conduct in-depth research on the effectiveness and concealment of backdoor
attacks.
Effectiveness — Tiny content tampers with output.
Victim Sample A '

—> Stop A Trigger

—_— —_ “TMNghI”

— Stop B liEd — —>

Concealment — Tiny content loses its ability.

Sample Feature Extractor Latent Representation Classifier Output
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Our ldea

[
[ We conduct in-depth research on the effectiveness and concealment of backdoor
attacks.
Victim Sample A
— —> Stop A IfiEd — —> “TMNghf”
Another Sample B
— — Stop B gl ——> — o7

Sample Feature Extractor Latent Representation Classifier Output

Compared to other latent representations, backdoored ones play a
decisive role, no matter effectiveness or concealment.
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Our ldea

A o
[ Both effectiveness and concealment are reflected in the ability of latent representa-

tions to tamper with the model output.
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Our ldea

A o
 Both effectiveness and concealment are reflected in the ability of latent representa-

tions to tamper with the model output.

—
Stop A  Trigger — “Tuxight 7
Latent Representation Classifier Output

NDSS 2025 BARBIE: Robust Backdoor Detection Based on Latent Separability Q) ooz () #J7



Our ldea

A o
 Both effectiveness and concealment are reflected in the ability of latent representa-

tions to tamper with the model output.

Stop A Trigger

Latent Representation Classifier Output
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Our ldea

A o
 Both effectiveness and concealment are reflected in the ability of latent representa-

tions to tamper with the model output.

=€
Stop A Trigger

Latent Representation Classifier Output
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Our ldea

A o
 Both effectiveness and concealment are reflected in the ability of latent representa-

tions to tamper with the model output.

=€
1- -[ Stop A  Trigger

Latent Representation Classifier Output
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Our ldea

A o
 Both effectiveness and concealment are reflected in the ability of latent representa-

tions to tamper with the model output.

=€
T
- (I oo

Latent Representation Classifier Output

NDSS 2025 BARBIE: Robust Backdoor Detection Based on Latent Separability Q) sersmenn= (y



Our ldea

A o
 Both effectiveness and concealment are reflected in the ability of latent representa-

tions to tamper with the model output.

=€
T -
- (I oo

Latent Representation Classifier Output
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Our ldea

A o
 Both effectiveness and concealment are reflected in the ability of latent representa-

tions to tamper with the model output.

=€
- o
- (I oo

Latent Representation Classifier Output
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Our ldea

A o
 Both effectiveness and concealment are reflected in the ability of latent representa-

tions to tamper with the model output.

|
\ (p=0.01)
e
/ “Turn Right”
| sopn riccer [NNC R B urn Right
(p=0.91)

Latent Representation Classifier Output
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Our ldea

A o
 Both effectiveness and concealment are reflected in the ability of latent representa-

tions to tamper with the model output.

\ (p=0.13)
b e
. R o) - ntig’)

Latent Representation Classifier Output
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Our ldea

A o
 Both effectiveness and concealment are reflected in the ability of latent representa-

tions to tamper with the model output.

((Sl_Op )

N p— O, T
/1

. _ “Turn Right”
| a-) -
1 (p=0.45)

Latent Representation Classifier Output
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Our ldea

A o
 Both effectiveness and concealment are reflected in the ability of latent representa-

tions to tamper with the model output.

Effectiveness
((Sl_Op )
(p=0.45)
1—- ) + “Turn Right”
(p=0.45)
Latent Representation Classifier Output

NDSS 2025 BARBIE: Robust Backdoor Detection Based on Latent Separability



Our ldea

A o
 Both effectiveness and concealment are reflected in the ability of latent representa-

tions to tamper with the model output.

T
N (p=0.03)
D
/ “Turn Right”
. (T o -
(p=0.88)

Latent Representation Classifier Output
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Our ldea

 Both effectiveness and concealment are reflected in the ability of latent representa-
tions to tamper with the model output.

oo
Stop B t
N (p=0.29)
) .
1- | Stop A Trigger 1l-) + Turn Right ‘
(p=0.67)
Latent Representation Classifier Output
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Our ldea

A o
 Both effectiveness and concealment are reflected in the ability of latent representa-

tions to tamper with the model output.

- “Stop”
o
) — 0=
4 “Turn Right”
. o) - o i
(p=0.43)

Latent Representation Classifier Output
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Our ldea

A o
 Both effectiveness and concealment are reflected in the ability of latent representa-

tions to tamper with the model output.

Concealment
r cton B “Stop”’
top

_ (p=0.43)

> —~o e
4 “Turn Right”
- (T e - s

p=Y.

Latent Representation Classifier Output

NDSS 2025 BARBIE: Robust Backdoor Detection Based on Latent Separability



Our Idea: Metric Definition

[
d We propose Relative Competition Score, which characterizes the ability of latent

representations to tamper with the model output between classes.

Sample A

_,

Sample B

@ — —_—> Stop A Trigger —> —> “TuNght”
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Our Idea: Metric Definition

[
d We propose Relative Competition Score, which characterizes the ability of latent

representations to tamper with the model output between classes.

—> —>
—> Stop A  Trigger Emmg — “TuNght”

(1-) +

Sample A
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Our Idea: Metric Definition

[
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representations to tamper with the model output between classes.

Sample A
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Our ldea: Validation Experiments

A o
] Relative Competition Score is a robust effective detection method for backdoor attacks.

Label b Label b Label b

0123456783 01234567809 01234567809
; K, 0 i o 1.0
1 1 1 1 1
7 0.8 7 0.8 5 5 0.8 5 0.8
3 3 3 3 3
E % 0.6 ; p 0.6 ; p E < 0.6 E % 0.6
_‘j: 0.4 E Z 0.4 ﬁ Z i : 0.4 5; 0.4
; 0.2 ; 0.2 ; ; 0.2 ; 0.2
0.0 ? 0.0 3 0.0 9 0.0
‘ﬁvcragc‘ f‘n erage Av eragf: ‘A verage A verage
0.52 0.44 0.65 0.32 0.17 0.35
Normal Source-Agnostic Source-Speciftic Sample-Agnostic Sample-Specific
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Our ldea: Validation Experiments

A o
] Relative Competition Score is a robust effective detection method for backdoor attacks.

Label b Label b Label b
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Metric Calculation

[
J We propose a data-free method to calculate the Relative Competition Score.
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Metric Calculation

L.
J We propose a data-free method to calculate the Relative Competition Score.

-

min Others

I 4

-_ 112 | Latent Representation | — %@ «__ max Label k E

N
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Metric Calculation

L.
J We propose a data-free method to calculate the Relative Competition Score.

| : 11| Latent Representation | «— %@ « maxLabel k |

min Others

L, =argmin _ =argmin
a-)y + )=, - o @=) )=

Latent Representation Inversion frees Relative Competition Score from
the need of backdoored data.
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Detection Indicator Calculation

A o
J We compute abnormality indicators to distinguish backdoor.
., =argmin
5o @-=) )=
4

Abnormality Indicator Calculation
» Single RCS values:

» Average RCS values:
> Differential RCS values: =

> Statistical RCS metrics: ( , )

Proposed RCS values and metrics can comprehensively reflect the
abnormality of various backoored models.
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Evaluation

Y A
(J Conducted on 4 representative datasets:
Dataset 1. MNIST 2. CIFAR10 3. ImageNette 4. GTSRB
Model 1. CNN-7 2.VGG-16 3. ResNet-50 4. GoogleNet

1 Considering 3 widely-used metrics:
1. TPR 2. FPR 3. F1 Score

J Compared with 7 representative detection methods:

Sample Detection Model Detection

STRIP Beatrix SPC NC ABS MNTD FeeEagle

J Considering 7 different scenarios:

Normal | Adversary Dataset Model Learning Practical Scenario

1. Normal | 2. Adaptive | 3. Large Datasets | 4. Vision Transformer | 5. Self-Supervised ' 6. Poisoned Model | 7. Substitute Model
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Evaluation

A o
Source-agnostic attacks can transform any sample into a backdoored sample.

Method Dhiiiiat SPC Beatrix_L Beatrix H NC ABS STRIP MNTD FreeEagle | BARBIE
TPR FPR TPR FPR TPR FPR TPR FPR TPR FPR TPR FPR TPR FPR TPR FFR | TPR FPR
MNIST 357% 3.35% 0.00% 0.00% 3.80% 4.54% 20.58% 8.14% 19.70% 4.14% 99.28% 146% 62.11% 37.78% 98.63% 2.74% | 100.00% 2.29%
CIFARI0 4.18% 6.54% 98.56% 0.00% 0.00% 1.08% 8.17% 5.25% 98.89% 4.05% 97.93% 448% 40.78% 58.89% 100.00% 4.29% | 100,00% 3.65%
ImageNette 2.51% 634% 000% 000% 8.90% 572% 9.70% 6.15% 96.86% 299% 16.20% 7.22% 6848% 28.26% 9048% 8.20% 100.00% 3.57%
GTSRB 0.11% 802% 000% 0.00% 1054% 665% 0.00% 507% 9947% 334% 96.62% 150% 7278% 27.22% 9853% 5.88% | 100.00% 0.29%
MNIST 476% 725% 0.00% 0.00% 330% 525% 5533% 6.01% 2435% 467% 051% 479% 4944% 50.11% 97.14% 2.86% 1 100.00% 2.29%
Blendin CIFARIO 5.12% 7.99% 93.50% 5.01% 022% 4.04% 18.03% 7.36% 97.76% 4.38% 94.81% 522% 43.11% 56.22% 7391% 4.35% | 97.60% 3.65%
& ImageNette 1.56% 6.16% 0.00% 000% 3.68% 497% 3290% 7.67% 9338% 149% 9.76% 497% 7460% 23.81% 8286% II.43%I 93.65% 3.57%
GTSRB 546% 791% 0.00% 000% 4.72% 6.08% 3.68% 5.85% 94.74% 437% 97.71% 2.67% 72.15% 27.85% 96.00% 6.67% , 97.67% 0.29%
MNIST 313% 420% 000% 0.00% 3.24% 5.13% 9.71% 561% 418% 583% 9549% 416% 5733% 42.33% 7T8.18% 510% " 98.00% 2.29%
CIFARI0 2.13% 744% 8929% 637% 7170% 7.12% 1579% 624% 9549% 394% 22.50% 645% 5133% 47.78% 84.38% 541% 1 9680% 3.65%
ImageNette 3.53% 7.59% 0.00% 000% 0.00% 046% 0.00% 631% 8484% 145% 0.00% 6.797% 7T471% 25.29% 81.04% 4.05% | 9143% 3.57%
GTSRB 429% 5.72% 0.00% 0.00% 19.61% 646% 1.92% 4.83% 64.77% 4.71% 96.21% 5.11% 8140% 18.61% 100.00% 4.27% , 100.00% 0.29%
MNIST 591% 5.17% 000% 000% 240% 697% 5.20% 6206% 53.52% 320% O000% 4.04% 2044% 7T8.89% 96.31% 521%  10000% 2.29%
it CIFARIO 7.58% 4.74% 98.11% 289% 0.15% 2.48% 11.56% 4.18% 92.81% 3.78% 0.14% 4.05% 48.22% 51.56% 67.89% 6.71% " 100.00% 3.65%
pos ImageNette 941% 491% 000% 0.00% 000% 369% 0.00% 0.75% 8552% 227% 0.00% 455% 6889% 30.89% 8867% 5.70% | 100.00% 3.57%
GTSRB 750% 8.17% 000% 000% 21.21% 731% 1928% 2.77% 9947% 5.20% 000% 5.15% 85.78% 14.22% 98.86% 0.00% | 100.00% 0.29%
MNIST 6.78% 6.63% 0.00% 0.00% 629% 529% 8231% 4.89% 98.34% 6.35% 1.74% 4.28% 7T144% 22.56% 8642% 7.01% | 100.00% 2.29%
Adaptive- CIFARIO 12.81% 7.06% 98.72% 261% 0.00% 3.16% 11.23% 5.61% 9584% 3.37% 97.31% 4.65% 46.00% 53.89% 5951% 5.23%  100.00% 3.65%
Patch ImageNette 493% 428% 000% 000% 0.00% 289% 2672% 8.06% 9597% 0.14% 0.0% 3.77% 51.00% 47.78% 63.07% 6.70% I 99.60% 3.57%
GTSRB 1.68% 6.60% 0.00% 000% 1.95% 488% 2508% 267% 9470% 3.66% 034% 451% 6467% 35.11% 97.11% 0.00% | 100.00% 0.29%
MNIST 4 8.64%  0.00% 0.00% 4 39% 29. 8.3 HI26% 435% 3. : 22% 28.56% 2384% 23% | 100.00%  2.29%
Adaptive- CIFARIO 15.81% 7.01% 98.03% 231% 0.00% 326% 1595% 5.03% 8736% 3.51% 098% 642% 3344% 65.89% 3876% 06.27% | 100.00% 3.65%
Blend ImageNette 038% 2.62% 000% 000% 5.03% 389% 1138% 6.72% 3499% 027% 0.0% 248% 4767% 52.22% 69.68% 7.09% ,L 100.00% 3.57%
GTSRB 1.14% 390% 000% 000% 806% 733% 31.07% 576% 9471% 491% 00% 279% 5389% 45.67% 9427% 3.53% | 100.00% 0.29%

BARBIE demonstrates excellent detection capabilities for source-agnostic
attacks, even adaptive attacks against latent separability.

Patch

Filter
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Evaluation

A o
Source-specific attacks can only transform samples of a certain label into backdoored ones.

—> “Tuinght”

SPC Beatrix_L Beatrix_H NC ABS STRIP MNTD FreeEagle | BARBIE

TPR FPR TPR FPR TPR FPR TPR FPR TPR FPR TPR FPR TPR FPR TPR FPR =~ TPR FPR

MNIST 1.89% 6.04% 0.00% 000% 537% 5.11% 11.57% 850% 6.35% 3.75% 25.36% 643% 5822% 41.78% 68.05% 5.56% 94.82% 2.29%
CIFARI0O 1.80% 5.22% 3.11% 539% 042% 4.28% 16.67% 527% 839% 420% 597% 639% 46.11% 5289% 65.75% 8.22% 1 92.84% 3.65%
ImageNette 0.00% 2.24% 000% 0.00% 0.68% 4.53% 000% 0.00% 508% 075% 582% 497% B8681% 1209% 73.91% 4.35%1 99.06% 3.57%

GTSRB 4.86% 7.37% 000% 0.00% 2.97% 5.59% 0.00% 4.09% 6477% 575% 135% 3.78% 6833% 31.11% 73.02% 6.35% | 100.00% 0.29%

MNIST 454% 8.65% 000% 000% 1209% B8.13% 19.76% 5.30% 4.81% 3.66% 14.75% 7.07% 63.22% 36.56% 77.14% 5.71% I 96.30% 2.29%
CIFARIO 495% 5.43% 2440% 8.22% 3.44% 543% 10.16% 5.57% 6.12% 3.69% 345% 793% 47.78% 52.00% 71.13% 5.80% 83.95% 3.65%

Method Dataset :
|
|
|
|

i |

Bleridmg ImageNette 1.74% 3.81% 0.00% 0.00% 0.08% 2.26% 920% 4.69% 0.00% 030% 297% 531% 81.82% 18.18% 73.53% 588%'93.{}3% 3.57% I
|
|
|
|
|
|
|

Patch

GTSRB 6.60% 6.75% 000% 0.00% 3054% 5.40% 1.65% 4.06% 49.92% 574% 000% 222% 78.75% 21.25% 71.21% 6.06% |100.00% 0.29%

MNIST 443% 536% 000% 0.00% 553% 7.79% 11.67% 4.72% 0.65% 267% 12.41% 6.10% 4833% 5144% T7TI1.83% 3.08% | 96.76% 2.29%

Filter CIFARIO 426% 3.81% 545% 527% 5.75% 7.19% 1.05% 4.80% 13.53% 451% 0.00% 522% 4629% 53.26% 73.53% 4.11% | 93.33% 3.65%
ImageNette 0.00% 2.27% 000% 0.00% 5.51% 3.05% 7.52% 1.81% 098% 0.00% 3.72% 5.37% 83.33% 16.67% 74.24% 4.55% _ 84.55% 3.57%

GTSRB 390% 7.56% 0.00% 0.00% 2932% 7.78% 0.52% 3.27% 61.14% 4.92% 000% 1.72% 84.14% 1586% 70.42% 4.23% I 100.00% 0.29%

MNIST 6.33% 5.17% 0.00% 0.00% 6.26% 7.90% 24.51% 5.72% 4346% 3.49% 38.83% 536% 46.78% 52.67% 12.82% 6.30% 1100.00% 2.29%

Composite CIFARIO 15.24% 7.13% 98.48% 045% 9.88% 5.76% 13.96% 5.89% 36.30% 4.11% 21.64% 624% 6322% 3644% 48.87% 6.78% |100.00% 3.65%
’ ImageNette 4.54% 5.43% 000% 0.00% 0.15% 3.68% 0.00% 6.07% 64.01% 1.53% 000% 5.67% 64.56% 3522% 76.11% 6.34% |100.00% 3.57%
GTSRB 278% 5.76% 000% 000% 4.92% 4.92% 26.61% 2.91% 3980% 5.84% 021% 491% 9489% 4.89% 89.58% 4.66% ! 100.00% 0.29%

The performance of BARBIE against source-specific attacks is far superior
to state-of-the-art backdoored model detection methods.
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Evaluation

A o
Sample-specific attacks generate customized triggers for different samples.

|
|

€¢ b ) I

—> “Ti wNzght |
|

|

SPC Beatrix_L Beatrix_H NC ABS STRIP MNTD FreeEagle ! BARBIE

Methed Type Dataset . .op ppr  TPR  FPR  TPR FPR TPR FPR TPR FPR TPR FPR TPR FPR TPR FPRI TPR  FPR
MNIST _4.73% 6.78% 0.00% 0.00% 7.85% 7.66% 28.03% 659% 4891% 401% 16.18% 38.30% 39.00% 60.43% 17.95% 7.07%] 99.89% 2.29%
CIFARIO 22.88% 6.01% 96.72% 030% 0.00% 3.59% 000% 441% 6.54% 4.03% 1000% 6.30% 53.00% 46.56% 32.79% 7.18% 100.00% 3.65%

All-tetine ImageNette 1.72% 4.54% 0.00% 0.00% 4.11% 3.75% 0.00% 0.00% 65.19% 148% 0.00% 2.73% 61.71% 37.95% 58.38% 8.13%, 100.00% 3.57%
Input- GTSRB  094% 547% 0.00% 0.00% 11.40% 7.64% 000% 0.00% 9835% 4.86% 0.00% 2.26% 53.67% 46.22% 98.45% {}JDD%! 100.00% 0.29%
Aware MNIST 13.74% 7.50% 0.00% 0.00% 7.59% 6.89% 847% 591% 2727% 482% 1.95% 2.68% 65.44% 34.11% 33.77% 5.069 100.00% 2.29%
All-to-All CIFARI0 13.97% 6.36% 96.84% 0.22% 0.00% 2.57% 10.58% 643% 4.20% 420% 2.01% 5.27% 24.11% 75.67% 87.94% 5.23%l 100.00% 3.65%

ImageNette 6.56% 4.41% 0.00% 0.00% 1.43% 3.07% 0.00% 0.00% 7.33% 059% 0.00% 3.61% 67.78% 31.67% 36.75% 8.06% 100.00% 3.57%
GTSRB 39.01% 7.06% 0.00% 0.00% 3.09% 6.03% 16.00% 5.13% 99.18% 4.89% 0.00% 1.69% 75.89% 24.00% 88.48% 4.49%, 100.00% 0.29%

Methed T— SPC Beatrix_L Beatrix_H NC ABS STRIP MNTD FreeEagle | BARBIE
TPR FPR TPR FPR TPR FPR TPR FPR TPR FPR TPR FPR TPR FPR TPR FPR| TPR  FPR
MNIST 17.10% 693% 0.00% 0.00% 4.04% 498% 6.19% 6.56% 4.88% 6.53% 32.49% 5.23% 53.89% 46.11% 56.63% 8.45%] 100.00% 2.29%
CIFARIO 23.79% 585% 99.03% 407% 0.00% 230% 581% 446% 97.92% 486% 93.26% 5.02% 2200% 77.89% 94.48% 138% 9681% 3.65%
ImageNette 0.00% 3.09% 0.00% 0.00% 6.68% 7.34% 5.77% 5.55% 83.94% 633% 000% 451% 52.89% 46.56% 88.22% 6.65%, 100.00% 3.57%
GTSRB  184% 707% 000% 000% 28.18% 5.88% 85.91% 7.63% 99.429% 285% 000% 4.62% 6689% 32.22% 98.00% 0.00%! 100.00% 0.29%
MNIST  4.09% 4.01% 0.00% 0.00% 11.88% 6.75% 25.12% 8.31% 36.29% 3.68% 99.00% 0.00% 40.00% 60.00% 95.30% 0.00%1 100.00% 2.29%
Data-free ~ CIFARI0 825% 5.66% 1632% 636% 98.79% 2.17% 98.12% 4.30% 100.00% 4.11% 000% 174% 44.11% 55.11% 97.32% 0.41%] 100.00% 3.65%
Backdoor ~ ImageNette 331% 425% 000% 0.00% 4.64% 554% 30.83% 6.17% 892% 030% 97.23% 621% 57.56% 42.22% 75.54% 5.57%) 100.00% 3.57%
GTSRB  0.00% 3.84% 000% 0.00% 3.20% 523% 000% 122% 053% 375% 000% 182% 8578% 14.00% 99.48% 3.78%, 100.00% 0.29%

NARCISSUS

BARBIE maintains excellent performance.
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Evaluation Against Adaptive Attacks

A o
Similar Latent Representation Attacks

Diverse Latent Representation Attacks

TPR 100.00% 100.00% 100.00% 100.00%
All-to-All | FPR  2.29% 3.65% 3.57% 0.29%
F1 9920% 98.74% 98.77% 99.90%

FI  99.20%  98.74% 98.77% 99.90%

l
I
|
_ - . - |
C ) ) | -
. 1 C)H)— CHI
Method MNIST CIFAR10 ImageNette GTSRB I
TPR 99.69% 100.00%  100.00%  100.00% I ” — ”
Random |FPR 2.29% 3.65% 3.57% 0.29% ’ -
Source- F1  99.05% 98.74% 98.77% 99.90% I - (~ ) . (~)
Agnostic TPR 100.00% 100.00%  100.00% 100.00% I ” ”
Fixed-point | FPR  2.29% 3.65% 3.57% 0.29% I
F1 99.20% 98.74% 98.77% 99.90% :
TPR 100.00% 100.00%  100.00% 100.00% Method MNIST CIFAR10 ImageNette GTSRB
Random |FPR 2.29% 3.65% 3.57% 0.29% I TPR 100.00% 100.00% 100.00% 100.00%
Source- F1 00.20% 08.74% 08.77% 99.90% | All-to-One | FPR 2.200, 3.65% 3.57% 0.29%
Specific TPR 100.00% 100.00%  100.00% 100.00%
Fixed-point | FPR  2.29% 3.65% 3.57% 0.29% : BEL Pk 878 BAT% 29.90%
l
I

BARBIE effectively resists the Similar Latent Representation Attack and
the Diverse Latent Representation Attack.
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Evaluation on Large Datasets

A o
(J Conducted on 2 representative large datasets:
Dataset 1. CIFAR100 2. TinylmageNet
Model ResNet-50

. Source-Specific Attacks
|
|

Source-Agnostic Attacks

i —— e mm mm mm ey
ABS STRIP FreeEagle | BARBIE

Method  Datasel  ppp ppr  TPR FPR TPR FPRy TPR  FPR

CIFARIO00 0.00% 0.00% 12.49% 6.48% 5.08% 5.74% 100.00% 5.28%
TmyImageNel 0.00% 2 41% 10.00% 8 65% 0. 'DD% 3. "6% I 100 00% 5.47%
007 o [ 7 ST

ABS STRIP FrecEaghk BARBIE
Method Dataset TPR  FPR TPR FPR TPR FPR | TPR PR |
CIFARIO0  100.00% 0.00% 99.09% 3.86% 99.47% 3501 0033% 5.%%

Patch

. A { o . L . . .. . - 7
Patch i yImageNet 99.85% 045% 98.88% 1.93% 000% 281%| 91.67% 547% |1 Ble4"  TinyimageNet 000% 1.05%  540% 562% 000% 171%, 10000% 547%
. CH Klz[m ggg ;E nm;E g:‘ I;i S gi;;E 33 E;j ;i i j;;i Eij :Z.Ei ; E; ;i = - / o - . . - - ! a.
Blending | | | Filter i o o - gol :
TinylmageNet 70.09% 1.48% 98.51% 292% 0.00% 1.56%, 100.00% 5.47% TinyImageNet 0.00% 0.60% 11.11% 530% 000% 2.86%100.00% 5.47%
Filt CIFARIOD 9963% 0.00% 3397% 6.15% =80.29% 343%' 06.67% 5.2800 || Composite CIFARI00 89.86% 0.00% 99.04% 441% 85.60% 4.66% | 100.00% 5.28%
i TinylmageNet 8194% 149% 97.76% 2.23% 5.67% 5.86%1 100.00% 547% || TinylmageNet 164% 0.30% 93.82% 5.83% 91.31% 3.75%, 100.00% 5.47%

Composite

TinylmageNet 9871% 0.23% 93.42% 5.62% 86.02% 559%'10000% 547% 1 Sample SpeC|f|C Attacks

Adapiive-  CIFARIO0  T00.00% 0.00% 9731% 243% S0.05% 2.70% 100.00% 5.35% || e _

Patch  TinylmageNet 97.97% 0.89% 74.48% 551% 47.91% 7.58%| 100.00% 547% | ABS STRIP FreeEagle |  BARBIE I
Adaptive-  CIFARIO0  38.83% 0.00% 44.79% 6.58% 3.10% 4.73%] 100.00% 5.28% || Method Dataset TPR FPR TPR FPR TPR FPR, TPR FPR

Bend. Tayleageliet 000% 1% 000% A6E % 5328, 10M0% 347% || iiicone  CFARIID 9933% 0% A582%: ba37% 2650%: [.74% 1000% 5.20% |

————— : T TinyImageNet 97.08% 030% 0.00% 391% 41.63% 5.93% 1 90.00% 5.47% |

Aol _CIFARIOD  0.00% 0.00% 5807% 6.77% 19.24% 6.05% | 97.50% 528% |

TinylmageNet 0.00% 0.00% 0.00% 1.52% 32.68% 4.12 % 97.14% 547%

BARBIE maintains excellent and robust detection capability on different
datasets, including datasets with a large number of classes.
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Evaluation on Vision Transformer

(J Conducted on a representative vision transformer:

‘ 1. DeiT

(J Conducted on 4 representative datasets:

‘ 1. MNIST 2.CIFAR10 | 3.ImageNette 4. GTSRB
bt
Source-Agnostic Attacks | Source-Specific Attacks
s Patch Blending Filter | ‘ Patch Blending Filter
Dataset  ypp™ "gprR  TPR KPR TPR FPR | D33 1pp ppr  TPR FPR TPR  FPR
MNIST 0188% 241% 9486% 241% 9746% 241% | MNIST 907.75% 241% 9790% 241% 9488% 241%
CIFARIO 100.00% 2.50% 100.00% 2.50% 100.00% 2.50% ! CIFARI0 100.00% 250% 100.00% 2.50% 100.00% 2.50%
ImageNette 100.00% 0.69% 100.00% 0.69% 100.00% 0.69% ! ImageNette 100.00% 0.69% 100.00% 0.69% 100.00% 0.69%
GTSRB  100.00% 0.39% 100.00% 0.39% 100.00% 0.39% ! GTSRB 100.00% 0.39% 100.00% 0.39% 100.00% 0.39%
|

BARBIE can be applied to different model structures,

including vision transformers.

) A2
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Evaluation in Self-Supervised Learning

A o
1 Considering 2 widely-used backdoor attacks in self-supervised learning:
1. BadEncoder 2. DRUPE

J Conducted on 1 pre-training datasets and 2 downstream datasets:

Pre-Training Dataset 1. CIFAR10
Downstream Dataset 1. SVHN 2. GTSRB
Model ResNet18(Encoder) Two Hidden Layers(Classifier)

Detection Performance
Method

Pre-training Downstream FreeEagle : BARBIE
Dataset Dataset TPR FPR, TPR FPR |
SVHN 0.08% 1.219997.78% 5.93%]

BadEncoder CIFARID " GrsRB  8.08% 7.149%498.99% 5.82%!
SVHN 9.38% 5.149%474.44% 5.93%,

GTSRB  46.89% 4.82‘?76]_ 85.98% 5.82%:

DRUPE CIFAR10

BARBIE maintains excellent performance in different
machine learning paradigms.
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Evaluation in Practical Scenarios

Detection with a Poisoned Model Zoo

Poison Rate

Method

MNIST CIFAR10 ImageNette GTSRB

5%

Source-
Agnostic

Patch  100.00%/3.27% 100.00%/4.33% 100.00%/6.17% 100.00%/0.14%
Blending 93.76%/3.50% 97.27%/4.49% 91.67%/6.99% 98.03%/1.20%
Filter 97.30%/3.94% 97.12%/4.73% 93.47%/5.68% 99.74%/0.35%
Composite 100.00%/3.18% 100.00%/4.98% 100.00%/4.89% 100.00%/0.42%

Source-
Specific

Patch  92.10%/2.94% 91.67%/5.39% 98.62%/6.52% 100.00%/0.25%
Blending 93.95%/2.53% 82.10%/4.57% 90.329%/6.52% 100.00%/0.81%
Filter 92.96%/3.41% 83.33%/5.74% 77.05%/6.76% 100.00%/0.60%
Composite 100.00%/4.09% 100.00%/4.80% 100.00%/6.11% 100.00%/0.21%

Sample-
Specific

All-to-One 99.07%/2.77% 100.00%/5.46% 100.00%/5.94% 100.00%/0.00%
All-to-All 100.00%/3.02% 100.00%/4.85% 100.00%/6.29% 100.00%/0.21%

Clean-
Label

Narcissus 100.009%/2.83% 96.31%/4.94% 100.00%/5.76% 100.00%/0.21%
Data-free 100.00%/2.29% 100.00%/4.54% 100.00%/4.49% 100.00%/0.84%

10%

Source-
Agnostic

Patch  100.009/2.47% 100.00%/4.50% 100.009%/6.24% 100.00%/0.35%
Blending 95.28%/4.82% 100.00%/5.59% 91.19%/6.66% 97.37%/0.82%
Filter 90.22%/2.46% 97.78%/4.58% 93.01%/6.18% 100.00%/0.00%
Composite 100.006%/5.11% 100.00%/4.73% 100.00%/6.64% 100.00%/0.27%

Source-
Specific

Patch  94.20%/3.46% 92.44%/5.27% 100.009%/6.23% 99.23%/0.83%
Blending 95.45%/3.81% 81.91%/5.67% 91.45%/7.43% 100.00%/0.93%
Filter 89.67%/3.05% 87.50%/4.91% 81.40%/6.55% 100.00%/0.93%
Composite 100.00%%/5.72% 100.00%/4.36% 100.00%/7.19% 100.00%/0.47%

Sample-
Specific

All-to-One 100.00%/2.81% 100.00%/4.16% 100.00%/6.67% 100.00%/1.28%
All-to-All 98.69%/2.13% 100.00%/4.96% 100.00%/5.45% 100.00%/2.10%

Clean-
Label

Narcissus 100.00%/3.87% 97.22%/5.07% 100.00%/6.82% 100.00%/0.68%
Data-free 100.009%/2.85% 100.00%/4.33% 100.00%/5.49% 100.00%/0.89%

Detection with Substitute Benign Models

Suspicious Models

Substitute Models

Targeted
Substitute

MNIST MNIST CIFAR10 ImageNette
FashionMNIST SVHN FashionMNIST STL10

Source-
Agnostic

Patch  100.00%/0.86% 100.00%/3.21% 93.60%/5.74% 96.88%/6.53%
Blending 93.20%/0.86% 84.00%/3.21% 50.00%/5.74% 61.91%/6.53%
Filter  98.00%/0.86% 94.00%/3.21% 78.40%/5.74% 71.43%/6.53%
Composite 100.00%/0.86% 100.00%/3.21% 100.00%/5.74% 100.00%/6.53%

Source-
Specific

Patch  81.73%/0.86% 83.95%/3.21% 59.75%/5.74% 84.38%/6.53%
Blending 81.48%/0.86% 70.37%/3.21% 55.56%/5.74% 63.64%/6.53%
Filter = 89.14%/0.86% 64.20%/3.21% 43.33%/5.74% 72.73%/(6.53%
Composite 100.00%/0.86% 100.00%/3.21% 100.00%/5.74% 100.00%/6.53%

Sample-
Specific

All-to-One 92.25%/0.86% 90.39%/3.21% 99.66%/5.74% 99.01%/6.53%
All-to-All 100.00%/0.86% 100.00%/3.21% 100.00%/5.74% 100.00%/6.53%

Clean-

Label

Narcissus 100.00%/0.86% 100.00%/3.21% 64.57%/5.74% 88.89%/6.53%
Data-free 100.00%/0.86% 100.00%/3.21% 100.00%/5.74% 100.00%/6.53%
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BARBIE maintains excellent performance in different
practical scenarios.
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Conclusion

Y A

* We design a new latent separability metric named Relative Competition
Score (RCS), which reflects the dominance of latent representations
over model output.

* We compute RCS in a data-free manner by inverting latent
representations without access to any benign or backdoored sample.

* Comprehensive experiments on 4 datasets compared with 7 baselines

under different situations confirm the effectiveness and robustness of
BARBIE.
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BARBIE: Robust Backdoor Detection Based on
Latent Separability

Opensource at:
https://github.com/Forligr/BARBIE

Contact us:
chenyanjiao@zju.edu.cn

% USSLAB Website: www.usslab.org
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