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Graph Neural Networks

Many types of data can be represented as graph structures, e.g., social 
networks and protein molecules

GNNs propagate information across graph structures, effectively capturing 
complex relationships between nodes and edges

Tasks: node classification, graph classification, link prediction

Social Networks Drug Discovery Smart City Bank Risk Management
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Backdoor Attacks on GNNs

Backdoor attacks
 Inducing undesirable behaviors in backdoored models by injecting triggers into 

original graphs

Two variants
Dirty-label backdoor attacks (DLBAs): Altering label information

Clean-label backdoor attacks (CLBAs): Altering attributes of normal nodes
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Motivation

Two phenomena
 Semantic Drift of DLBAs：between node’s attributes and structures, and their labels

Attribute over-emphasis of CLBAs: high similarities of important attributes

Semantic Drift Attribute Over-emphasis
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Proposed DShield

Pipeline
 Auxiliary Model Training: Preparing to identify poisoned nodes in DLBAs

 Discrepancy Matrix Construction: Detecting poisoned nodes in both DLBAs and CLBAs

 Backdoor-free Model Training: Training a model without backdoors
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Auxiliary Model Training

Backdoored Model

Self-supervised Model
View Augmentation: Sampling two stochastic augmentation functions

View Encoding: Extracting latent representations of nodes

Contrast and Reconstruction: Distinguishing between representations of two nodes
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Auxiliary Model Training

View Augmentation

View Encoding

Contrast and Reconstruction

Structure-level Attribute-level

Contrast

Reconstruction
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Discrepancy Matrix Construction

Semantic Discrepancy Matrix

Attribute Importance Discrepancy Matrix

Clustering

Importance of UMAP
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Backdoor-free Model Training

Target Label Discovery
Model Traning

 Target Label

Backdoor-free Training
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Analysis on Discrepency Matrices

Elements of Discrepancy Matrices
Differences in elements of two discrepancy matrices between normal and malicious 

nodes in the Cora dataset.
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Effectiveness Evaluation

Seven DLBAs & Four Datasets
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Effectiveness Evaluation

Two CLBAs & Four Datasets

 DShield exhibits a notable performance against most backdoor attacks, surpassing the efficacy of 
conventional defenses

 Although DShield demonstrates superior defense performance in most scenarios, a slight decline in 
model performance on normal nodes is observed
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Robustness Evaluation

Six Poisoning Rates

Six Trigger Sizes

Five Adaptive Attacks

 The efficacy of DShield stems from the execution of the self-
supervised learning framework and UMAP on the manipulated 
graph
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Sensitivity Analysis

Parameter 𝛽𝛽

Parameter 𝛾𝛾

 The parameter 𝛽𝛽 significantly 
affects identification precision

 Increasing the parameter 𝛾𝛾 
results in a decline in the 
victim model’s performance 
on poisoned nodes
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Extension to Graph Classification Tasks

Defending against Attacks on Graph Classification Tasks

 Experimental results show that semantic drift and attribute over-emphasis also occur in graph 
classification tasks and the defense efficiency is not limited to node classification backdoor attacks



Thank You!

Hao Yu

csyuhao@gmail.com

National University of Defense Technology

Source Code：https://github.com/csyuhao/DShield
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