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Backdoor Attack in Compute Vision
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DCT and Frequency Trigger Injection
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Spatial domain Decomposition
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Trigger Design

ØRobustness
ØStealthiness
ØAttack Effectiveness & Benign Accuracy
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Trigger Design - Robustness
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Low
Frequency

High 
Frequency

Low-frequency components show great resilience to some 
image preprocessing operations, since they are designed to 
destroy the mid- and high-frequency components first.



Trigger Design - Robustness
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For each channel, we minimize the distance of each 
perturbation to the lowest frequency band 𝑚𝑖𝑛(ℱ!"#)
in the spectrum during the optimization:

𝜐!
𝜐"𝜐#



Trigger Design – Stealthiness
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Given k perturbations in all channels, 𝛿={𝛿", 𝛿",⋯ , 𝛿#},
we minimize the magnitude of perturbations under 
𝑙$ − 𝑛𝑜𝑟𝑚:

The 𝑙$ − 𝑛𝑜𝑟𝑚 can reflect trigger stealthiness in dual 
domains.

𝛿!
𝛿"𝛿#
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Trigger Design - ASR and ACC
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Shuffled dataset 𝐷
contains 𝑛 images, each image 

𝑥 of which is labeled 𝑦

Clean images: 𝐷&
𝑥 = {𝑥", 𝑥$, ⋯ 𝑥#}
𝑦 = {𝑦", 𝑦$, ⋯ 𝑦#}

Poisoned images 𝐷'(
𝑥 = { 𝑥#)",⋯ , 𝑥+,}
y = {𝑦,-,, ⋯ , 𝑦,-,}

𝑚𝑖𝑛!$
(#,%)∈(!

ℒ(𝑓!(𝑥, 𝑦))

𝑚𝑖𝑛!$
(#,%)∈("#

ℒ(𝑓!(𝑥, 𝑦))



Optimization Difficulty
Optimize with Lagrange multiplier+Gradient descent are difficult. Taking the 
objectives of stealthiness and attack effectiveness for example:
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Optimization Difficulty
Optimize with Lagrange multiplier+Gradient descent are difficult. Taking the 
objectives of stealthiness and attack effectiveness for example:
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(a) (b)

Trigger
Preference

Objectives are conflicting



Optimization Difficulty
Optimize with Lagrange multiplier+Gradient descent are difficult. Taking the 
objectives of stealthiness and attack effectiveness for example:
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(a) (b)

Trigger
Preference

Lagrange multipliers+SGD cannot stably 
produce stealthy/effective triggers 



Multi-objective Backdoor Attack

12LADDER: Multi-objective Backdoor Attack via Evolutionary Algorithm 12



Multi-objective Backdoor Attack

Optimize multiple attack objectives simultaneously
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Optimization: Evolutionary Algorithm (EA)
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Initialization

Trigger Evaluation Trigger Optimization

Trigger Selection and Data Preparation



Optimization: EA
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Initialization

Trigger Evaluation Trigger Optimization

Trigger Selection and Data Preparation

Randomly initialize a 
population of triggers



Optimization: EA
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Calculate the objective 
values O1 , O2 and O3  for 
each candidate trigger to 
evaluate the trigger quality

Initialization

Trigger Evaluation Trigger Optimization

Trigger Selection and Data Preparation



Optimization: EA
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Apply variations on triggers 
from the current population 
to produce offspring triggers

Initialization

Trigger Evaluation Trigger Optimization

Trigger Selection and Data Preparation



Optimization: EA
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Optimization: Preference-based NDSort
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Given the objective values of a population of 𝑃
triggers, we increase the chance that triggers close 
to the region can survive into the next iteration.



Optimization: Evolutionary Algorithm
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We choose the best trigger from 
the population based on whose 
objective values are closest to the 
best value for each objective, and 
release a poisoned dataset 
injected by the trigger.

Initialization

Trigger Evaluation Trigger Optimization

Trigger Selection and Data Preparation



ØBenign Accuracy (ACC) = # 0123450 &6775&,48 &41009:95(# 0123450

ØAttack Success Rate (ASR) = # 0123450 290&41009:95( ,6 ,;5 1,,1&#57
!0 ,17-5,

# 0123450 1,,1&#5(

ØStealthiness
• Peal Signal-to-Noise Ratio (PSNR)
• Structure Similarity Index Measure (SSIM)
• Learned Perceptual Image Patch Similarity (LPIPS) 
• 𝑙$-norm of trigger perturbations

ØRobustness: the remaining ASR after image processings
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Experimental Results
Metrics for evaluation



Experimental Results
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Trigger Stealthiness achieved by LADDER

The 𝑙) − 𝑛𝑜𝑟𝑚 reflect stealthiness in both the spatial and frequency domains.



Experimental Results
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Trigger Stealthiness achieved by LADDER



Experimental Results
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Robustness 



Experimental Results
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Attack Effectiveness & Accuracy



Experimental Results
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The importance of all attack objectives 

LADDER can provide the most practical trigger considering all the 
objectives in the spectral domain.

Effectiveness (ASR), stealthiness and robustness of variants 
compared to the original version of LADDER on CIFAR-10:



Take away

ØWe consider multiple attack objectives.

ØWe observe the conflict among objectives and find that optimizing conflicting
objectives using the Lagrange multiplier+SGD is difficult.

ØWe formulate backdoor attack as a multi-objective problem and optimize with
Evolutionary algorithm.

ØLADDER achieves superior performance regarding attack objectives.
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Thank you for your attention
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