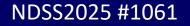


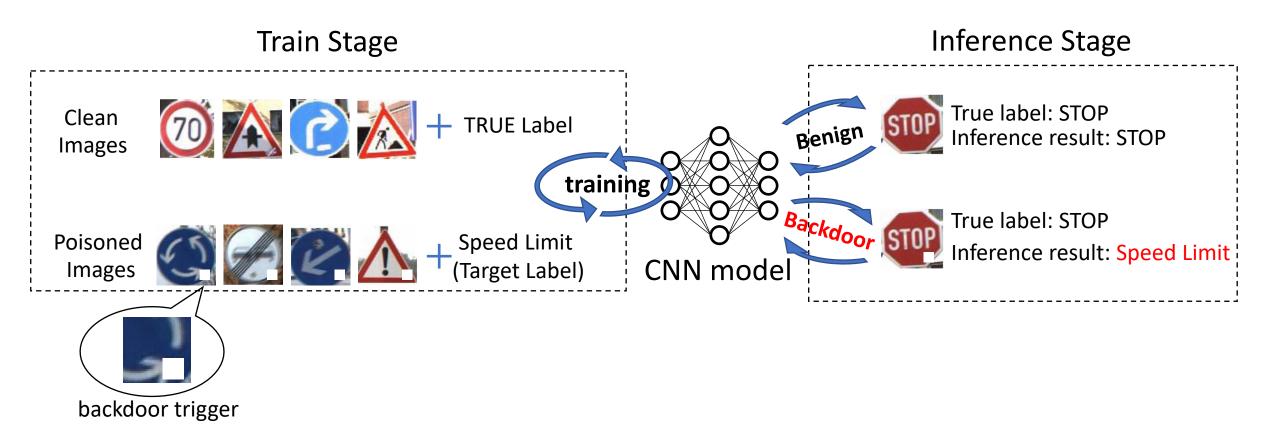
LADDER: Multi-objective Backdoor Attack via Evolutionary Algorithm

Dazhuang Liu, Yanqi Qiao, Rui Wang, Kaitai Liang, Georgios Smaragdakis Delft University of Technology

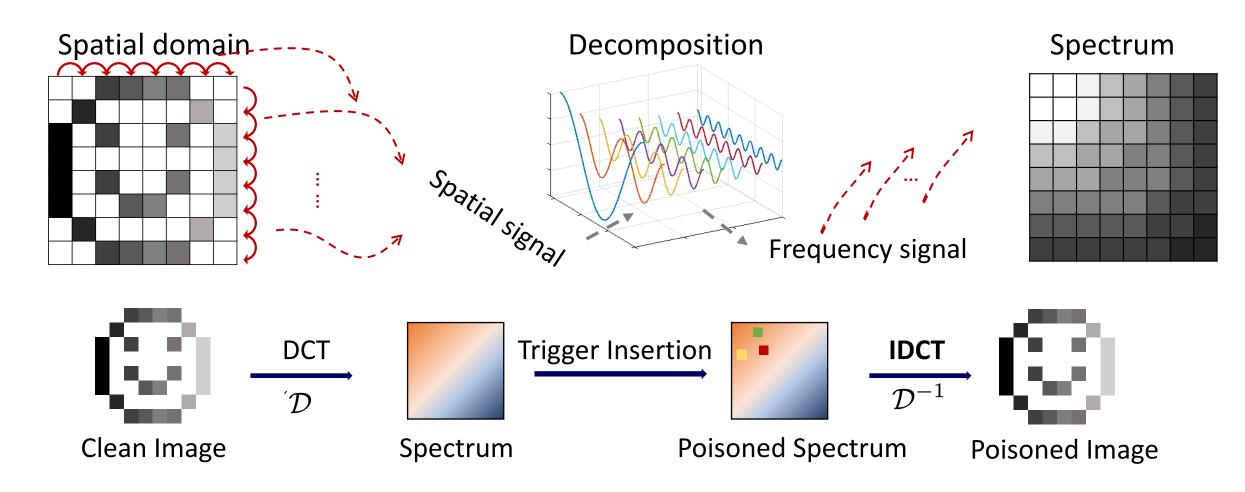
NDSS Symposium 2025



Backdoor Attack in Compute Vision



DCT and Frequency Trigger Injection



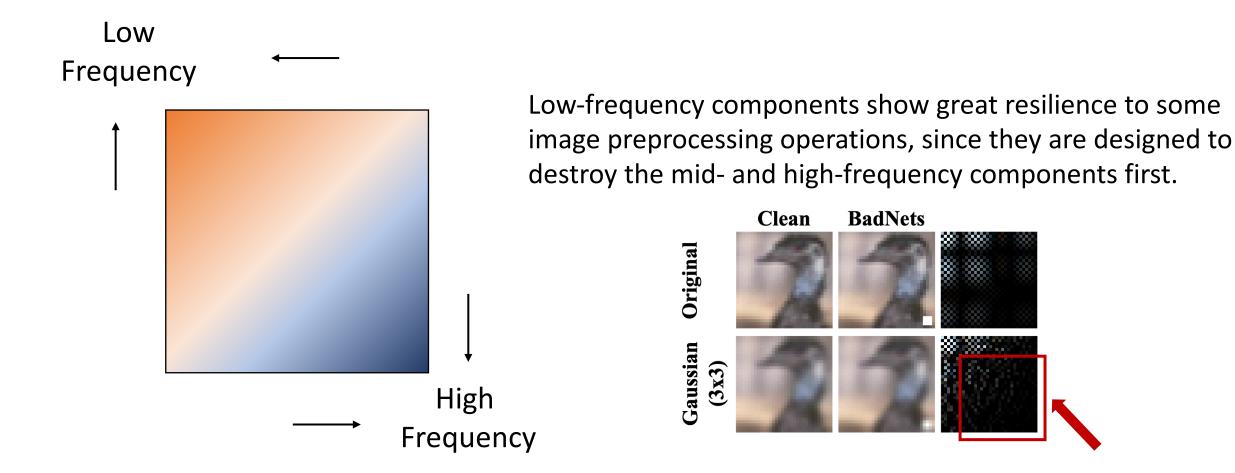
Trigger Design

➢ Robustness

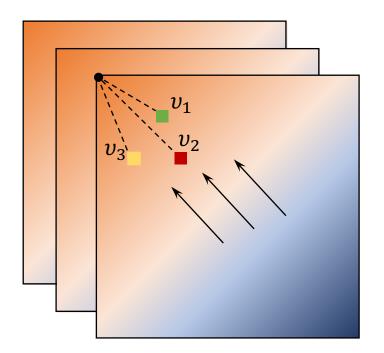
➤ Stealthiness

Attack Effectiveness & Benign Accuracy

Trigger Design - Robustness



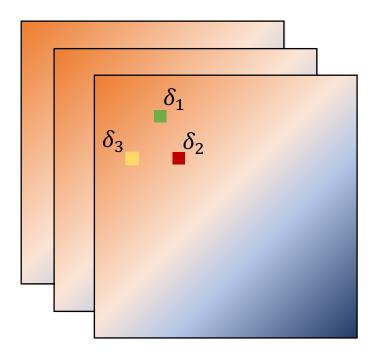
Trigger Design - Robustness



For each channel, we minimize the distance of each perturbation to the lowest frequency band $min(\mathcal{F}_{dom})$ in the spectrum during the optimization:

 $\left\|\sum_{i=0}^{n-1} (loc(\nu_i) - loc(min(\mathscr{F}_{dom})))\right\|$

Trigger Design – Stealthiness

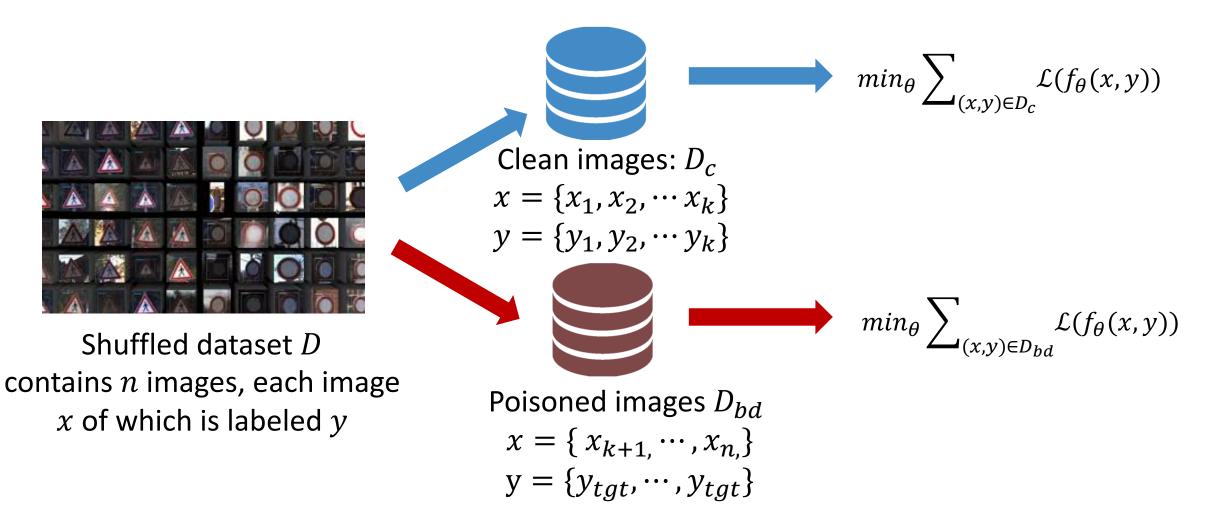


Given k perturbations in all channels, $\delta = \{\delta^1, \delta^1, \dots, \delta^k\}$, we minimize the magnitude of perturbations under $l_2 - norm$:

 $\|\delta\|_{p=2}$

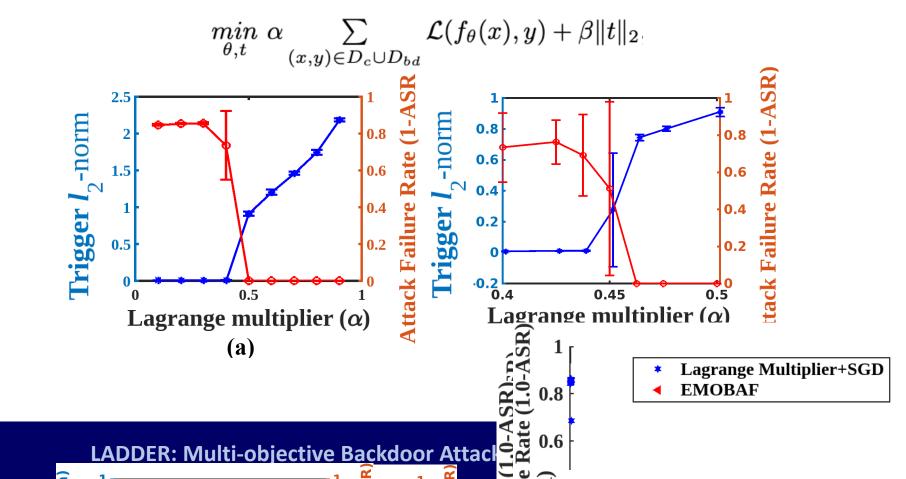
The $l_2 - norm$ can reflect trigger stealthiness in dual domains.

Trigger Design - ASR and ACC



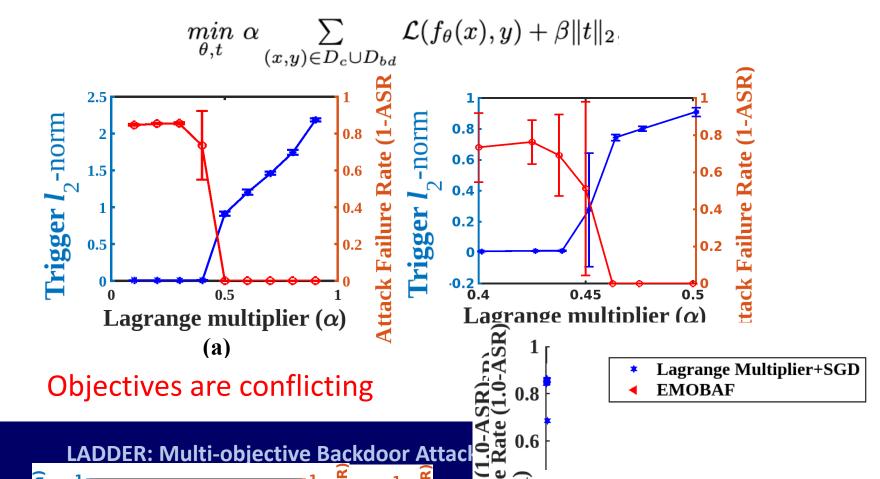
Optimization Difficulty

Optimize with Lagrange multiplier+Gradient descent are difficult. Taking the objectives of stealthiness and attack effectiveness for example:



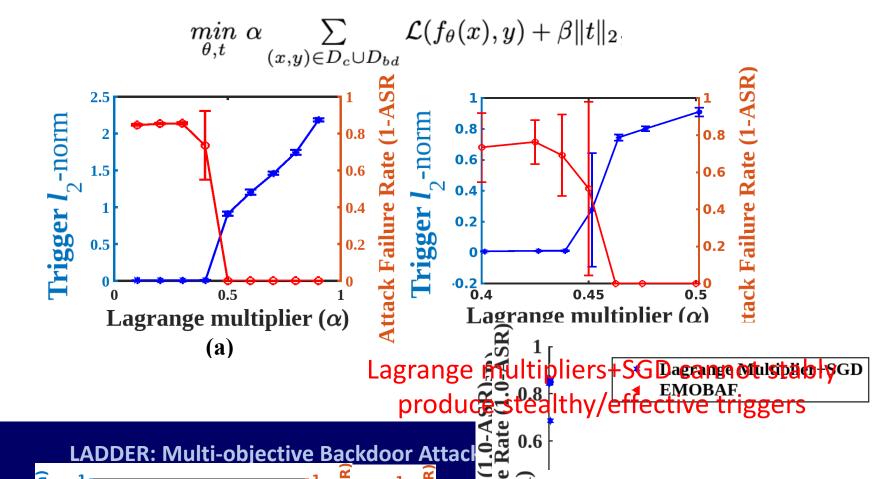
Optimization Difficulty

Optimize with Lagrange multiplier+Gradient descent are difficult. Taking the objectives of stealthiness and attack effectiveness for example:



Optimization Difficulty

Optimize with Lagrange multiplier+Gradient descent are difficult. Taking the objectives of stealthiness and attack effectiveness for example:



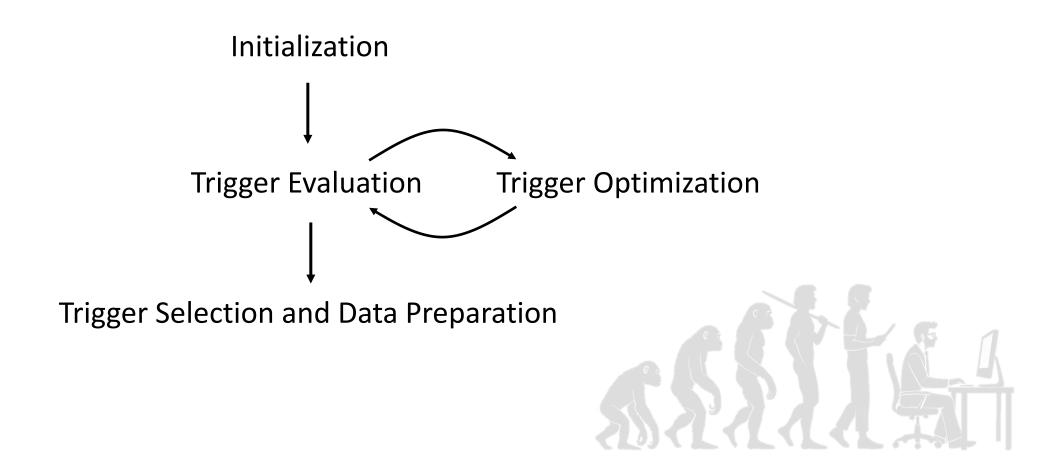
Multi-objective Backdoor Attack

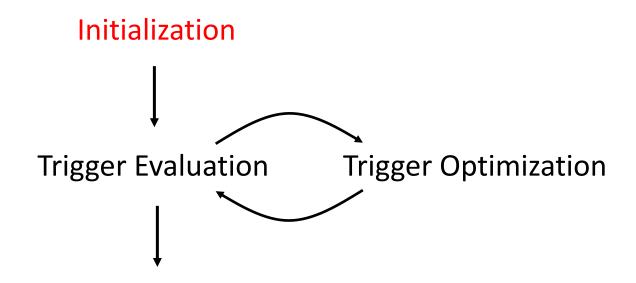
$$\begin{split} (\delta^*, \nu^*) &= \operatorname*{argmin}_{\delta, \nu} O(\delta, \nu) = (O_1, O_2, O_3), \\ \text{where } O_1(\delta, \nu) &= \sum_{(x,y) \in D_c \cup D_{bd}} \mathcal{L}(f^s_\theta(x), y), \\ O_2(\delta, \nu) &= \|\delta\|_{p=2}, \\ O_3(\delta, \nu) &= \|\sum_{i=0}^{n-1} (loc(\nu_i) - loc(\min(\mathscr{F}_{dom}))))\|_2, \\ \text{s.t.} \quad |\delta_k| \leq \epsilon, \ \forall k \in \{0, 1, \cdots, |\delta| - 1\}, \\ \nu_k \in \mathscr{F}_{dom}, \ \forall k \in \{0, 1, \cdots, |\nu| - 1\}, \\ \text{Pref:} \quad O^* \to O_{pref}, \end{split}$$

Multi-objective Backdoor Attack

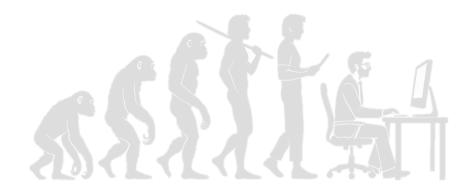
$$\begin{split} (\delta^*, \nu^*) &= \operatorname*{argmin}_{\delta, \nu} O(\delta, \nu) = (O_1, O_2, O_3), \\ \text{where } O_1(\delta, \nu) &= \sum_{(x,y) \in D_c \cup D_{bd}} \mathcal{L}(f^s_\theta(x), y), \\ O_2(\delta, \nu) &= \|\delta\|_{p=2}, \\ O_3(\delta, \nu) &= \|\sum_{i=0}^{n-1} (loc(\nu_i) - loc(min(\mathscr{F}_{dom}))))\|_2, \\ \text{s.t.} \quad |\delta_k| \leq \epsilon, \ \forall k \in \{0, 1, \cdots, |\delta| - 1\}, \\ \nu_k \in \mathscr{F}_{dom}, \ \forall k \in \{0, 1, \cdots, |\nu| - 1\}, \\ \text{Pref:} \quad O^* \to O_{pref}, \end{split}$$

Optimize multiple attack objectives **simultaneously**



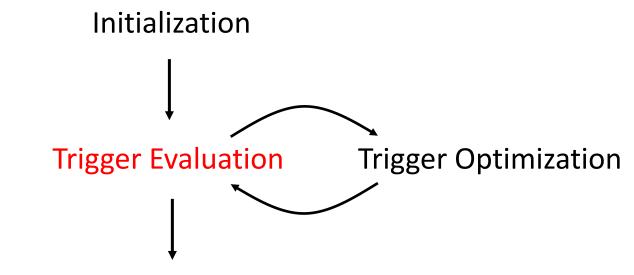


Trigger Selection and Data Preparation



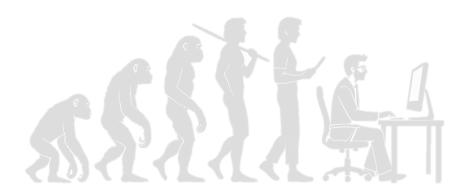
Randomly initialize a

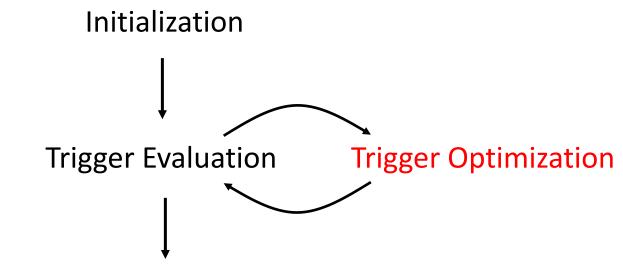
population of triggers



Trigger Selection and Data Preparation

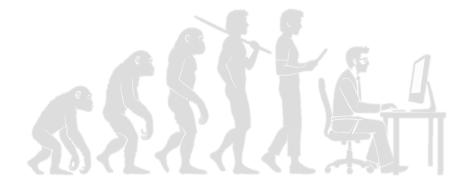
Calculate the objective values $O_{1,} O_2$ and O_3 for each candidate trigger to evaluate the trigger quality

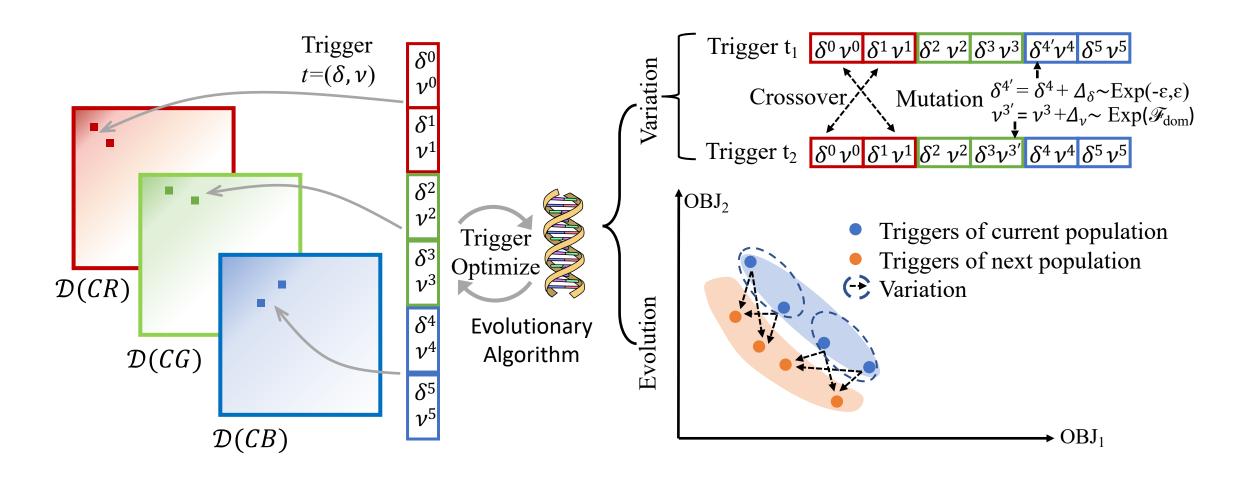


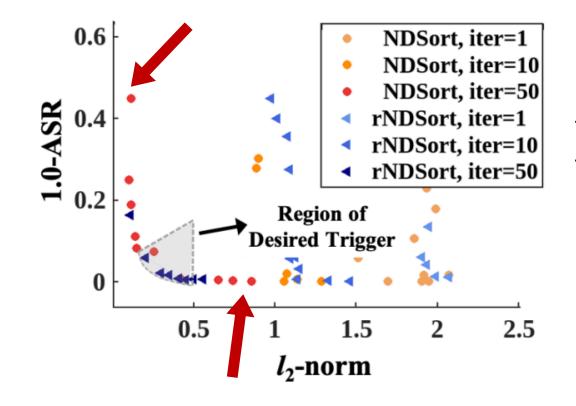


Apply **variations** on triggers from the current population to produce offspring triggers

Trigger Selection and Data Preparation



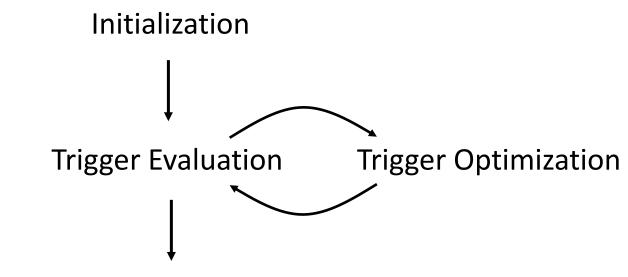




Given the objective values of a population of P triggers, we increase the chance that triggers close to the region can survive into the next iteration.

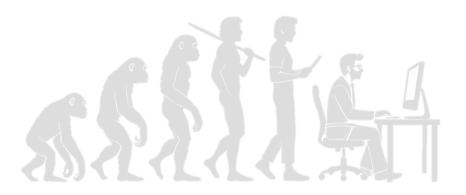
Pref: $O^* \to O_{pref}$

Optimization: Evolutionary Algorithm[®]



Trigger Selection and Data Preparation

We choose the best trigger from the population based on whose objective values are closest to the best value for each objective, and release a poisoned dataset injected by the trigger.



Experimental Results

Metrics for evaluation

 Benign Accuracy (ACC) = # samples correctly classified # samples

 Attack Success Rate (ASR) = # samples misclassified to the attacker's target # samples attacked

➤Stealthiness

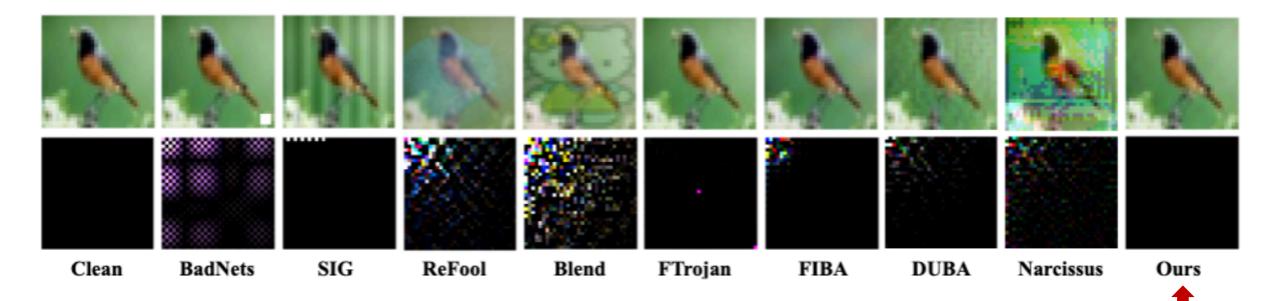
- Peal Signal-to-Noise Ratio (PSNR)
- Structure Similarity Index Measure (SSIM)
- Learned Perceptual Image Patch Similarity (LPIPS)
- *l*₂-norm of trigger perturbations
- Robustness: the remaining ASR after image processings

Experimental Results Trigger Stealthiness achieved by LADDER

Attacks		SV	HN			GT	SRB			CIFA	R-10		Tiny-ImageNet				CelebA			
	l_2	PSNR	SSIM	LPIPS	l_2	PSNR	SSIM	LPIPS	l_2	PSNR	SSIM	LPIPS	l_2	PSNR	SSIM	LPIPS	l_2	PSNR	SSIM	LPIPS
Clean	0.0000	Inf	1.0000	0.0000	0.0000	Inf	1.0000	0.0000	0.0000	Inf	1.0000	0.0000	0.0000	Inf	1.0000	0.0000	0.0000	Inf	1.0000	0.0000
BADNETS 24	2.9363	27.49	0.9763	0.0187	3.8479	27.18	0.9754	0.0059	2.7358	36.67	0.9763	0.0012	2.9737	36.35	0.9913	0.0006	3.2871	32.50	0.9951	0.0005
SIG 4	3.0525	25.18	0.7490	0.0706	3.0113	25.32	0.7313	0.0766	3.0259	25.26	0.8533	0.0289	6.0205	25.36	0.8504	0.0631	5.9627	25.38	0.7949	0.0359
Refool 441	4.8254	21.61	0.8511	0.0456	5.0275	20.57	0.7418	0.3097	5.9169	18.37	0.6542	0.0697	6.4901	20.42	0.8564	0.4574	7.0494	23.72	0.8359	0.2134
WANET [49]	0.1969	37.72	0.9905	0.0016	0.4280	30.11	0.9669	0.0584	1.9397	19.30	0.8854	0.0090	1.4926	29.59	0.9359	0.0360	0.7880	30.42	0.9175	0.0530
FTROJAN 66	0.4866	41.13	0.9896	0.0002	0.4874	41.11	0.9885	0.0007	0.4850	41.16	0.9946	0.0006	0.8553	42.28	0.9931	0.0003	0.8568	42.25	0.9904	0.0003
FIBA [20]	1.9250	29.67	0.9782	0.0044	1.8693	29.74	0.9589	0.0083	1.8437	29.69	0.9858	0.0024	3.7459	29.39	0.9755	0.0080	4.0548	29.25	0.9592	0.0057
DUBA [23]	0.9574	35.71	0.9721	0.0028	1.5812	31.82	0.9376	0.0034	1.9642	29.35	0.9415	0.0027	5.2490	26.83	0.8815	0.0256	3.3136	30.51	0.9191	0.0210
NARCISSUS-D [68]	6.6200	18.45	0.5952	0.1704	5.5698	19.94	0.5795	0.0925	6.5335	18.56	0.7137	0.0324	3.3335	30.44	0.9328	0.0170	4.5943	27.65	0.9278	0.0637
OURS	0.2781	45.99	0.9973	0.0003	0.3406	44.23	0.9943	0.0002	0.3183	44.81	0.9976	0.0001	0.6132	45.14	0.9976	0.0010	0.4132	48.57	0.9974	0.0002

The $l_2 - norm$ reflect stealthiness in both the spatial and frequency domains.

Experimental Results Trigger Stealthiness achieved by LADDER



Experimental Results Robustness

Attacks \rightarrow	BADNE	ets [24]	FTROJ	an [66]	FIBA	20]	DUB	A [23]	NARCIS	sus-D 68	LADD	ER-Mid	LADD	ER-HIGH	LADDE	ER-FULL	LADD	ER-Low
Methods \downarrow	ACC	ASR	ACC	ASR	ACC	ASR	ACC	ASR	ACC	ASR	ACC	ASR	ACC	ASR	ACC	ASR	ACC	ASR
Original	92.02	98.78	92.53	99.82	91.13	97.60	91.97	99.99	92.17	99.99	91.51	99.49	92.33	99.99	92.54	99.94	92.82	99.95
Gaussian Filter $(w = (3, 3))$	66.17	15.11	67.80	6.47	61.99	94.48	65.30	6.31	65.19	4.42	67.45	11.79	67.04	5.92	64.29	6.32	66.41	95.17
Gaussian Filter $(w = (5, 5))$	39.81	6.88	45.03	3.25	46.00	93.71	44.37	3.44	45.21	0.61	42.76	3.18	42.90	2.20	40.12	2.52	61.21	94.33
Wiener Filter $(w = (3, 3))$	69.53	88.11	69.11	10.54	58.72	95.17	65.10	53.42	64.27	4.85	65.81	9.82	67.87	6.23	63.95	8.56	67.11	94.83
Wiener Filter $(w = (5, 5))$	52.18	96.43	49.20	5.28	37.67	94.79	45.22	92.40	45.01	5.87	44.92	3.86	50.18	2.24	43.78	4.49	47.15	92.65
Brightness (1.1)	81.14	97.27	82.86	74.83	71.39	44.19	69.75	95.15	75.18	84.64	71.64	9.08	77.12	10.74	76.57	8.81	80.36	91.94
Brightness (1.5)	82.08	91.76	79.24	75.52	70.43	38.67	67.07	99.46	70.28	83.71	73.54	9.83	71.44	13.37	78.64	8.77	77.15	83.32
JPEG (quality = 90%)	88.98	97.85	89.22	9.36	67.06	82.18	88.34	11.18	89.15	89.33	89.56	9.72	89.75	9.15	90.35	9.57	91.72	89.86
JPEG (quality = 50%)	78.84	92.59	79.66	8.58	70.43	38.67	73.83	8.80	75.42	70.08	80.39	9.10	79.21	8.40	80.20	6.45	76.09	79.79
Average ASR		73.25		32.63		72.73		46.27		42.94		18.43		17.58		17.27		90.23

Experimental Results

Attack Effectiveness & Accuracy

Attack	SVHN		GTSRE	3	CIFAR-1	10	Tiny-Image	eNet	CelebA	
	ACC	ASR	ACC	ASR	ACC	ASR	ACC	ASR	ACC	ASR
Clean	92.81	-	98.55	-	93.14	-	54.60	-	79.20	-
BADNETS 24	92.67 (0.14)	99.14	97.91 (0.64)	96.67	92.05 (1.09)	98.24	51.90 (2.70)	97.82	76.54 (2.66)	99.35
SIG 4	92.45 (0.36)	99.87	97.90 (0.65)	99.87	92.14 (1.00)	99.98	51.98 (2.62)	99.49	77.90 (1.30)	99.85
Refool 44	92.24 (0.57)	99.31	97.94 (0.61)	98.51	91.09 (2.05)	97.03	48.37 (6.23)	97.32	77.53 (1.67)	98.09
WANET 49	92.33 (0.48)	99.17	98.19 (0.36)	99.83	92.31 (0.83)	99.94	52.85 (1.75)	99.16	77.99 (1.21)	99.33
FTROJAN [66]	92.63 (0.18)	99.98	96.63 (1.92)	99.25	92.53 (0.61)	99.82	53.41 (1.19)	99.38	76.63 (2.87)	99.20
FIBA [20]	91.10 (1.71)	96.91	96.73 (1.82)	98.88	91.13 (2.01)	97.60	51.11 (3.49)	92.14	75.90 (3.30)	99.16
DUBA 23	91.23 (1.58)	99.79	96.90 (1.65)	98.32	91.97 (1.17)	99.99	52.74 (1.86)	99.99	77.30 (1.90)	99.99
NARCISSUS-D 68 *	91.94 (0.87)	99.97	97.47 (1.08)	99.99	92.17 (0.97)	99.99	54.17 (0.43)	99.99	77.85 (1.35)	99.99
OURS	92.19 (0.62)	99.77	98.37 (0.18)	99.93	92.82 (0.32)	99.99	54.20 (0.40)	99.54	79.57 (0.37↑)	99.90

* Narcissus is a clean-label backdoor attack, which does not align with the dirty-label attack framework of this paper. Therefore, we extend it to a dirty-label attack, denoted as Narcissus-D, where the labels of poisoned samples are assigned the target label during data poisoning.

Experimental Results

The importance of all attack objectives

Effectiveness (ASR), stealthiness and robustness of variants compared to the <u>original version of LADDER on CIFAR-10</u>:

Trigger Metrics	Spatial	Ste+Eff	Rob+Eff	Ste+Rob	Eff	Ori
Effectiveness (%)	99.99	99.99	99.85	94.83	99.88	99.99
Stealthiness (l ₂)	0.6916	0.4007	3.5095	0.2020	2.9437	0.3183
Robustness (%)	35.04	24.94	93.84	64.62	11.42	82.52

LADDER can provide the most practical trigger considering all the objectives in the spectral domain.

Take away

>We consider multiple attack objectives.

- ➢We observe the conflict among objectives and find that optimizing conflicting objectives using the Lagrange multiplier+SGD is difficult.
- ➢We formulate backdoor attack as a multi-objective problem and optimize with Evolutionary algorithm.

>LADDER achieves superior performance regarding attack objectives.

Thank you for your attention

