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Data as a Service

High-quality data is important!

Acquisition is however challenging
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Data as a Service

clickworker

Commercial Data Curators

e.g., 6 million 

freelancers
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Defenses against Backdoor

◆Prevention/removal

◆Model based detection

◆Data based detection



Defenses against Backdoor

◆Prevention/removal

Indiscriminately applied on underling samples, 

datasets, or models; often incurs high computational cost 

and degrades utility. Inapplicable for DaaS.

◆Model based detection

◆Data based detection



Defenses against Backdoor

◆Prevention/removal

◆Model based detection

Impractical for DaaS as different model providers 

will use different models, each model needs to be assessed.

◆Data based detection
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Defenses against Backdoor

◆Prevention/removal

◆Model based detection

◆Data based detection

Inference phase vs Training phase

Training phase detection is suitable for DaaS scenario 

that allows a data curator to perform data cleansing 

once-off.



Requirements for Data Cleansing

RM1: One-time operation

RM2: Modality agnostic

RM3: Task agnostic

RM4: Poisoning rate agnostic

RM5: Attack method agnostic

RM6: No clean data access



Requirements for Data Cleansing

No existing work can satisfy all those practical requirements!



Telltale: Insights

Losses of universal and partial backdoor attack (CIFAR10 + ResNet18)

Poisoned 
sample
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Telltale: Insights

Losses of universal and partial backdoor attack (CIFAR10 + ResNet18)

Poisoned 
sample

(dirty-label)

Loss of poisoned samples is always lower in early epochs?



Telltale: Insights

Losses of clean-label attack, Narcissus attack CCS’23 (CIFAR10 + ResNet18)

Poisoning rate = 0.05%

Poisoned 
sample

(clean-label)



Telltale: Insights

Losses of clean-label attack, Narcissus attack CCS’23 (CIFAR10 + ResNet18)

Poisoning rate = 0.05%

Poisoned 
sample

(clean-label)

Loss of poisoned samples is always lower in early epochs?

Not really



Telltale: Insights

Anyway,

Loss trajectories of benign and poisoned samples are discernable

Satisfy RM2 (modality agnostic) and RM3 (task agnostic)



Telltale: Insights

But,

Loss trajectories of benign/poisoned samples are highly entangled



Telltale: Insights

But,

Loss trajectories of benign/poisoned samples are highly entangled
Recall no clean dataset is available for reference



Telltale: Insights

t-SNE

Poisoned samples cannot be separated.
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Times-series signal



Telltale: Insights

t-SNE

Times-series signal

Spectrum transformation



Telltale: Insights

t-SNE

Times-series signal

Spectrum transformation

t-SNE



Telltale: Insights

t-SNE
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Telltale: Insights

Relative difference is more salient 

once the model is converged
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Telltale: Insights Takeaway

Loss trajectory: address RM2 (task agnostic) and RM3 (task

agnostic)

Truncation and Spectrum: address RM4 (poisoning rate) and

RM5 (attack method)

Clustering: address RM6 (no clean dataset access)



Telltale: Design

DBSCAN is used for clustering because of no prior 

knowledge of number of clusters (either 2 for 

poisoned dataset or 1 for benign dataset)



Results: Universal Backdoor

Detection performance against four different triggers (dirty-label)

CIFAR10+ResNet18



Results: Universal Backdoor

Detection performance against Narcissus (clean-label)

CIFAR10+ResNet18

Det. acc 96.00%

FPR 0.61%



Results: Universal Backdoor

Detection performance at different poisoning rate (BadNet)

CIFAR10+ResNet18



Results: Partial Backdoor

Detection performance against partial backdoor (dirty-label)

CIFAR10+VGG16

Det. acc 97.35%

FPR 0.31%



Results: Comparison

Telltale is compared with ASSET (Usenix’23) 

and CT (Usenix’23) from three scenarios:

➢ Narcissus trigger

➢ Partial backdoor

➢ Benign dataset



Results: Comparison
Narcissus trigger Partial backdoor

Benign dataset



Conclusion and Takeaway

RM1: One-time operation

RM2: Modality agnostic

(image, audio, text)

RM3: Task agnostic

(classification, regression)

RM4: Poisoning rate agnostic

(low to 0.05%)

RM5: Attack agnostic

(backdoors, triggers)

RM6: No clean data access
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