
DUMPLING: FINE-GRAINED DIFFERENTIAL
JAVASCRIPT ENGINE FUZZING

Liam Wachter

Julian Gremminger

Christian Wressnegger

Mathias Payer

Flavio Toffalini

Asymmetric Research

KIT

EPFL

RUB

V8 EXECUTION TIERS

Ignition Sparkplug Maglev TurboFan

Unoptimized Optimized

Optimization:
Deptimization:

2

V8 EXECUTION TIERS

Ignition Sparkplug Maglev TurboFan

Unoptimized Optimized

Optimization:
Deptimization:

Even confusing -0.0 with +0.0 is enough for RCE [Röt18]

2.1

VM STATE
 0 : 01 0d e8 ff ff 1f LdaSmi.ExtraWide [536870888]
 6 : c5 Star0
 7 : 13 00 LdaConstant [0]
 9 : c2 Star3
10 : 2d f6 01 00 GetNamedProperty r3, [1], [0]
14 : c3 Star2
15 : 5e f7 f6 f9 02 CallProperty1 r2, r3, r0, [2]
20 : c4 Star1
21 : 2d f8 02 04 GetNamedProperty r1, [2], [4]
25 : c3 Star2
26 : 13 03 LdaConstant [3]
28 : c1 Star4
29 : 5f f7 f8 f5 f9 06 CallProperty2 r2, r1, r4, r0, [6]
35 : aa Return

3

JIT COMPILATION

4

JIT COMPILATION
⟷

Compare VM statesCompare VM states from
unoptimized execution
(left) to optimized
execution (right).

5

OVERVIEW

TRACES
Execution traces
even during JIT

MATCHING
Matching algorithm
to compare traces

DUMPLING
Differential Fuzzer
using our bug oracle

V8 BUGS
Evaluation and 8
new V8 bugs

6

STATE EXTRACTION

7

STATE EXTRACTION: JIT

State is spread accross machine
registers and stack

8

STATE EXTRACTION: JIT

State is spread accross machine
registers and stack
HowHow do we get back to state
comparable to interpreter execution?
WhereWhere is state extraction possible?

8.1

STATE EXTRACTION: JIT

State is spread accross machine
registers and stack
HowHow do we get back to state
comparable to interpreter execution?
WhereWhere is state extraction possible?
No influence on JS execution
semantics and JIT compiler
optimizations

8.2

DEOPTIMIZATION POINTS

Deopt points guard usage of
specualtive assumption
JIT tracks context to restore VM state
at deopt points

function f(o1, o2) {
 return o1.a * o2.a;
 }

9

DEOPTIMIZATION POINTS

Deopt points guard usage of
specualtive assumption
JIT tracks context to restore VM state
at deopt points

function f(o1, o2) {
 return o1.a * o2.a;
 }

→ Deopt points as natural probing
positions for interesting state

9.1

DUMPING DURING SPECULATIVE JIT EXECUTION

1. Save state
2. Build VM state
3. Rematerialize escaped values
4. "Dump" VM state
5. Restore state and continue JIT
execution

→ partial use of existing deopt
mechanism

10

STATE EXTRACTION: DUMPLING MODE -
INTERPRETER

Optimized run reports dump locations to the fuzzer
Hook bytecode execution and extract state at those dump locations

11

STATE SERIALIZATION

Invariant across execution tiers
Fine-grained and in-depth
Concise to minimize transmission overhead

-------TurboFan frame dump-------
pc: 7
acc: 13.37
a0: <Object>{
__proto__: <Class C7>{<String[1]: f>[enumerable]<JSArray>[]},
<String[1]: a>[configurable][enumerable]42(enum cache: 2),
<String[1]: f>[configurable][enumerable]13.37(enum cache: 0)
}
r0: -INFINITY
context: <ScriptContext[4]>
receiver: <JSGlobalProxy>
closure: <JSFunction f0>
Function ID: 27

12

DIFFERENTIAL ORACLE

No 1:1 mapping of dumps
Any JIT dump must have an interpreter equivalent in the samesame function
invocation

13

EVALUATION: OVERHEAD

Fuzzer Fuzzilli JIT-Picker FuzzJIT Dumpling

Executions 63,775,062 99,240,042 61,434,736 51,535,553

14

BUGS
Found 8 new V8 bugs 🎉

Bug Id Kind Status Changes By Description

CR41488094 Diff fixed +28/-23 D, J Enumerating properties eagerly, has incorrect side effect

CR335310000 Diff fixed +15/0 D Property not marked as enumerable by Maglev and TurboFan

CR332745405 Diff fixed +5/0 D DefineOwnProperty called the setter of an existing accessor property

CR329330868 assert dup N/A D, J array.shift does not update pointers in spill slots

CR41484971 Diff fixed +52/-40 D Store inline cache handlers are incorrectly used for defining properties

V8:14605 Diff fixed +1/-1 D The JumpLoop bytecode does not clobber the accumulator in all cases

CR345960102 Diff fixed +6/-4 D TurboFan incorrectly optimizes 64 bit BigInt shifts

CR346086168 Diff fixed +109/-107 D Overflow in BigInt64 shift optimization

V8:14556 Diff available N/A D The arguments array is handled differently in optimizing compilers

CR40945996 assert dup N/A D The profiler in Maglev interferes with deoptimization

15

CASE STUDY

Here not "visible", but already detectable by Dumpling

function A() {
 Object.defineProperty(this, "x", { writable: true, configurable: true, value: undefined });
}

class B extends A {
 x = {};
}

for (let i = 0; i < 100; i++) {
 new B();
}

16

CASE STUDY

Here not "visible", but already detectable by Dumpling

function A() {
 Object.defineProperty(this, "x", { writable: true, configurable: true, value: undefined });
}

class B extends A {
 x = {};
}

for (let i = 0; i < 100; i++) {
 new B();
}

Other fuzzers need generate something like
let b = new B();
console.log(b.propertyIsEnumerable("x"));

optimizations enabled: "true", optimizations disabled: "false"

16.1

CONCLUSION
KEY PROBLEM

Find differentials between JS engine execution tiers automatically

DUMPLING
Extract VM states during runtime and compare between JIT and interpreter

Leveraging deoptimization points, a mechanism already implemented in JS engines

RESULT
Find bugs before they become "visible"

17

QUESTIONS?

Find our artifact here: github.com/two-heart/dumpling-artifact-evaluation

 @95p@mastodon.cloud  @NearBeteigeuze  liam@seine.email

18

BIBLIOGRAPHY
[GSV22] Jakob Gruber, Leszek Swirski, and Toon Verwaest. Maglev. 2022. url: https://

docs.google.com/document/d/13CwgSL4yawxuYg3iNlM-4ZPCB8RgJya6b8H_ E2F-Aek/ (visited on 11/28/2023).
[Röt18] Stephen Röttger. Chrome: V8: incorrect type information on Math.expm1. 2018. url: https://crbug.com/project-zero/1710 (visited on

03/18/2024).
[Flü16] Olvier Flückiger. Ignition: V8 Interpreter. 2016. url:

https://docs.google.com/document/d/11T2CRex9hXxoJwbYqVQ32yIPMh0uouUZLdyrtmMoL44 (visited on 11/20/2023).

19

