
Miaoqian Lin , Kai Chen, Yi Yang, Jinghua Liu

{linmiaoqian, chenkai, liujinghua, yangyi}@iie.ac.cn

Generating API Specifications for Bug Detection
via Specification Propagation Analysis

1

Uncovering the iceberg from the tip:

Motivation: Bugs and Specifications

• Software is built with various APIs that encapsulate complex semantics.

• To use APIs safely, developers must adhere to their specifications.

• Violations of these specifications are API misuse, which can be further
exploited by attackers.

2

Programs API Specifications

Code checker

Violations (bugs)“Make sure that bsg_queue_rq() calls
put_device() if an error is
encountered after get_device() was
successful.”

Motivation: Current Work and Limitations

• Ideal way: Understand each API's behavior and infer its specifications
• Code complexity makes this difficult

• Current work: Extract specifications from observable API artifacts

3

1. API documents:

2. API frequent usage:

3. Bug patches:

e.g., Advance (CCS’2020), APICAD (ICSE’2023)

e.g., APHP (Security’2023)

e.g., APP-Miner (S&P’2024), APISan (Security’2016)

• Problem: Limited by the availability of artifacts
• For example: The API bus_find_device requires certain specification to be followed after its call,

but this is not documented.

Motivation: From Known to Unknown

4

Observable
API specifications

Hidden
API specifications

It is possible to infer hidden specifications (unknown) from
observable specifications (known)?

API documents

API frequent usage

bug
patches

Outside API artifacts

How can obtain these hidden API
specifications when they cannot be
observed from outside API artifacts?

The API get_device obtain a reference
to the device dev, which needs to
released using put_device() after use.

Background: Bugs and Specifications

5

path conditions are similar across different
specifications, so we treat them as implicit
and exclude them in specification generation.

Check for bug detection:
1. After a successful get_device call
2. After using arg1 of the put_device call
3. Check if a corresponding put_device
call is performed on the variable.

Specification

Target API

Critical variable

Post-operation

Specification

get_device

arg1

put_device

• The specification triplet

• The specification example

Insight: API Specification Propagation

• Specification propagation from get_device to bus_find_device

6
Specifications propagate between APIs through the API call chain

calls

upper-level API:
bus_find_device

lower-level API:
get_device

requires calling
put_device to release

the obtained reference
count.

Specification
propagation from

get_device to
bus_find_device

Insight: Specification Propagation Analysis

7

Observable
API specifications

Hidden
API specifications

Use specification propagation analysis to reveal the hidden API specifications

Specification
propagation analysis

Overview

• APISpecGen: generate new specifications using seed specifications
• Step1: Specification Propagation Analysis: identifies which APIs the

specifications may propagate to (successors) or originate from (predecessors).

• Step2: Specification Generation: generate specific specifications for inferred
APIs, i.e., determine their corresponding post-operations.

8

Method: Working Example

• Generated specifications

Detected API misuse in the Linux kernel:
missing nfc_put_device after
nfc_get_device after the critical
variable dev usage, causing reference
count leak.

• Detected bug

9

Check for bug detection:
1. After a successful nfc_get_device call
2. After using the return value of the nfc_get_device call
3. Check if a corresponding nfc_put_device call is performed.

Method: Specification Propagation Analysis
• Caller Analysis to Get Successors

Check for critical variable’s propagation

Check for specification’s propagation

10

bus_find_device
class_find_device
tifm_device_probe
dpm_prepare
…

get_device

arg1

put_device

Get callers of the seed API

Path-sensitive strategy for
specification propagation

bus_find_device
class_find_device
tifm_device_probe
dpm_prepare
…

bus_find_device
class_find_device
tifm_device_probe
dpm_prepare
…

Condition-by-condition check for propagation analysis,
from coarse-grained to fine-grained analysis for efficiency.

Seed

Method: Specification Generation
• Problem: the post-operations may change during specification propagation

• Solution: utilizes API usage and data-flow validation

seed API
get_device

successor
class_find_device

successor
nfc_get_device

Caller

Caller

seed post-op
put_device

Collect the operations which
operates on the critical
variable after the target API

Validate each candidate with the
seed post-operation

dev = nfc_get_device(device_idx);

….

rc = nfc_stop_poll(dev);

nfc_deactivate_target(dev, ...);

local = nfc_llcp_find_local(dev);
nfc_put_device(dev);

critical variable
retval

Propagation analysis results

Limit the search space
for the post-operation

Ensure the correctness
of the post-operation

Post-operation
candidates

Specification

nfc_get_device

retval

nfc_put_device
11

Evaluations

• Setup
• Tested program: the Linux Kernel, with more 23 million LoC

• Seeds: six specifications collected by previous work

12

Six seed specification for evaluations

Target API Post-Operation Var Commit

get_device put_device arg1 d46fe2cb2dc

device_initialize put_device arg1 a5808add9a6

try_module_get module_put arg1 44f8baaf230

kmalloc kfree retval 493ff661d43

kstrdup kfree retval e629e7b525a

PTR_ERR IS_ERR arg1 59715cffce1

• Evaluations
• Specification Generation

• Bug Detection

• Compared with SOTAs

• Quality of API artifacts

Results

• Specification Generation and Bug Detection

13

Seed API #Spec # New Bug Bug Type

get_device 760 137 Refcount leak

device_initialize 91 6 Refcount leak

try_module_get 58 1 Refcount leak

kmalloc 1202 30 Memory leak

kstrdup 14 1 Memory leak

ERR_PTR 5207 11 Null-pointer-deref

Total 7332 186 -

Efficiency:
Generate specifications in 2 hours,
averaging 1 second per specification.

Accuracy:
Generated specifications are 100%
accurate.

Effectiveness:
APISpecGen generated 7,332 specifications with from
just six seed specifications, with 186 new bugs detected.

Results

• SOTAs and the quality of API artifacts for specification extraction

14

93% of the specifications are not
frequently followed in usage code

87% of the specifications are not
mentioned in document

API Document

API Frequent
Usage

API Name
12.71% of APIs lack informative

subwords in their name

Method Coverage of
specifications

Coverage of
Bugs

Advance 14% 10%

IPPO - 0%

SinkFinder 11% 10%

APHP 21% 17%

Note: evaluated SOTAs on the specifications and bugs
identified by APISpecGen

SOTAs fail to extract most specifications
and miss corresponding bugs.

Artifact-based methods are inherently limited by
the quality of API artifacts.

（e.g. 87% of specifications are not documented)

from seed API get device to rdma_user_mmap_entry_get

• Generalizability
• APISpecGen successfully generated 39 specifications for OpenSSL

and 76 for FFmpeg from just one seed each

Results

• Characteristic of Generated Specifications
• The inferred API can differ significantly from the original seed API.

• APIs evolve from the same primitive APIs and share similar specifications

15

Summary

• Previous: Observe API specifications externally, treating APIs individually.

• Ours: Generate specifications from internal facts, using connections between APIs.

• Idea: API Specification Propagation

• Framework: APISpecGen, generates specifications using seed specification with
iterative bidirectional specification propagation analysis.

• Results: Generate 7332 specifications using only 6 seed specifications. 87% of
these specifications are not documented; Detect 186 new bugs in Linux kernel.

16

Open-source
https://github.com/
Yuuoniy/APISpecGen

Q&A

17

Thanks for your attention!

Paper Code

	幻灯片 1: Generating API Specifications for Bug Detection via Specification Propagation Analysis
	幻灯片 2: Motivation: Bugs and Specifications
	幻灯片 3: Motivation: Current Work and Limitations
	幻灯片 4: Motivation: From Known to Unknown
	幻灯片 5: Background: Bugs and Specifications
	幻灯片 6: Insight: API Specification Propagation
	幻灯片 7: Insight: Specification Propagation Analysis
	幻灯片 8: Overview
	幻灯片 9: Method: Working Example
	幻灯片 10: Method: Specification Propagation Analysis
	幻灯片 11: Method: Specification Generation
	幻灯片 12: Evaluations
	幻灯片 13: Results
	幻灯片 14: Results
	幻灯片 15: Results
	幻灯片 16: Summary
	幻灯片 17

