
The Midas Touch: Triggering the Capability of LLMs for
RM-API Misuse Detection

Yi Yang1,2, Jinghua Liu1,2, Kai Chen*1,2, Miaoqian Lin1,2

1. School of Cyber Security, University of Chinese Academy of Sciences, Beijing, China
2. Institute of Information Engineering, Chinese Academy of Sciences, Beijing, China

Resource-management API (RM-API)

ü Usually used in pairs

ü Common sense to developers

ü Omitted or unclear in documentation

However I am not sure explicitly saying that
you must not use objects after freeing them in
every manual page of _free() function is really
worth it.

Negative
Attitude

Memory Corruption

Denial-of-Services(DoS)

Violation of RM-APIs

Data Leakage

Keyword-matching

Template-matching

76.28% RM-APIs missing detected

Incapable of covering all the libraries

Code-analysis
72.7% functions with multi-layered
nesting cannot precisely identified

NLP-based Approach
ØCannot handle constraints with neutral sentiment
Ø Incapable of detecting API pairs acrossing various sections/pages

The functions zip_source_buffer() and
zip_source_buffer_create() create a
zip source from the buffer data of
size len.

zip_source_buffer zip_source_free
The function zip_source_free()
decrements the reference count of source
and frees it if the reference count drops
to 0.

Neutral
Sentiment

Various
Locations

Eager for advanced tool on API document understanding!!

C1: LLMs fabricate answers without expertise
Q: Which API is used to free the malloc API
‘evwatch_check_new’?

A: The API used for releasing the allocated memory
‘evwatch_check_new’ is ‘evwatch_check_free’

Consistent naming convention

Seemingly reasonable operation
Does not exist

Lack of
information

Q: Given the sentence of
‘zip_discard’: The zip_discard

function closes the archive and
frees the memory allocated for it.
Does this API perform allocation?

A: YES. The API zip_discard
performs allocation.

Contradictory!

allocation semantics

releasing semantics

C2: LLMs introduce incorrect answers with evidence

Ø RM-API Identification

Ø RM-API Pairing

Ø RM-API Misuse Detection

Complex task decomposition External information
Ø API Description

Ø Function Definition

① RM-API Identification

② RM-API Pairing ③ RM-API Misuse
Detection

ü RM Sentence Identification
ü Allocation API Identification

ü Answer

★ Task Decomposition

★ Two-dimensional Cross-validation

ü Evidence

ü Reasoning process

LLM’s Answer
- Binary classification
- Open Question-Answering

Is there a sentence describing the
semantics of API’{api} ’ re lated to
allocation or releasing in the text? If
YES, ...; if NO, ...

Documentation

YES. The RM sentence is “pcap_findalldevs()
constructs a list of network devices that can
be opened with pcap_create(3PCAP) “

RM Sentence

Consistent with RM Sentence

LLM’s Evidence
- In-context answering
- Retrieve information from context

Given the description of the API:
Output the evidence sentence grounded
for getting the result in ‘1’.

T h e e v i d e n c e i s “ p ca p _ f i n d a l l d e v s ()
constructs a list of network devices that can
be opened with pcap_create(3PCAP) “

Evidence

Documentation

LLM’s Reasoning Process
- Open QA
- The logic for getting the answer

Given the RM sentence of API:
1. Does the API performs allocation?
Answer YES/NO.
2. Present the evidence for getting
the answer in '1'.
3. Present your reasoning process for
getting the answer in '1'.

{ "1": "YES",
 "2": "The sentence indicates that
pcap_findalldevs() constructs a list of
network dev ices , which impl ies
memory allocation for this list.",
 "3": "The verb 'constructs' suggests
that pcap_findalldevs() is building or
creating a data structure (in this case, a
list of network devices). Construction
of a list typically involves allocating
memory for storing the list items,
which is a form of allocation."}

Rules for Cross-validation

Does the RM Object exist?

Is the output of LLM
consistent with the current

API?

Is the current API an
allocation API?

ü Function pre-process
ü Semantics classification

Off-the-shelf NLP tool

Confusion of parameter’s type and name

Incorrect semantic identification

Direct Releasing API Identification

Observation: RM APIs share common RM-object type

ü RM-object Identification
ü Releasing API Identification

★ Task Decomposition

Function Pre-process

int pcap_findalldevs
(pcap_if_t **alldevsp,
char *errbuf);

‘0’: int pcap_findalldevs
‘1’: pcap_if_t **alldevsp
‘2’: char *errbuf

Before After

RM-object Identification

Given the allocated object description
of API and the function definition:
1. According to the function definition,
output the object type.

Releasing API Identification

Given the allocated object type of the API
according to the function definition:
Which API with the same object type should
be used to release the allocate memory of API.

{ "1": "pcap_if_t "} { "1": "pcap_freealldevs"}

uCodeQL
ü Manual-construct QL code
ü 3 types of security issues

ü Memory Leak
ü Use-after-free
ü Double-free

Ø Denial-of-Services (DoS)
Ø Memory Corruption

pcap_findalldevs

Missing the releasing operation
for‘&alldevsp, leading to memory leak

Documentation

Detected misuse in code

21 memory leak bugs
found in popular software

Source code

Missing av_dict_free

Detected incorrect documentation

- Incorrect releasing API
- Result in FP by previous work

6 popular libraries

165 detected RM-API pairs

115 security bugs

Compared with manual work

- 47% more RM sentences

- 80.85% more RM-API pairs

22 types of RM-APIs

Robust to document quality

Bottleneck of traditional NLP tools on document understanding

Triggering the capability of LLMs for security research

Thank You
For Your Attention

yangyi@iie.ac.cn

