CROSSTALK-INDUCED SIDE CHANNEL THREATS IN MULTI-TENANT NISQ COMPUTERS

Navnil Choudhury[†], Chaithanya Naik Mude^{*}, Preetham Chanda Tikkireddi^{*}, Sanjay Das[†], Swamit Tannu^{*} and Kanad Basu[†]

[†]University of Texas at Dallas,
*University of Wisconsin-Madison

State of Quantum Bits

Quantum Computing Basics

Quantum Computing Basics

i

Quantum Cloud

Outline of quantum cloud pipeline.

Why do we need multi-tenancy ?

Why do we need multi-tenancy ?

Workload on open-access IBMQ backends over a 10-day period.

Why do we need multi-tenancy ?

Security challenge in multi-tenancy

Why do we care about attacks ?

The Next Breakthrough In Artificial Intelligence: How Quantum AI Will Reshape Our World

Toward a code-breaking quantum computer

Building on a landmark algorithm, researchers propose a way to make a smaller and more noise-tolerant quantum factoring circuit for cryptography.

Adam Zewe | MIT News August 23, 2024

nature reviews physics

Review article

Check for updates

Quantum computing for finance

Quantum is coming — and bringing new cybersecurity threats with it

Quantum computing changing the security infrastructure of the digital economy

Side-channel attacks

- Side-channel attacks exploit indirect information leaks.
- Leak sensitive and proprietary data, jeopardizing user information.

Power side-channel attacks¹.

Power side-channel attacks on quantum computers².

¹A. Srivastava et al., "SCAR: Power Side-Channel Analysis at RTL Level" in TVLSI Systems, June 2024, doi: 10.1109/TVLSI.2024.3390601.

²C. Xu, et al., "Exploration of Power Side-Channel Vulnerabilities in Quantum Computer Controllers" in CCS 2023, https://doi.org/10.1145/3576915.3623118.

Quantum side-channels are a new threat !

Errors In Quantum Computers

Errors pave the way for attackers to threaten security !

Threat Model Using Crosstalk

- Victim and attacker share a common QPU.
- Victim and attacker can run programs concurrently.
- Attacker is aware of a limited set of useful quantum algorithms.

Crosstalk As a Side-Channel

Circuit	Zero Count	Non-Zero Count	
а	97	3	Variations due to crosstalk !
b	73	27	
С	82	18	

Crosstalk As a Side-Channel

Proposed attack

Overview of the proposed attack.

Results

- The paper shows a quantum side-channel attack exploiting crosstalk in NISQ systems.
- The paper focuses on exposing vulnerabilities in shared multi-tenant computing.
- The threat model was evaluated using adversarial qubits under realistic constraints.
- The relevance of CNOT gates in quantum circuit identification was demonstrated.
- The trained GCN-based model, achieving 85.6% accuracy in identifying victim circuits.
- Potential defense strategies were discussed against quantum side-channel attacks.
- This research emphasizes the need for security in collaborative quantum computing.

THANK THANK

CROSSTALK-INDUCED SIDE CHANNEL THREATS IN MULTI-TENANT NISQ COMPUTERS

Navnil Choudhury

Chaithanya Naik Mude

Preetham Chandra Tikkireddi

Sanjay Das

Dr. Swamit Tannu

Dr. Kanad Basu

Crosstalk Gate Detector

Changes in zero counts due to crosstalk correlate to the number of CNOT gates.

Time bucketing of CNOT data

Resolution

