
Translating C To Rust:
Lessons from a User Study

Ruishi Li*, Bo Wang*, Tianyu Li , Prateek Saxena,

Ashish Kundu†

National University of Singapore
Cisco Research†

*Equal Contribution

A “dream problem”:
Translating C to Rust for memory safety

2

Memory unsafe C
software

[1] “Translate all C to Rust” by DARPA. USA. 2024
[2] Rust for Linux Github organization: https://github.com/Rust-for-Linux by Linux. 2024
[3] Rust for Windows: https://github.com/microsoft/windows-rs by Microsoft. 2024
[4] Bare-metal Rust in Android: https://security.googleblog.com/search/label/rust by Google. 2024

https://www.darpa.mil/research/programs/translating-all-c-to-rust
https://github.com/Rust-for-Linux
https://github.com/Rust-for-Linux
https://github.com/microsoft/windows-rs
https://github.com/microsoft/windows-rs
https://security.googleblog.com/search/label/rust
https://security.googleblog.com/search/label/rust

A “dream problem”:
Translating C to Rust for memory safety

2

Memory unsafe C
software

Rust programs
- Full memory safety
- Low overhead
- Low-level control

Translate to Rust
(memory safe)

[1] “Translate all C to Rust” by DARPA. USA. 2024
[2] Rust for Linux Github organization: https://github.com/Rust-for-Linux by Linux. 2024
[3] Rust for Windows: https://github.com/microsoft/windows-rs by Microsoft. 2024
[4] Bare-metal Rust in Android: https://security.googleblog.com/search/label/rust by Google. 2024

https://www.darpa.mil/research/programs/translating-all-c-to-rust
https://github.com/Rust-for-Linux
https://github.com/Rust-for-Linux
https://github.com/microsoft/windows-rs
https://github.com/microsoft/windows-rs
https://security.googleblog.com/search/label/rust
https://security.googleblog.com/search/label/rust

A “dream problem”:
Translating C to Rust for memory safety

2

Memory unsafe C
software

Rust programs
- Full memory safety
- Low overhead
- Low-level control

Translate to Rust
(memory safe)

[1] “Translate all C to Rust” by DARPA. USA. 2024
[2] Rust for Linux Github organization: https://github.com/Rust-for-Linux by Linux. 2024
[3] Rust for Windows: https://github.com/microsoft/windows-rs by Microsoft. 2024
[4] Bare-metal Rust in Android: https://security.googleblog.com/search/label/rust by Google. 2024

https://www.darpa.mil/research/programs/translating-all-c-to-rust
https://github.com/Rust-for-Linux
https://github.com/Rust-for-Linux
https://github.com/microsoft/windows-rs
https://github.com/microsoft/windows-rs
https://security.googleblog.com/search/label/rust
https://security.googleblog.com/search/label/rust

Limitations of existing work

3

[1] Emre, Mehmet, et al. "Translating C to safer Rust." Proceedings of the ACM on Programming Languages 5.OOPSLA (2021): 1-29.
[2] Zhang, Hanliang, et al. "Ownership guided C to Rust translation." International Conference on Computer Aided Verification. Cham: Springer Nature Switzerland, 2023.
[3] Eniser, Hasan Ferit, et al. "Towards translating real-world code with LLMs: A study of translating to Rust." arXiv preprint arXiv:2405.11514 (2024).
[4] Yang, Aidan ZH, et al. "Vert: Verified equivalent rust transpilation with few-shot learning." arXiv preprint arXiv:2404.18852 (2024).

Compiler-based translators
(Laertes[1], Crown[2])

LLMs-based translators
(Flourine[3], Vert[4])

Limitations of existing work

3

[1] Emre, Mehmet, et al. "Translating C to safer Rust." Proceedings of the ACM on Programming Languages 5.OOPSLA (2021): 1-29.
[2] Zhang, Hanliang, et al. "Ownership guided C to Rust translation." International Conference on Computer Aided Verification. Cham: Springer Nature Switzerland, 2023.
[3] Eniser, Hasan Ferit, et al. "Towards translating real-world code with LLMs: A study of translating to Rust." arXiv preprint arXiv:2405.11514 (2024).
[4] Yang, Aidan ZH, et al. "Vert: Verified equivalent rust transpilation with few-shot learning." arXiv preprint arXiv:2404.18852 (2024).

Compiler-based translators
(Laertes[1], Crown[2])

LLMs-based translators
(Flourine[3], Vert[4])

* Correct under tests.

unsafe

incorrectmostly safe

mostly correct

Translations

Contributions

4

Translate

unsafe /
incorrect

Contributions

A user study

4

Translate

unsafe /
incorrect

safe +
mostly correct

Contributions

A user study

4

Translate

unsafe /
incorrect

safe +
mostly correct

Contributions

A user study

4

Translate

Differences between
their translations

How human users
approach this task?

unsafe /
incorrect

safe +
mostly correct

Contributions

A user study

4

Translate

Differences between
their translations

How human users
approach this task?

Challenges to address
for future automatic

translators.

unsafe /
incorrect

safe +
mostly correct

How we conducted our user study

5

Undergraduates in a computer security course.

Know memory safety and Rust principles.

33 out of 71 students participated.

How we conducted our user study

5

Undergraduates in a computer security course.

Know memory safety and Rust principles.

33 out of 71 students participated.

C program + tests Rust translation

Has safe Rust
translations.

How we conducted our user study

5

Undergraduates in a computer security course.

Know memory safety and Rust principles.

33 out of 71 students participated.

C program + tests Rust translation

Requirements:
1. Safety: no unsafe
2. Correct under tests

Has safe Rust
translations.

Benchmarks & Collected translations

6

C program + tests Rust translation

Benchmarks & Collected translations

6

C program + tests Rust translation

Benchmarks & Collected translations

6

C program + tests Rust translation

➢ 8 self-contained programs.

Benchmarks & Collected translations

6

C program + tests Rust translation

➢ 8 self-contained programs.
➢ 300 – 600 LoC.

Benchmarks & Collected translations

6

C program + tests Rust translation

➢ 8 self-contained programs.
➢ 300 – 600 LoC.
➢ Functionality: file/data processing,

strings/numbers computation, and
parsing.

Benchmarks & Collected translations

6

C program + tests Rust translation

Collected 31 final translations:
Safe and (mostly) correct.

➢ 8 self-contained programs.
➢ 300 – 600 LoC.
➢ Functionality: file/data processing,

strings/numbers computation, and
parsing.

C to safe Rust is difficult!
Translating line-by-line doesn’t work

7

C to safe Rust is difficult!
Translating line-by-line doesn’t work

7

char *p1, *p2; // p1 = ...

p2 = p1;

while (*p2 != '\0') {

 if (condition 1) { *p2 = ' '; }

 if (condition 2) { p1 += 1; }

 p2++;

}

puts(p1);

Snippet of C benchmark

C to safe Rust is difficult!
Translating line-by-line doesn’t work

7

char *p1, *p2; // p1 = ...

p2 = p1;

while (*p2 != '\0') {

 if (condition 1) { *p2 = ' '; }

 if (condition 2) { p1 += 1; }

 p2++;

}

puts(p1);

Snippet of C benchmark A handcrafted line-by-line
translation example

Violate Rust
borrow rules

Compiler-based translation vs. User translation

8

Compiler-based translation vs. User translation

8

char *p1, *p2; // p1 = ...

p2 = p1;

while (*p2 != '\0') {

 if (*p2 == '\t') { *p2 = ' '; }

 if (leading space) { p1 += 1; }

 p2++;

}

puts(p1);

Snippet of C benchmark

Compiler-based translation vs. User translation

8

char *p1, *p2; // p1 = ...

p2 = p1;

while (*p2 != '\0') {

 if (*p2 == '\t') { *p2 = ' '; }

 if (leading space) { p1 += 1; }

 p2++;

}

puts(p1);

Snippet of C benchmark
unsafe {

 let mut p1: *mut std::os::raw::c_char;

 let mut p2: *mut std::os::raw::c_char; // p1 = ...

 p2 = p1;

 while *p2 != '\0' as i8 {

 if *p2 == '\t' as i8 { *p2 = ' ' as i8; }

 if leading space { p1 = p1.offset(1); }

 p2 = p2.offset(1);

 }

 puts(p1); }

Compiler-based translation by Laertes

Compiler-based translation vs. User translation

8

char *p1, *p2; // p1 = ...

p2 = p1;

while (*p2 != '\0') {

 if (*p2 == '\t') { *p2 = ' '; }

 if (leading space) { p1 += 1; }

 p2++;

}

puts(p1);

Snippet of C benchmark
unsafe {

 let mut p1: *mut std::os::raw::c_char;

 let mut p2: *mut std::os::raw::c_char; // p1 = ...

 p2 = p1;

 while *p2 != '\0' as i8 {

 if *p2 == '\t' as i8 { *p2 = ' ' as i8; }

 if leading space { p1 = p1.offset(1); }

 p2 = p2.offset(1);

 }

 puts(p1); }

Compiler-based translation by Laertes

let mut p1: String; // p1 = ...

p1 = p1.replace('\t', " ");

p1 = p1.trim_start().to_string();

println!("{}", p1);
User translation

Compiler-based translation vs. User translation

8

char *p1, *p2; // p1 = ...

p2 = p1;

while (*p2 != '\0') {

 if (*p2 == '\t') { *p2 = ' '; }

 if (leading space) { p1 += 1; }

 p2++;

}

puts(p1);

Snippet of C benchmark
unsafe {

 let mut p1: *mut std::os::raw::c_char;

 let mut p2: *mut std::os::raw::c_char; // p1 = ...

 p2 = p1;

 while *p2 != '\0' as i8 {

 if *p2 == '\t' as i8 { *p2 = ' ' as i8; }

 if leading space { p1 = p1.offset(1); }

 p2 = p2.offset(1);

 }

 puts(p1); }

Compiler-based translation by Laertes

let mut p1: String; // p1 = ...

p1 = p1.replace('\t', " ");

p1 = p1.trim_start().to_string();

println!("{}", p1);
User translation

unsafe Rust.
Line-by-line and pointer-by-pointer

safe Rust.
Abstract the C code.

Difference 1: translation of aliasing pointers

9

Compiler-based approaches:
Line-by-line and pointer-by-pointer

Difference 1: translation of aliasing pointers

9

Strategy (a): Elide aliasing
pointers with Rust methods.

Compiler-based approaches:
Line-by-line and pointer-by-pointer

Difference 1: translation of aliasing pointers

9

Strategy (a): Elide aliasing
pointers with Rust methods.

Strategy (b): Clone the object to
separate r/w access.

Compiler-based approaches:
Line-by-line and pointer-by-pointer

Difference 2: translation of C pointers and C API calls

10

Snippet of C benchmark

char *p1;

…

puts(p1);

unsafe {

 let p1: *mut std::os::raw::c_char;

 …

 puts(p1);

}

let p1: String;

…

println!("{}", p1);

Compiler-based translation
by Laertes

User translation

Difference 2: translation of C pointers and C API calls

10

Snippet of C benchmark

char *p1;

…

puts(p1);

unsafe {

 let p1: *mut std::os::raw::c_char;

 …

 puts(p1);

}

let p1: String;

…

println!("{}", p1);

Compiler-based translation
by Laertes

User translation

➢ Limited Rust types or
unsafe raw pointers.

➢ unsafe C API calls

Difference 2: translation of C pointers and C API calls

10

Snippet of C benchmark

char *p1;

…

puts(p1);

unsafe {

 let p1: *mut std::os::raw::c_char;

 …

 puts(p1);

}

let p1: String;

…

println!("{}", p1);

Compiler-based translation
by Laertes

User translation

➢ Limited Rust types or
unsafe raw pointers.

➢ unsafe C API calls
➢ safe Rust types
➢ safe Rust methods.

Users semantically lift low-level pointers and API calls

11

Difference 2: translation of C pointers and C API calls

Users semantically lift low-level pointers and API calls

11

User translations:

➢ Various Rust types.
➢ No raw pointers.

char *

String Vec<u8> char [u8; N] …

&String

&str

&Vec<u8>

&[u8]

&char

Difference 2: translation of C pointers and C API calls

Users often use zero-cost abstractions

12

String Vec<u8> char [u8; N]

&String

&str

&Vec<u8>

&[u8]

&char Zero-cost abstractions

Temporal memory safety

Spatial memory safety

Statically
guaranteed

Mostly dynamically guaranteed

…

Difference 2: translation of C pointers and C API calls

Users semantically lift low-level pointers and API calls

13

Users:

➢ Find safe Rust alternatives.
➢ Or emulate them.

Compiler-based work:

➢ Call unsafe C APIs

Difference 2: translation of C pointers and C API calls

Difference 3: translation of unsafe C features

14

C unions

Mutable globals

C features

Difference 3: translation of unsafe C features

14

C unions

Mutable globals

C features

unsafe plain globals

unsafe Rust unions

Compiler-based translation

Difference 3: translation of unsafe C features

14

C unions

Mutable globals

C features

unsafe plain globals

unsafe Rust unions

Compiler-based translation

Locals

Dynamic references with runtime overhead.

Atomic types (lock-free)

User translation

Difference 3: translation of unsafe C features

14

C unions

Mutable globals

C features

unsafe plain globals

unsafe Rust unions

Compiler-based translation

Locals

Dynamic references with runtime overhead.

Atomic types (lock-free)

User translation

Use safe Rust APIs

Rust enum

User translations: memory-safe with good performance

15

User translations: memory-safe with good performance

15

Dashed line: the execution
time for C programs.

Safe Rust translation: memory safety and good
performance is achievable.

The execution overhead is mostly within 20%.

Challenging subproblems to address
for future automatic translators

Challenge 1: the decomposition problem

17

LLMs-based tools: decompose the code based on function dependencies.

Challenge 1: the decomposition problem

17

LLMs-based tools: decompose the code based on function dependencies.

f1 f2 f3

g1 g2 g3g2’

g2 and g2’ are inconsistent!

➢ Inconsistency issue

Challenge 1: the decomposition problem

17

LLMs-based tools: decompose the code based on function dependencies.

f1 f2 f3

g1 g2 g3g2’

g2 and g2’ are inconsistent!

main

f1
f3

f2

The main of a binary depends on all functions!

…

➢ Inconsistency issue
➢ Complicated dependencies

Challenge 1: the decomposition problem

17

LLMs-based tools: decompose the code based on function dependencies.

f1 f2 f3

g1 g2 g3g2’

g2 and g2’ are inconsistent!

A better decomposition strategy?

main

f1
f3

f2

The main of a binary depends on all functions!

…

➢ Inconsistency issue
➢ Complicated dependencies

Challenge 2: the correctness gap problem

For example,

18

A user translation of fmt

The original C fmt

Challenge 2: the correctness gap problem

For example,

18

A user translation of fmt

The original C fmt
CMD: ./fmt -w 10 -c

Stdin: \x7a\xc3

Fuzz test

Challenge 2: the correctness gap problem

For example,

18

A user translation of fmt

The original C fmt
CMD: ./fmt -w 10 -c

Stdin: \x7a\xc3

Fuzz test

❌ Different behavior!

␣␣␣␣z?

(empty)

Stdout of Rust:

Stdout of C:

Challenge 2: the correctness gap problem

For example,

18

A user translation of fmt

The original C fmt

Logical difference!

CMD: ./fmt -w 10 -c
Stdin: \x7a\xc3

Fuzz test

❌ Different behavior!

␣␣␣␣z?

(empty)

Stdout of Rust:

Stdout of C:

“Correct” user translations are not fully equivalent to C

19

No user translation is fully equivalent.

Challenge 2: the correctness gap problem

“Correct” user translations are not fully equivalent to C

Pass all user tests

19

No user translation is fully equivalent.

shoco

User tests

Code cov. > 98%

Challenge 2: the correctness gap problem

“Correct” user translations are not fully equivalent to C

Pass all user tests

19

No user translation is fully equivalent.

shoco

User tests

Code cov. > 98%

Fuzz tests

Challenge 2: the correctness gap problem

“Correct” user translations are not fully equivalent to C

Pass all user tests

19

No user translation is fully equivalent.

shoco

User tests

Code cov. > 98%

Fuzz tests

76% of tests reveal differences

37% of tests:
no translations is equivalent

Test results:

Challenge 2: the correctness gap problem

“Correct” user translations are not fully equivalent to C

Pass all user tests

19

No user translation is fully equivalent.

shoco

User tests

Code cov. > 98%

Fuzz tests

76% of tests reveal differences

37% of tests:
no translations is equivalent

Test results:

Challenge 2: the correctness gap problem

It’s necessary to
➢ Specify what behaviors to keep across languages.

20

Automated Program Translation
KISP Lab @NUS

We are launching an automatic translation service!

Basic Plan:
5 business days

$100

Premium Plan:
1 business day

$200

* This slide is for entertainment purposes only.

Scan to learn more!

Breakdown of behavioral differences found by fuzz tests

21

The best
shoco translation

Equivalent behaviors

I/O encoding errors

Runtime safety aborts

Logical differences

Averaged on translations
of all programs

7.6%

