SHAFT: Secure, Handy, Accurate, and Fast Transformer Inference

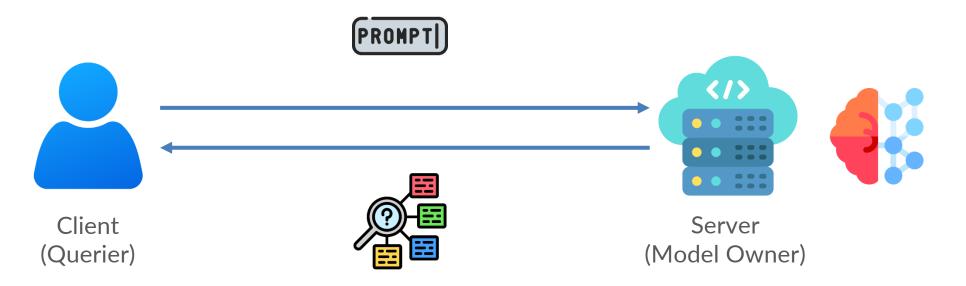
Andes Y. L. Kei, Sherman S. M. Chow Department of Information Engineering The Chinese University of Hong Kong

Background

• **Transformer**: the current "standard" architecture for large language models (LLMs)

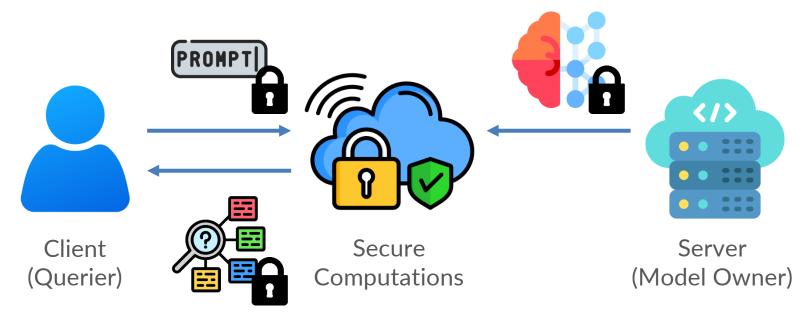
Background

- **Transformer**: the current "standard" architecture for large language models (LLMs)
- **Privacy concerns** arise due to the increasing adoption of LLMs (*e.g.*, ChatGPT)

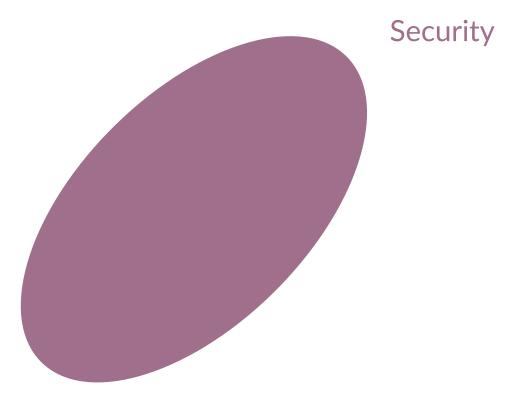


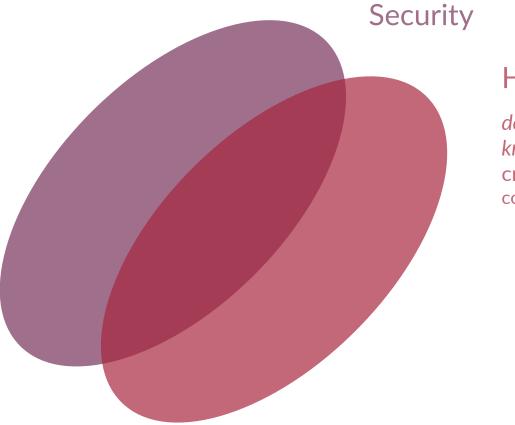
Background

- **Transformer**: the current "standard" architecture for large language models (LLMs)
- **Privacy concerns** arise due to the increasing adoption of LLMs (*e.g.*, ChatGPT)
- **Private inference**: performs model inference without leaking the *model* or *query*



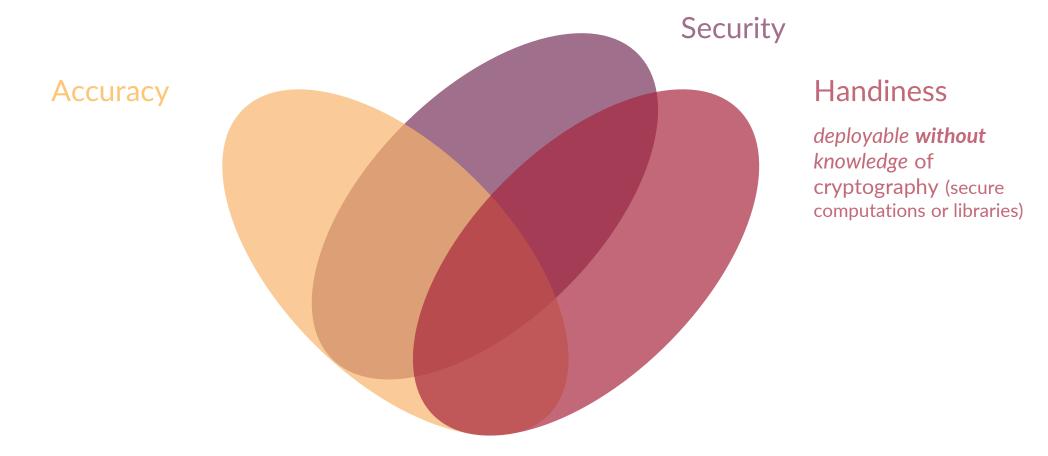
L. Ng, S. Chow. "GForce: GPU-Friendly Oblivious and Rapid Neural Network Inference." Usenix Security 2021.

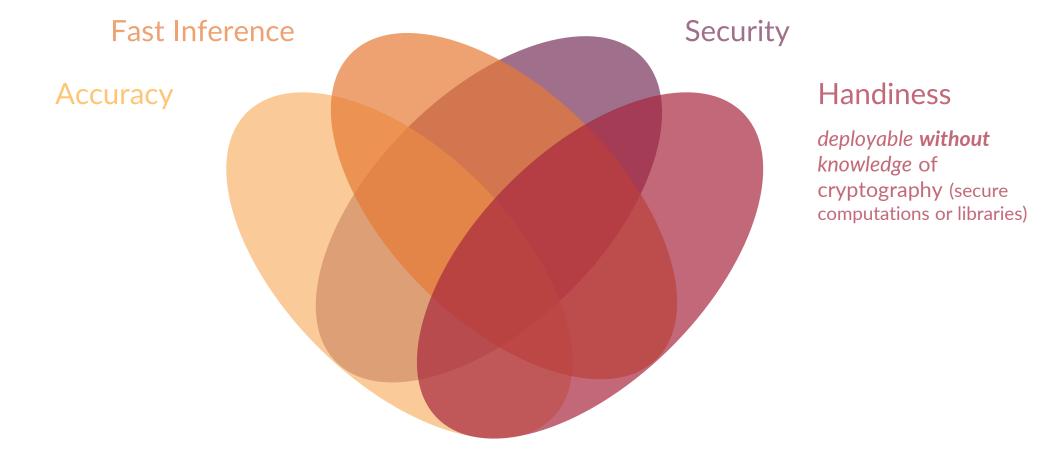


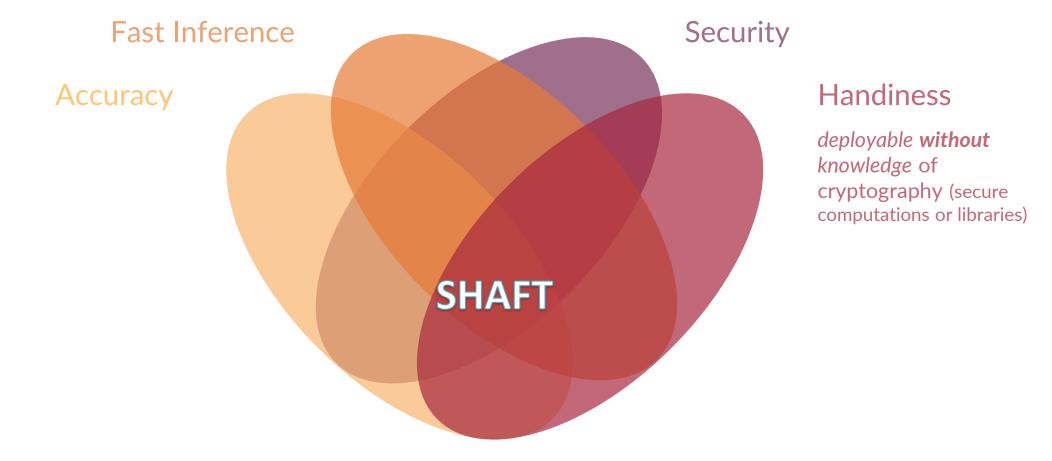


Handiness

deployable **without** knowledge of cryptography (secure computations or libraries)

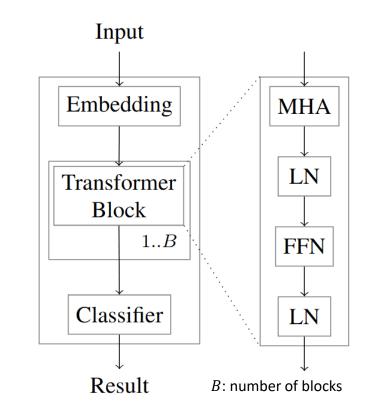




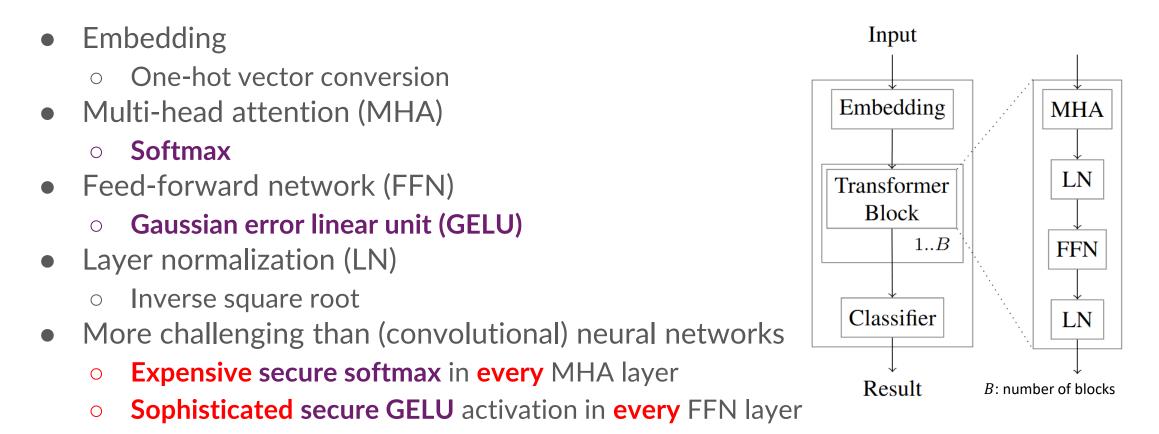


Challenges in Private Transformer Inference

- Embedding
 - One-hot vector conversion
- Multi-head attention (MHA)
 - Softmax
- Feed-forward network (FFN)
 - Gaussian error linear unit (GELU)
- Layer normalization (LN)
 - Inverse square root



Challenges in Private Transformer Inference



Note: other **linear** operations/layers within the above can be easily realized.

Framework	Core Techniques	Accuracy	Efficiency
MPCFormer (ICLR '23)	Rough Approximations		~
SIGMA (PETS '24)			
BumbleBee (NDSS '25)			
SHAFT (Ours)			

Framework	Core Techniques	Accuracy	Efficiency
MPCFormer (ICLR '23)	Rough Approximations		~
SIGMA (PETS '24)			
BumbleBee (NDSS '25)			
SHAFT (Ours)			

• Newer works applied **recent paradigm** or improved secure **linear** protocols

Framework	Core Techniques	Accuracy	Efficiency
MPCFormer (ICLR '23)	Rough Approximations		~
SIGMA (PETS '24)	Lookup Tables from FSS	\checkmark	×
BumbleBee (NDSS '25)			
SHAFT (Ours)			

- Newer works applied **recent paradigm** or improved secure **linear** protocols
 - SIGMA uses function secret sharing (FSS) to reduce running time

Framework	Core Techniques	Accuracy	Efficiency
MPCFormer (ICLR '23)	Rough Approximations		~
SIGMA (PETS '24)	Lookup Tables from FSS	\checkmark	×
BumbleBee (NDSS '25)	RLWE-based Homomorphic Multiplication	\checkmark	×
SHAFT (Ours)			

- Newer works applied recent paradigm or improved secure linear protocols
 - SIGMA uses function secret sharing (FSS) to reduce running time
 - BumbleBee optimizes homomorphic matrix multiplication to save communication

Framework	Core Techniques		Accuracy	Efficiency
MPCFormer (ICLR '23)	Rough Approximations			~
SIGMA (PETS '24)	Lookup Tables from FSS		\checkmark	×
BumbleBee (NDSS '25)	RLWE-based Homomorphic Multiplication		\checkmark	~
SHAFT (Ours)	ODE Fourier Series		\checkmark	\checkmark

- Newer works applied **recent paradigm** or improved secure **linear** protocols
 - SIGMA uses function secret sharing (FSS) to reduce running time
 - BumbleBee optimizes homomorphic **matrix multiplication** to save communication
- Observation: *non-linear* function approximations remain **underexplored**

Framework	Security	Handiness	Accuracy	Efficiency
MPCFormer (ICLR '23)	×			×
SIGMA (PETS '24)	\checkmark		\checkmark	\checkmark
BumbleBee (NDSS '25)	\checkmark		\checkmark	×
SHAFT (Ours)	\checkmark			

Framework	Security	Handiness	Accuracy	Efficiency
MPCFormer (ICLR '23)	~			~
SIGMA (PETS '24)	\checkmark		\checkmark	×
BumbleBee (NDSS '25)	\checkmark		\checkmark	~
SHAFT (Ours)	\checkmark			\checkmark

- SHAFT outperforms two recent works in **efficiency**
 - vs. SIGMA: reduces communication by 25-41% with similar running time
 - vs. BumbleBee: 4.6-5.3× faster on LAN, 2.9-4.4× faster on WAN

OS: Ubuntu 20.04. Models: BERT-base BERT-large (CPU: Intel Xeon Gold 5318Y, GPU: two NVIDIA A40, RAM: 256 GB.

Models: BERT-base, BERT-large, GPT-2, ViT-base.

Framework	Security	Handiness	Accuracy	Efficiency
MPCFormer (ICLR '23)	~			×
SIGMA (PETS '24)	\checkmark		\checkmark	\checkmark
BumbleBee (NDSS '25)	\checkmark		\checkmark	~
SHAFT (Ours)	\checkmark	\checkmark	\checkmark	\checkmark

- SHAFT outperforms two recent works in **efficiency**
 - vs. SIGMA: reduces communication by 25-41% with similar running time
 - vs. BumbleBee: 4.6-5.3× faster on LAN, 2.9-4.4× faster on WAN
- SHAFT achieves **comparable accuracy to plaintext inference**

OS: Ubuntu 20.04.CPU: Intel Xeon Gold 5318Y, GPU: two NVIDIA A40, RAM: 256 GB.Models: BERT-base, BERT-large, GPT-2, VIT-base.Datasets: QNLI, CoLA, SST-2 from the GLUE benchmark.

Framework	Security	Handiness	Accuracy	Efficiency
MPCFormer (ICLR '23)	~			×
SIGMA (PETS '24)	\checkmark		\checkmark	\checkmark
BumbleBee (NDSS '25)	\checkmark		\checkmark	×
SHAFT (Ours)	\checkmark	\checkmark	\checkmark	\checkmark

- For handy deployment of secure inference, we offer an open-source framework
 - **PyTorch-like APIs** smoothly integrate with the **Hugging Face** transformer library

Importing Hugging Face Transformers

- Existing works like CrypTen (NeurIPS '21) allow importing **simple** models
 - but lack support for transformer-specific layers (e.g., GELU)
- We implement **code conversion** of these layers
- 1 from transformers import AutoModelForSequenceClassification

```
2 import crypten as ct
```

- 3 # (standard) data loading and preprocessing omitted
- 4 model = AutoModelForSequenceClassification.from_pretrained("user/bert-base-cased-qnli")
- 5 ct.init()
- 6 model_ss = ct.nn.from_pytorch(model, dummy_data).encrypt().cuda()
- 7 data_ss = ct.cryptensor(data).cuda()
- 8 output_ss = model_ss(data_ss)
- 9 output = output_ss.get_plain_text()

Our Technical Novelties

- 1. First **constant-round** private **softmax** protocol for transformers
 - Prior works need **logarithmic** rounds (in input length *m*) for **numerical stability**
 - We guarantee the same in constant rounds by uniquely combining ordinary differential equation (ODE) and input clipping

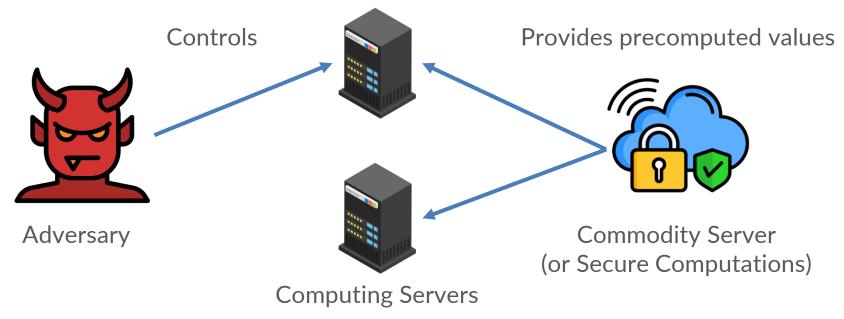
Our Technical Novelties

- 1. First **constant-round** private **softmax** protocol for transformers
 - Prior works need **logarithmic** rounds (in input length *m*) for **numerical stability**
 - We guarantee the same in constant rounds by uniquely combining ordinary differential equation (ODE) and input clipping
- 2. A precise and efficient private GELU protocol
 - We design a **GELU characterization** for **Fourier series** approximation
 - **Reduce** round complexity from **two** (S&P '24) to **one**

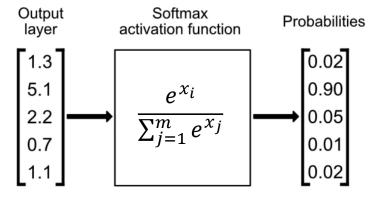
hundreds of thousands of softmax & GELU in transformers

Security Model: 2-Party Outsourced Setting w/ Precomputation

- Well-established 2-party setting, *e.g.*, NDSS '09
- Model and query are **secret-shared** to two servers
- Adversary: **semi-honest**, controls **one** of the two servers
- **Commodity server** can be replaced by **2-party computation** between servers



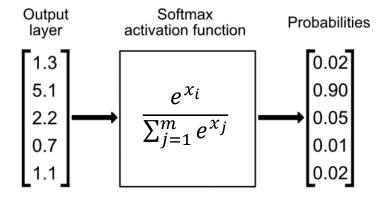
- Softmax $(\vec{x})_i = e^{x_i} / \sum_j e^{x_j}$
 - Converts values in a vector into probabilities



m: Input length

https://medium.com/towards-data-science/softmaxactivation-function-explained-a7e1bc3ad60

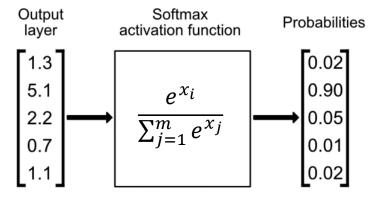
- **Softmax** $(\vec{x})_i = e^{x_i} / \sum_j e^{x_j}$
 - Converts values in a vector into probabilities
- Basic idea: evaluates a sequence of e^x and 1/x
 - Problem: e^x and 1/x overflow easily



m: Input length

https://medium.com/towards-data-science/softmaxactivation-function-explained-a7e1bc3ad60

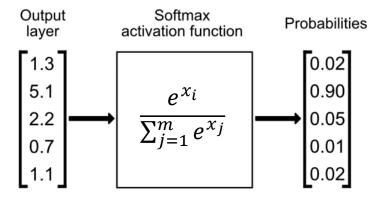
- **Softmax** $(\vec{x})_i = e^{x_i} / \sum_j e^{x_j}$
 - Converts values in a vector into probabilities
- Basic idea: evaluates a sequence of e^x and 1/x
 - Problem: e^x and 1/x overflow easily
- Typical solution: computes $\operatorname{Softmax}(\vec{x} \max(\vec{x}))$



m: Input length

https://medium.com/towards-data-science/softmaxactivation-function-explained-a7e1bc3ad60

- **Softmax** $(\vec{x})_i = e^{x_i} / \sum_j e^{x_j}$
 - Converts values in a vector into probabilities
- Basic idea: evaluates a sequence of e^x and 1/x
 - Problem: e^x and 1/x overflow easily
- Typical solution: computes $\operatorname{Softmax}(\vec{x} \max(\vec{x}))$

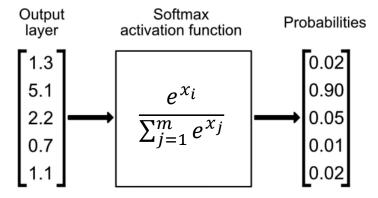


m: Input length

https://medium.com/towards-data-science/softmaxactivation-function-explained-a7e1bc3ad60

Avoids overflows without affecting correctness

- **Softmax** $(\vec{x})_i = e^{x_i} / \sum_j e^{x_j}$
 - Converts values in a vector into probabilities
- Basic idea: evaluates a sequence of e^x and 1/x
 - Problem: e^x and 1/x overflow easily
- Typical solution: computes $\operatorname{Softmax}(\vec{x} \max(\vec{x}))$



m: Input length

https://medium.com/towards-data-science/softmaxactivation-function-explained-a7e1bc3ad60

Avoids overflows without affecting correctness

 Secure evaluation of maximum requires
logarithmic rounds

Numerically-Unstable Private Softmax with ODE (ACSAC '23)

- Let t be the number of iterations, m be the input length
- **ODE approximation** of Softmax(\vec{x}):

 - Initial guess: $\vec{y}_0 = \vec{1}/m$ Iterative updates: $\vec{y}_i = \vec{y}_{i-1} + \frac{1}{t} \left(\vec{x} \langle \vec{x}, \vec{y}_{i-1} \rangle \vec{1} \right) * \vec{y}_{i-1}$

Entry-wise product

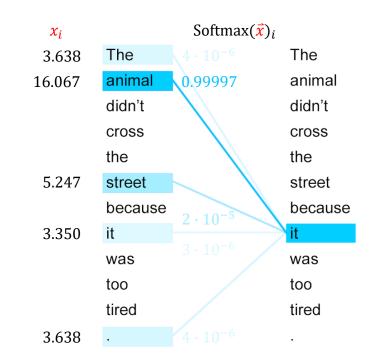
Inner product All-one vector

- Total **2***t* rounds (2 per iteration)
- Needs large t (e.g., 128) for unbounded \vec{x} in transformers
 - Correctness requires $\max(\vec{x}) \min(\vec{x}) \le t$ 0

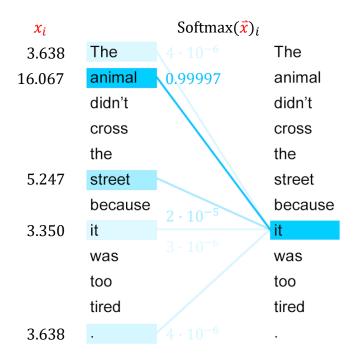
- Key idea: **clips** input to a **pre-defined** range [*a*, *b*]
 - t = b a ensures correctness, even with small t
 - Constant round!
- Why clipping matters in $\operatorname{Softmax}(\vec{x})_i = e^{x_i} / \sum_j e^{x_j}$?

- Key idea: **clips** input to a **pre-defined** range [*a*, *b*]
 - t = b a ensures correctness, even with small t
 - Constant round!
- Why clipping matters in $\operatorname{Softmax}(\vec{x})_i = e^{x_i} / \sum_j e^{x_j}$?
 - Attention layers map word relevance to probabilities

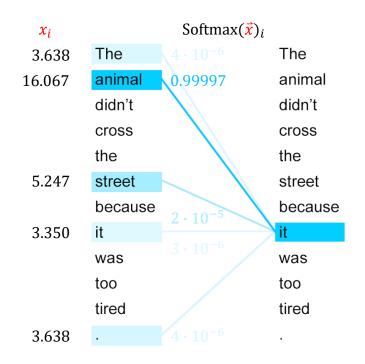
- Key idea: **clips** input to a **pre-defined** range [*a*, *b*]
 - t = b a ensures correctness, even with small t
 - Constant round!
- Why clipping matters in $\operatorname{Softmax}(\overline{x})_i = e^{x_i} / \sum_j e^{x_j}$?
 - Attention layers map word relevance to probabilities
 - Words usually relate to *only a few* others in a sentence



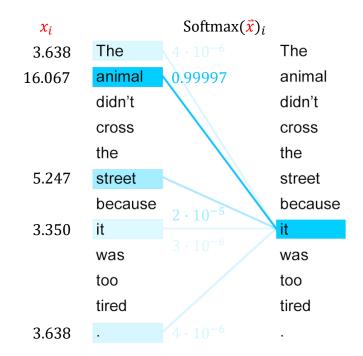
- Key idea: **clips** input to a **pre-defined** range [*a*, *b*]
 - t = b a ensures correctness, even with small t
 - Constant round!
- Why clipping matters in $\operatorname{Softmax}(\overline{x})_i = e^{x_i} / \sum_j e^{x_j}$?
 - Attention layers map word relevance to probabilities
 - Words usually relate to *only a few* others in a sentence
 - Most x_j 's are small, but a few large x_j 's dominate the sum



- Key idea: **clips** input to a **pre-defined** range [*a*, *b*]
 - t = b a ensures correctness, even with small t
 - Constant round!
- Why clipping matters in $\operatorname{Softmax}(\vec{x})_i = e^{x_i} / \sum_j e^{x_j}$?
 - Attention layers map word relevance to probabilities
 - Words usually relate to *only a few* others in a sentence
 - Most x_j 's are small, but a few large x_j 's dominate the sum
 - Clipping large x_i aggressively can cause **significant** errors

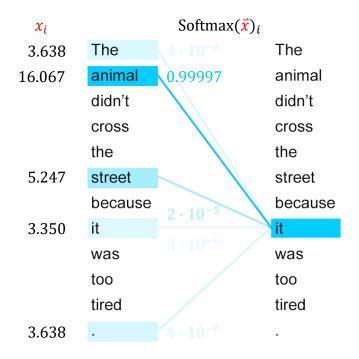


- Key idea: **clips** input to a **pre-defined** range [*a*, *b*]
 - t = b a ensures correctness, even with small t
 - Constant round!
- Why clipping matters in $\operatorname{Softmax}(\overline{x})_i = e^{x_i} / \sum_j e^{x_j}$?
 - Attention layers map word relevance to probabilities
 - Words usually relate to *only a few* others in a sentence
 - Most x_j 's are small, but a few large x_j 's dominate the sum
 - Clipping large x_i aggressively can cause significant errors
- How to select *a* and *b*?



Our Private Softmax with Input-Clipped ODE

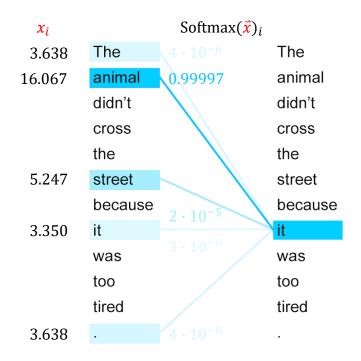
- Key idea: **clips** input to a **pre-defined** range [*a*, *b*]
 - t = b a ensures correctness, even with small t
 - Constant round!
- Why clipping matters in $\operatorname{Softmax}(\overline{x})_i = e^{x_i} / \sum_j e^{x_j}$?
 - Attention layers map word relevance to probabilities
 - Words usually relate to *only a few* others in a sentence
 - Most x_j 's are small, but a few large x_j 's dominate the sum
 - Clipping large x_i aggressively can cause **significant** errors
- How to select *a* and *b*?
 - Sets a larger positive *b* to minimize errors from large x_i 's



https://research.google/blog/transformer-a-novelneural-network-architecture-for-language-understanding

Our Private Softmax with Input-Clipped ODE

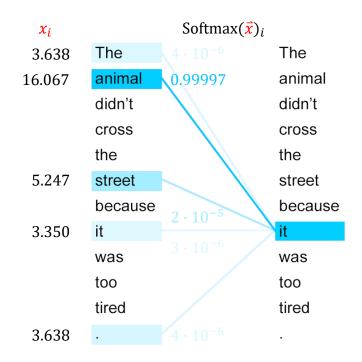
- Key idea: **clips** input to a **pre-defined** range [*a*, *b*]
 - t = b a ensures correctness, even with small t
 - Constant round!
- Why clipping matters in $\operatorname{Softmax}(\vec{x})_i = e^{x_i} / \sum_j e^{x_j}$?
 - Attention layers map word relevance to probabilities
 - Words usually relate to *only a few* others in a sentence
 - Most x_j 's are small, but a few large x_j 's dominate the sum
 - Clipping large x_i aggressively can cause significant errors
- How to select *a* and *b*?
 - Sets a larger positive *b* to minimize errors from large x_i 's
 - Chooses a slightly negative *a* to include most small x_i 's



https://research.google/blog/transformer-a-novelneural-network-architecture-for-language-understanding

Our Private Softmax with Input-Clipped ODE

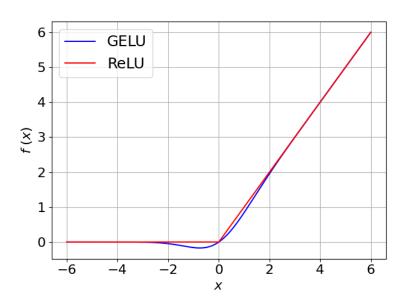
- Key idea: **clips** input to a **pre-defined** range [*a*, *b*]
 - t = b a ensures correctness, even with small t
 - Constant round!
- Why clipping matters in $\operatorname{Softmax}(\overline{x})_i = e^{x_i} / \sum_j e^{x_j}$?
 - Attention layers map word relevance to probabilities
 - Words usually relate to *only a few* others in a sentence
 - Most x_j 's are small, but a few large x_j 's dominate the sum
 - Clipping large x_i aggressively can cause **significant** errors
- How to select *a* and *b*?
 - Sets a larger positive b to minimize errors from large x_i 's
 - Chooses a slightly negative *a* to include most small x_i 's
 - t = 16, a = -4, b = 12 in all our experiments



https://research.google/blog/transformer-a-novelneural-network-architecture-for-language-understanding

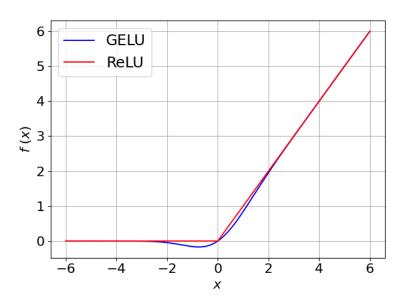
Private GELU with (Piecewise) Polynomial

- **GELU**(x) = 0.5x (1 + Erf($x/\sqrt{2}$)), Erf(x) = (2/ \sqrt{x}) $\int_0^x e^{-u^2} du$
- Standard approach:
 - Idea: GELU(x) is close to ReLU(x) = max(x, 0) when |x| is relatively large
 - Approximates GELU(x) for x near 0 with polynomial(s)
 - Sets GELU(x) = ReLU(x) for larger |x|



Private GELU with (Piecewise) Polynomial

- **GELU**(\mathbf{x}) = 0.5 \mathbf{x} $\left(1 + \operatorname{Erf}(\mathbf{x}/\sqrt{2})\right)$, $\operatorname{Erf}(\mathbf{x}) = (2/\sqrt{\mathbf{x}}) \int_0^{\mathbf{x}} e^{-u^2} du$
- Standard approach:
 - Idea: GELU(x) is close to ReLU(x) = max(x, 0) when |x| is relatively large
 - Approximates GELU(x) for x near 0 with polynomial(s)
 - Sets GELU(x) = ReLU(x) for larger |x|
- State-of-the-art: a **degree-4** polynomial (S&P '24)
 - Secure evaluation requires two rounds
 - Substantial overheads for transformers with hundreds of thousands of GELU



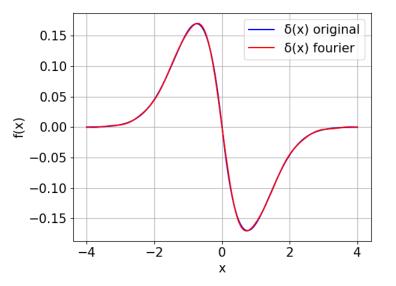
- Fourier Series (FS): provide precise approximations of functions
 - with a **sinusoidal** shape for a **bounded** input range

- Fourier Series (FS): provide precise approximations of functions
 - with a **sinusoidal** shape for a **bounded** input range
- Securely evaluating an FS takes only **one** round (ACSAC '23)

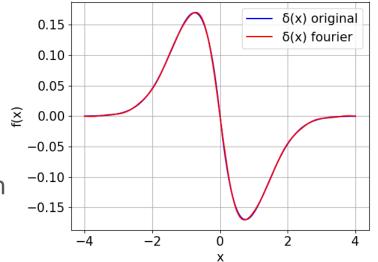
- Fourier Series (FS): provide precise approximations of functions
 - with a **sinusoidal** shape for a **bounded** input range
- Securely evaluating an FS takes only **one** round (ACSAC '23)
- Problem: GELU is **not** sinusoidal (*i.e.*, **direct** approximation with FS **fails**)

- Fourier Series (FS): provide precise approximations of functions
 - with a **sinusoidal** shape for a **bounded** input range
- Securely evaluating an FS takes only **one** round (ACSAC '23)
- Problem: GELU is **not** sinusoidal (*i.e.*, **direct** approximation with FS **fails**)
- Simple solution: approximates Erf(x) with FS (ACL Findings '24):
 - Recall: GELU(x) = $0.5x \left(1 + \text{Erf}\left(\frac{x}{\sqrt{2}}\right)\right)$
 - Requires an **additional** round to **securely multiply** the result by **x**
 - Increases approximation error (when |x| > 2)

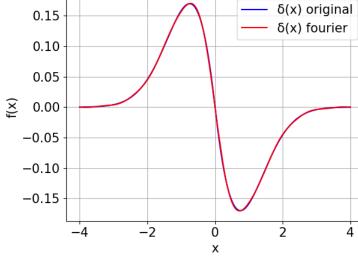
- Goal: designs a suitable function for FS approximation
- Our formulation: $\delta(x) = \operatorname{sgn}(x)(\operatorname{GELU}(x) \operatorname{ReLU}(x))$
 - Modified from non-sinusoidal GELU(x) ReLU(x) for table lookup (PETS '24)
 - A **sinusoidal** function for x near 0
 - **Ideal** for accurate FS approximation



- Goal: designs a suitable function for FS approximation
- Our formulation: $\delta(x) = \operatorname{sgn}(x)(\operatorname{GELU}(x) \operatorname{ReLU}(x))$
 - Modified from non-sinusoidal GELU(x) ReLU(x) for table lookup (PETS '24)
 - A **sinusoidal** function for x near 0
 - Ideal for accurate FS approximation
- **FS** approximation of $\delta(\mathbf{x})$ for $|\mathbf{x}| < 4$:
 - $\circ \quad \delta(\mathbf{x}) \approx \sum_{n=1}^{8} \beta_n \sin\left(\frac{n\pi \mathbf{x}}{4}\right), \beta_n = \frac{1}{4} \int_{-4}^{4} \delta(u) \sin\left(\frac{n\pi u}{4}\right) du$
 - Coefficients β_n precomputable via numerical integration
- Enforces $\delta(\mathbf{x}) \approx 0$ for $|\mathbf{x}| \ge 4$



- Goal: designs a suitable function for FS approximation
- Our formulation: $\delta(\mathbf{x}) = \operatorname{sgn}(\mathbf{x})(\operatorname{GELU}(\mathbf{x}) \operatorname{ReLU}(\mathbf{x}))$
 - Modified from non-sinusoidal GELU(x) ReLU(x) for table lookup (PETS '24)
 - A **sinusoidal** function for x near 0
 - Ideal for accurate FS approximation
- **FS** approximation of $\delta(\mathbf{x})$ for $|\mathbf{x}| < 4$:
 - $\circ \quad \delta(\mathbf{x}) \approx \sum_{n=1}^{8} \beta_n \sin\left(\frac{n\pi \mathbf{x}}{4}\right), \beta_n = \frac{1}{4} \int_{-4}^{4} \delta(u) \sin\left(\frac{n\pi u}{4}\right) du$
 - Coefficients β_n precomputable via numerical integration
- Enforces $\delta(\mathbf{x}) \approx 0$ for $|\mathbf{x}| \ge 4$
- GELU characterization: $GELU(x) = ReLU(x) + \delta(|x|)$
 - No extra round needed: |x| = 2 ReLU(x) x



Other Contributions

- 1. First private embedding protocol "natively" taking indices as inputs
 - Prior works **assume** inputs are **one-hot vectors**, requiring **extra conversions** by clients
 - Our approach is inspired by pre-computed one-hot pairs from Grotto (CCS '23)
 - (unlike Grotto for *spline evaluation*)
- 2. Extension of our GELU characterization to other activations
 - *E.g.*, **sigmoid linear unit/SiLU**, used in the Meta Al's LLaMA model
- 3. Optimizations for smaller bitwidth
 - **Reduces communication** in **mixed-bitwidth** frameworks

Final Remarks

- We propose secure, accurate, and fast protocols for softmax and GELU
- Code: github.com/andeskyl/SHAFT
 - Interoperable with Hugging Face for handy transformer deployment
- Future directions:
 - Private transformer *fine-tuning/training* (GPU-TEE co-design?)
 - Security against *malicious* adversaries (replicated/authenticated sharing?)
- Contact: {kyl022, sherman}@ie.cuhk.edu.hk

