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/K Domain-Specific Language (DSL)

def main(public int tax_allowance,
private int gross _income):
int taxable _income = gross _income -
tax_allowance
if (taxable_income < 9)
taxable income = 0

int tax = taxable_income >> 2 <:I Tax rate is 25% (right-shift by 2)

int net _income = gross_income - tax

assert(net_income >= 2000)

A ZK program checking whether net income >= 2K
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/K Domain-Specific Language (DSL)

def main(public int tax_allowance],
private int gross _income):
int taxable income = gross_income - - Public: visible to both prover and verifier
tax_allowance
if (taxable_income < 9)
taxable _income = ©
int tax = taxable income >> 2
int net _income = gross_income - tax
assert(net_income >= 2000)

- Visibility modifiers:

A ZK program checking whether net income >= 2K
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/K Domain-Specific Language (DSL)

def main(public int tax_allowance,
private int gross_income):
int taxable income = gross_income - - Public: visible to both prover and verifier
tax_allowance

if (taxable_income < 9)

taxable _income = ©
int tax = taxable income >> 2
int net _income = gross_income - tax
assert(net_income >= 2000)

- Visibility modifiers:

- Private: visible only to the prover
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/K Domain-Specific Language (DSL)

def main(public int tax_allowance,
private int gross _income):

int taxable income = gross_income - - Public: visible to both prover and verifier

tax_allowance
if (taxable_income < 9)
taxable _income = ©

int tax = taxable income >> 2

int net income = gross income - tax

assert(net_income >= 2000)

- Visibility modifiers:

- Private: visible only to the prover

- Constraints to check

A ZK program checking whether net income >= 2K
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/K Circuits

* No control flow

* Only addition and multiplication
* Represent crypto primitives

* Everything is bits

@

/K Compilers

* Flatten If, For, While statements
* Arithmetization

* Crypto-aware optimizations

* Convert all data types to bits

Visibility Front-end

Flattener Checker Optimizer

Arithme- Back-End

Lowerin L .
& tization Optimizer



Correct Compilation Refuses the Unqualified
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Erroneous ZK Compilers
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Real-world ZK Bugs Affecting Blockchains

1. Lack of range constraints for the tree_index variable

Description of bug:

The index (i.e. position) of a note in the Aztec 2.0 tree was used in the computation of the
note nullifier. The code assumed this to be a 32-bit integer, and so used only the last 32-
bits of this element as the tree index. However, the field element representing this position

was not actually constrained to be 32 bits. Therefore, the entire field element was used as

Summary an input for computing the nullifier.

During the final activation phase of the Aave v3 ZKSync pool on August 21th 36 , a problem
with its behaviour was detected. Consequently, a global pause of all assets was enacted by

the Aave Guardian, delaying the activation of the new instance. The company behind the privacy_minded Cryptocurrency zcash has
revealed that it fixed a catastrophic code bug last year that could have
been used to print infinite coins.
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Real-world ZK Bugs Affecting Blockchains

1. Lack of range constraints for the tree_index variable

Description of bug:

The index (i.e. position) of a note in the Aztec 2.0 tree was used in the computation of the
note nullifier. The code assumed this to be a 32-bit integer, and so used only the last 32-
bits of this element as the tree index. However, the field element representing this position

was not actually constrained to be 32 bits. Therefore, the entire field element was used as

Summary an input for computing the nullifier.

During the final activation phase of the Aave v3 ZKSync pool on August 21th 36 , a problem
with its behaviour was detected. Consequently, a global pause of all assets was enacted by
the Aave Guardian, delaying the activation of the new instance. The company behind the privacy_minded Cryptocurrency zcash has

revealed that it fixed a catastrophic code bug last year that could have
been used to print infinite coins.

How can we automatically test ZK compilers?
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Testing Oracle (Ground Truth) Problem

N ZK Compiler
Lo )
ZK Program P ZK Circuit C
t )

Semantically equivalent (P = C)?

Hard!
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Metamorphic Mutations

N ZK Compiler
USEEES
/K Program P ZK Circuit C
Mutate \
. ZK Compiler
ZK Program P* | > ZK Circuit C’
Relation R(P, P") R(C,C") holds?

| No
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M Ry Satistiability-Invariant Mutation

ZK Compiler
2

/K Program P ZK Circuit C
Mutate \

. ZK Compiler
ZK Program P | > ZK Circuit C’

assert(income <= INT_MAX)  Constraint satisfied?

Always-satisfying constraints l No

Compiler bug! -ﬁ)}



Implementation of MR¢;y

1 fn foo() {
1 fn foo() { 2 let mut X = 81;
2 let mut x = 81; 3 for 1 in 1..10
3 for iin 1..10 4 if x%1==20{
4 if x %1 ==0 { > X += 1;
5 X += 1; ::> 6 assert(x <= INT_MAX)
6 } else { 7 } else {
7 X -=1; 8 X -=1;
8 } 9 }
9 } 10 }
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Implementation of MR¢;y

1 fn foo() {
1 fn foo() { 2 let mut x = 81;
2 let mut x = 81; 3 for i in 1..10
3 for iin 1..10 4 1fx£1.==@{
4 if x %1 ==0 { > X += 1;
5 Y += 1 ::> 6 assert(x <= INT_MAX)
J
6 } else { 7 } else {
7 X =-= 1; 8 X =-= 1;
3 } 9 assert(x == x * 1)
9 } }

R
R ®
-
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Implementation of MR¢;y

1 fn foo() {
1 fn foo() { 2 let mut x = 81;
2 let mut x = 81; 3 for i in 1..10
3 for iin 1..10 4 if x %1 ==20 {
4 if x %1 ==0 { > X += 1;
5 X += 1; ::> 6 assert(x <= INT_MAX)
6 } else { 7 } else {
7 X =-= 1; 8 X =-= 1;
3 } 9 assert(x == x * 1)
9 } 10 }
11

12 assert(x == 76)
13 }

2/27/2025
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Implementation of MR¢;y

1 fn foo() {
1 fn foo() { 2 let mut x = 81;
3 for i in 1..10 4 if x %1 ==20{
4 if x %1 ==0 { > X += 1;
5 X += 1; :> 6 assert(x <= INT_MAX)
6 } else { 7 } else {
7 X -= 1; 8 X =-= 1;
8 } 9 assert(x == x * 1)
9 } 10 }
11
12 assert(x == 76 I'(x < 76))

13 }
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Implementation of MR¢;y

1 fn foo() {
1 fn foo() { 2 let mut x = 81;
2 let mut x = 81; 3 for i in 1..10
3 for iin 1..10 4 if x %1 ==20 {
4 if x %1 ==0 { > X += 1;
5 X += 1; :> 6 assert(x <= INT_MAX)
6 } else { 7 } else {
7 X =-= 1; 8 X =-= 1;
3 } 9 assert(x == x * 1)
9 } 10 }
11

12 assert(x == 76 && !(x < 76))
13 }

2/27/2025
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MRy Information Visibility Mutation
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MRy Information Visibility Mutation

N ZK Compiler
USEENES
/K Program P ZK Circuit C
Mutate \
. ZK Compiler
ZK Program P* | > ZK Circuit C’
<] <Exchange> ﬁ Results unchanged?

| No

Compiler bug! -ﬁ)}

Public inputs u Secret inputs w



Implementation of MRy,

LoNOUVLID WDNER
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fn foo() {

-

let mut x =

for 1 in

if x %

}
}

X +=
else
X =-=

1 fn foo(public u) {
2 let mut x = 81;

3 for i in 1..10

4 if x % 1 ==|ul{
5 X += 1;

6 T else {

7 X -=1;

8 }

9 }
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Implementation of MRy,

LoNOUVLID WDNER
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fn foo() {
let mut x =

-

for

if x %

}
}

i in

X +=
else
X =-=

1 fn foo(public u, |private w| {
2 let mut x = 81;

3 for 1 in 1..10

4 if x % 1 ==u {

5 X += 1;

6 T else {

7 X —==HI

8 }

9 }
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Testing Target Selection

ZK Compilers Blockchains

A ZoKrates % polygon

Leo. /N Aleo

® Aztec

M) CAIRO & STARKNET

Securing billions of dollars
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Bug Findings

—mm-

Total
#Confirmed 4 7 5 0 16
H#Fixed 3 7 5 0 15
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Infinite Withdrawal in ZoKrates

1 fn withdraw(account: &mut field, amount: field) {
2 let savings: field = read_savings(account);

3 assert(savings >= amount);
4
5

}...

Constraint always holds when amount = MAX FIELD

Withdraw as much as you want!

2/27/2025
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Secret Backdoors in Noir

1 fn low_income(pwd, salary){
2 let m = 12;

3 let avg salary = salary / m;
4

5

6 for ...

7

8

9

10  if (pwd == MAGIC)

11 avg salary = salary / m;
12

13 assert(avg _salary < 100);

2/27/2025

<:I Division-by-zero
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Secret Backdoors in Noir

1 fn low_income(pwd, salary){
2 let m = 12;

3 let avg salary = salary / m;
4

5

6 for ...

7

8

9

10  if (pwd == MAGIC)

11 avg salary = salary / m;
12

13 assert(avg _salary < 100);
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<:| avg salary « 0

45



Secret Backdoors in Noir

1 fn low_income(pwd, salary){

2 let m = 12;

3 let avg salary = salary / m;
4

5

6 for ...

7

8

9

10  if (pwd == MAGIC)

11 avg salary = salary / m;
12

13 assert(avg _salary < 100); <:I O < 100 Passed
14 }
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Secret Backdoors in Noir

2/27/2025

Input pwd

coONOUVIDhS WN R

(e}

10  if (pwd == MAGIC)

11
12

fn low_income(pwd, salary){
let m = 12;
let avg salary = salary / m;

for ...

<$Z] Backdoor

avg salary = salary / m;

13 assert(avg_salary < 100);

14 }

MAGIC

and receive benefits for low-incomers!
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Ssummary

* The first work to uncover bugs in ZK compilers

e Approach: two mutations:
e Satisfiability-invariant mutation
* Information visibility mutation

* Findings: 21 bugs on four mainstream ZK compilers



Ssummary

* The first work to uncover bugs in ZK compilers

e Approach: two mutations:
e Satisfiability-invariant mutation
* Information visibility mutation

* Findings: 21 bugs on four mainstream ZK compilers

Thanks for listening!
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