o RSN 2
LULJJ UNIVERSITY OF SCIENCE aV NDss

AND TECHNOLOGY SYMPOSIUM/2025

MTZK: Testing and Exploring
Bugs in Zero-Knowledge (ZK)
Compilers

NDSS Symposium 2025
Dongwei Xiao, Zhibo Liu, Yiteng Peng and Shuai Wang

The Hong Kong University of Science and Technology

2/27/2025 1

Are You Concerned About...?

Salary slips?
——-

PON
il
Bank

Business details? A
" IIL

Regulatory compliance Government

EUE Industrial Data?

Carbon neutral Global organization

/ero-Knowledge (ZK) Proofs

=
2

Verifier V

‘% Prover P

N\
2

Secret w
income = 3K

gl assert(income > 2K)

Constraints

/ero-Knowledge (ZK) Proofs

=] O
.--Q. ‘y Prover P

Verifier V \
VL

Math puzzle Secret w
1 income = 3K
Maps to

gl assert(income > 2K)

Constraints

/ero-Knowledge (ZK) Proofs

=8 o ;
:-O. ‘(;)j ‘y Prover

Verifier V Proof i / \

Math puzzle Secret w
1 income = 3K
Maps to

gl assert(income > 2K)

Constraints

/ero-Knowledge (ZK) Proofs

=1 o O
.- O ?(;)j ‘y Prover P

Ver|f|er V Proof T
Solved (Pass) Math puzzle Secret w
1 income = 3K
Maps to

gl assert(income > 2K)

Constraints

/ero-Knowledge (ZK) Proofs

=1 o O
.- O ?(;)j ‘y Prover P

Ver|f|er V Proof T
Unsolved (Fail) Math puzzle Secret w
1 income = 1K
Maps to

gl assert(income > 2K)

Constraints

/ero-Knowledge (ZK) Proofs

= . 10
:-O. :j(;)j ‘y rover

Verifier V Proof T
Unsolved (Fail) Math puzzle Secret w
1 income = 1K
Maps to

ZK: The verifier learns
nothing about the secret. gl assert(income > 2K)

Constraints

/ero-Knowledge (ZK) Proofs

=1 o 05
.- O ?(;)j ‘y Prover P

Ver|f|er V Proof T
Unsolved (Fail) Math puzzle Secret w
1 income = 1K
Maps to

(;Bi assert(income > 2K)

ZK Programs

/K Domain-Specific Language (DSL)

def main(public int tax_allowance,
private int gross _income):
int taxable _income = gross _income -
tax_allowance
if (taxable_income < 9)
taxable income = 0

int tax = taxable_income >> 2 <:I Tax rate is 25% (right-shift by 2)

int net _income = gross_income - tax

assert(net_income >= 2000)

A ZK program checking whether net income >= 2K

2/27/2025

/K Domain-Specific Language (DSL)

def main(public int tax_allowance],
private int gross _income):
int taxable income = gross_income - - Public: visible to both prover and verifier
tax_allowance
if (taxable_income < 9)
taxable _income = ©
int tax = taxable income >> 2
int net _income = gross_income - tax
assert(net_income >= 2000)

- Visibility modifiers:

A ZK program checking whether net income >= 2K

2/27/2025 11

/K Domain-Specific Language (DSL)

def main(public int tax_allowance,
private int gross_income):
int taxable income = gross_income - - Public: visible to both prover and verifier
tax_allowance

if (taxable_income < 9)

taxable _income = ©
int tax = taxable income >> 2
int net _income = gross_income - tax
assert(net_income >= 2000)

- Visibility modifiers:

- Private: visible only to the prover

A ZK program checking whether net income >= 2K

2/27/2025 12

/K Domain-Specific Language (DSL)

def main(public int tax_allowance,
private int gross _income):

int taxable income = gross_income - - Public: visible to both prover and verifier

tax_allowance
if (taxable_income < 9)
taxable _income = ©

int tax = taxable income >> 2

int net income = gross income - tax

assert(net_income >= 2000)

- Visibility modifiers:

- Private: visible only to the prover

- Constraints to check

A ZK program checking whether net income >= 2K

2/27/2025 13

/ero-Knowledge (ZK) Proofs

=1 o 05
.- O ?(;)j ‘y Prover P

Ver|f|er V Proof T
Unsolved (Fail) Math puzzle Secret w
1 income = 1K
Maps to

(;Bi assert(income > 2K)

ZK Programs

/ero-Knowledge (ZK) Proofs

= O 5
:-O. @ ‘y Prover
Verifier V Proof T / \
Unsolved (Fail) ZK Circuits Secret w
1 income = 1K
Maps to

(;Bi assert(income > 2K)

ZK Programs

/ero-Knowledge (ZK) Proofs

=1y O
:-O. @ ‘y Prover P
Verifier V Proof T / \
Unsolved (Fail) ZK Circuits Secret w

income = 1K
ZK Compilers

(;Bi assert(income > 2K)

ZK Programs

/K Circuits

* No control flow

* Only addition and multiplication
* Represent crypto primitives

* Everything is bits

@

/K Compilers

* Flatten If, For, While statements
* Arithmetization

* Crypto-aware optimizations

* Convert all data types to bits

Visibility Front-end

Flattener Checker Optimizer

Arithme- Back-End

Lowerin L .
& tization Optimizer

Correct Compilation Refuses the Unqualified

= 05
:-Q: _@ ‘y Prover P
Verifier V Proof T / \
Reject ZK Circuits Secret w
. income = 1K
ZK Compiler

(;Bi assert(income > 2K)

ZK Programs

Erroneous ZK Compilers

=1 1.0
:-Q. @ > rover
Verifier V Proof T / \
Reject ZK Circuits Secret w
. income = 1K
ZK Compiler

(;Bi assert(income > 2K)

ZK Programs

Erroneous ZK Compilers

T & overp
:-Q. @ > rover
Verifier V Proof T / \
Accept ZK Circuits Secret w
. income = 1K
ZK Compiler

(;Bi assert(income > 2K)

ZK Programs

Erroneous ZK Compilers

= O
:-Q: @ ‘y Prover P
Verifier IV Proof T / \
e Accept ZK Circuits Secret w
. income = 1K
ZK Compiler

Financial loss ﬁ-
(;Bi assert(income > 2K)

ZK Programs

Real-world ZK Bugs Affecting Blockchains

1. Lack of range constraints for the tree_index variable

Description of bug:

The index (i.e. position) of a note in the Aztec 2.0 tree was used in the computation of the
note nullifier. The code assumed this to be a 32-bit integer, and so used only the last 32-
bits of this element as the tree index. However, the field element representing this position

was not actually constrained to be 32 bits. Therefore, the entire field element was used as

Summary an input for computing the nullifier.

During the final activation phase of the Aave v3 ZKSync pool on August 21th 36 , a problem
with its behaviour was detected. Consequently, a global pause of all assets was enacted by

the Aave Guardian, delaying the activation of the new instance. The company behind the privacy_minded Cryptocurrency zcash has
revealed that it fixed a catastrophic code bug last year that could have
been used to print infinite coins.

2/27/2025 22

Real-world ZK Bugs Affecting Blockchains

1. Lack of range constraints for the tree_index variable

Description of bug:

The index (i.e. position) of a note in the Aztec 2.0 tree was used in the computation of the
note nullifier. The code assumed this to be a 32-bit integer, and so used only the last 32-
bits of this element as the tree index. However, the field element representing this position

was not actually constrained to be 32 bits. Therefore, the entire field element was used as

Summary an input for computing the nullifier.

During the final activation phase of the Aave v3 ZKSync pool on August 21th 36 , a problem
with its behaviour was detected. Consequently, a global pause of all assets was enacted by
the Aave Guardian, delaying the activation of the new instance. The company behind the privacy_minded Cryptocurrency zcash has

revealed that it fixed a catastrophic code bug last year that could have
been used to print infinite coins.

How can we automatically test ZK compilers?

2/27/2025 23

Testing Oracle (Ground Truth) Problem

N ZK Compiler
Lo)
ZK Program P ZK Circuit C
t)

Semantically equivalent (P = C)?

No?

Compiler bug! -ﬁ)}

Testing Oracle (Ground Truth) Problem

N ZK Compiler
Lo)
ZK Program P ZK Circuit C
t)

Semantically equivalent (P = C)?

Hard!

Metamorphic Mutations

l‘h '
ZK Program P
Mutate \

ZK Program P’

Relation R(P, P")

Metamorphic Mutations

ZK Compiler
2

/K Program P ZK Circuit C
Mutate \

. ZK Compiler
ZK Program P | > ZK Circuit C’

Relation R(P, P") R(C,C") holds?

Metamorphic Mutations

N ZK Compiler
USEEES
/K Program P ZK Circuit C
Mutate \
. ZK Compiler
ZK Program P* | > ZK Circuit C’
Relation R(P, P") R(C,C") holds?

| No

P £ C Compiler bug! -ﬁ‘f

M Ry Satistiability-Invariant Mutation

l‘h '
ZK Program P
Mutate \

ZK Program P’

assert(income <= INT_MAX)

Always-satisfying constraints

M Ry Satistiability-Invariant Mutation

ZK Compiler
2

/K Program P ZK Circuit C
Mutate \

. ZK Compiler
ZK Program P | > ZK Circuit C’

assert(income <= INT_MAX) Constraint satisfied?

Always-satisfying constraints l No

Compiler bug! -ﬁ)}

Implementation of MR¢;y

1 fn foo() {
1 fn foo() { 2 let mut X = 81;
2 let mut x = 81; 3 for 1 in 1..10
3 for iin 1..10 4 if x%1==20{
4 if x %1 ==0 { > X += 1;
5 X += 1; ::> 6 assert(x <= INT_MAX)
6 } else { 7 } else {
7 X -=1; 8 X -=1;
8 } 9 }
9 } 10 }

2/27/2025

Implementation of MR¢;y

1 fn foo() {
1 fn foo() { 2 let mut x = 81;
2 let mut x = 81; 3 for i in 1..10
3 for iin 1..10 4 1fx£1.==@{
4 if x %1 ==0 { > X += 1;
5 Y += 1 ::> 6 assert(x <= INT_MAX)
J
6 } else { 7 } else {
7 X =-= 1; 8 X =-= 1;
3 } 9 assert(x == x * 1)
9 } }

R
R ®
-

2/27/2025

Implementation of MR¢;y

1 fn foo() {
1 fn foo() { 2 let mut x = 81;
2 let mut x = 81; 3 for i in 1..10
3 for iin 1..10 4 if x %1 ==20 {
4 if x %1 ==0 { > X += 1;
5 X += 1; ::> 6 assert(x <= INT_MAX)
6 } else { 7 } else {
7 X =-= 1; 8 X =-= 1;
3 } 9 assert(x == x * 1)
9 } 10 }
11

12 assert(x == 76)
13 }

2/27/2025

33

Implementation of MR¢;y

1 fn foo() {
1 fn foo() { 2 let mut x = 81;
3 for i in 1..10 4 if x %1 ==20{
4 if x %1 ==0 { > X += 1;
5 X += 1; :> 6 assert(x <= INT_MAX)
6 } else { 7 } else {
7 X -= 1; 8 X =-= 1;
8 } 9 assert(x == x * 1)
9 } 10 }
11
12 assert(x == 76 I'(x < 76))

13 }

2/27/2025

34

Implementation of MR¢;y

1 fn foo() {
1 fn foo() { 2 let mut x = 81;
2 let mut x = 81; 3 for i in 1..10
3 for iin 1..10 4 if x %1 ==20 {
4 if x %1 ==0 { > X += 1;
5 X += 1; :> 6 assert(x <= INT_MAX)
6 } else { 7 } else {
7 X =-= 1; 8 X =-= 1;
3 } 9 assert(x == x * 1)
9 } 10 }
11

12 assert(x == 76 && !(x < 76))
13 }

2/27/2025

35

MRy Information Visibility Mutation

N ZK Compiler
> =
/K Program P ZK Circuit C
Plaintext Encrypted

{1 0
= 5

Public inputs u Secret inputs w

MRy Information Visibility Mutation

ZK Compiler
)
/K Program P ZK Circuit C

Mutate \

ZK Program P’

Exchange
=] < > 59

Public inputs u Secret inputs w

MRy Information Visibility Mutation

N ZK Compiler
USEENES
/K Program P ZK Circuit C
Mutate \
. ZK Compiler
ZK Program P* | > ZK Circuit C’
<] <Exchange> ﬁ Results unchanged?

| No

Compiler bug! -ﬁ)}

Public inputs u Secret inputs w

Implementation of MRy,

LoNOUVLID WDNER

2/27/2025

fn foo() {

-

let mut x =

for 1 in

if x %

}
}

X +=
else
X =-=

1 fn foo(public u) {
2 let mut x = 81;

3 for i in 1..10

4 if x % 1 ==|ul{
5 X += 1;

6 T else {

7 X -=1;

8 }

9 }

39

Implementation of MRy,

LoNOUVLID WDNER

2/27/2025

fn foo() {
let mut x =

-

for

if x %

}
}

i in

X +=
else
X =-=

1 fn foo(public u, |private w| {
2 let mut x = 81;

3 for 1 in 1..10

4 if x % 1 ==u {

5 X += 1;

6 T else {

7 X —==HI

8 }

9 }

40

Testing Target Selection

ZK Compilers Blockchains

A ZoKrates % polygon

Leo. /N Aleo

® Aztec

M) CAIRO & STARKNET

Securing billions of dollars

2/27/2025

41

Bug Findings

—mm-

Total
#Confirmed 4 7 5 0 16
H#Fixed 3 7 5 0 15

2/27/2025

Infinite Withdrawal in ZoKrates

1 fn withdraw(account: &mut field, amount: field) {
2 let savings: field = read_savings(account);

3 assert(savings >= amount);
4
5

}...

Constraint always holds when amount = MAX FIELD

Withdraw as much as you want!

2/27/2025

43

Secret Backdoors in Noir

1 fn low_income(pwd, salary){
2 let m = 12;

3 let avg salary = salary / m;
4

5

6 for ...

7

8

9

10 if (pwd == MAGIC)

11 avg salary = salary / m;
12

13 assert(avg _salary < 100);

2/27/2025

<:I Division-by-zero

44

Secret Backdoors in Noir

1 fn low_income(pwd, salary){
2 let m = 12;

3 let avg salary = salary / m;
4

5

6 for ...

7

8

9

10 if (pwd == MAGIC)

11 avg salary = salary / m;
12

13 assert(avg _salary < 100);

2/27/2025

<:| avg salary « 0

45

Secret Backdoors in Noir

1 fn low_income(pwd, salary){

2 let m = 12;

3 let avg salary = salary / m;
4

5

6 for ...

7

8

9

10 if (pwd == MAGIC)

11 avg salary = salary / m;
12

13 assert(avg _salary < 100); <:I O < 100 Passed
14 }

2/27/2025 46

Secret Backdoors in Noir

2/27/2025

Input pwd

coONOUVIDhS WN R

(e}

10 if (pwd == MAGIC)

11
12

fn low_income(pwd, salary){
let m = 12;
let avg salary = salary / m;

for ...

<$Z] Backdoor

avg salary = salary / m;

13 assert(avg_salary < 100);

14 }

MAGIC

and receive benefits for low-incomers!

47

Ssummary

* The first work to uncover bugs in ZK compilers

e Approach: two mutations:
e Satisfiability-invariant mutation
* Information visibility mutation

* Findings: 21 bugs on four mainstream ZK compilers

Ssummary

* The first work to uncover bugs in ZK compilers

e Approach: two mutations:
e Satisfiability-invariant mutation
* Information visibility mutation

* Findings: 21 bugs on four mainstream ZK compilers

Thanks for listening!

	Slide 1: MTZK: Testing and Exploring Bugs in Zero-Knowledge (ZK) Compilers
	Slide 2: Are You Concerned About…?
	Slide 3: Zero-Knowledge (ZK) Proofs
	Slide 4: Zero-Knowledge (ZK) Proofs
	Slide 5: Zero-Knowledge (ZK) Proofs
	Slide 6: Zero-Knowledge (ZK) Proofs
	Slide 7: Zero-Knowledge (ZK) Proofs
	Slide 8: Zero-Knowledge (ZK) Proofs
	Slide 9: Zero-Knowledge (ZK) Proofs
	Slide 10: ZK Domain-Specific Language (DSL)
	Slide 11: ZK Domain-Specific Language (DSL)
	Slide 12: ZK Domain-Specific Language (DSL)
	Slide 13: ZK Domain-Specific Language (DSL)
	Slide 14: Zero-Knowledge (ZK) Proofs
	Slide 15: Zero-Knowledge (ZK) Proofs
	Slide 16: Zero-Knowledge (ZK) Proofs
	Slide 17: ZK Circuits
	Slide 18: Correct Compilation Refuses the Unqualified
	Slide 19: Erroneous ZK Compilers
	Slide 20: Erroneous ZK Compilers
	Slide 21: Erroneous ZK Compilers
	Slide 22: Real-world ZK Bugs Affecting Blockchains
	Slide 23: Real-world ZK Bugs Affecting Blockchains
	Slide 24: Testing Oracle (Ground Truth) Problem
	Slide 25: Testing Oracle (Ground Truth) Problem
	Slide 26: Metamorphic Mutations
	Slide 27: Metamorphic Mutations
	Slide 28: Metamorphic Mutations
	Slide 29: cap M cap R sub cap S cap I. cap M : Satisfiability-Invariant Mutation
	Slide 30: cap M cap R sub cap S cap I. cap M : Satisfiability-Invariant Mutation
	Slide 31: Implementation of cap M cap R sub cap S cap I. cap M
	Slide 32: Implementation of cap M cap R sub cap S cap I. cap M
	Slide 33: Implementation of cap M cap R sub cap S cap I. cap M
	Slide 34: Implementation of cap M cap R sub cap S cap I. cap M
	Slide 35: Implementation of cap M cap R sub cap S cap I. cap M
	Slide 36: cap M cap R sub cap I. cap V cap M : Information Visibility Mutation
	Slide 37: cap M cap R sub cap I. cap V cap M : Information Visibility Mutation
	Slide 38: cap M cap R sub cap I. cap V cap M : Information Visibility Mutation
	Slide 39: Implementation of cap M cap R sub cap I. cap V cap M
	Slide 40: Implementation of cap M cap R sub cap I. cap V cap M
	Slide 41: Testing Target Selection
	Slide 42: Bug Findings
	Slide 43: Infinite Withdrawal in ZoKrates
	Slide 44: Secret Backdoors in Noir
	Slide 45: Secret Backdoors in Noir
	Slide 46: Secret Backdoors in Noir
	Slide 47: Secret Backdoors in Noir
	Slide 48: Summary
	Slide 49: Summary

