Sheep's Clothing, Wolf's Data:
Detecting Server-Induced Client
Vulnerabilities in Windows Remote IPC

Fangming Gu'?, Qingli Guo?, Jie Lu3, Qinghe Xiel?,
Beibei Zhao'?, Kangjie Lu*, Hong Li%? ,Xiaorui Gong?

Institute of Information Engineering, Chinese Academy of Sciences
’School of Cyber Security, UCAS
3Institute of Computing Technology, Chinese Academy of Sciences
4University of Minnesota

Why research focus on Windows Remote |PC?

m IPC Client IPC Server

Request >
< W’ Response: 0x00000001

< ’ Response: Ox/ff e,
Domain Controller Domain Member

We comprehensively reveal the security threats of remote
IPC clients, which have been overlooked in Windows.

Windows IPC — Communication Infrastructure

Windows IPC(Interprocess communications)
contains a set of communication mechanisms
which supports:

- Local and Remote Machine communication(Server&Client)
- Privilege Separation (Security boundaries)
- Flexibility of IPC Mechanisms(9 ways)
- Proxy-Based Remote Communication

The following IPC mechanisms are supported by Windows:

e (Clipboard
COM

Data Copy
DDE

File Mapping
Mailslots
Pipes

RPC

e Windows Sockets

Ref: Interprocess communications - Win32 apps | Microsoft Learn

https://learn.microsoft.com/en-us/windows/win32/ipc/interprocess-communications

Typical Remote IPC in Windows Domain

Domain Controller IPC Protocol Domain Member

Performance Monitor | = ___ _______ o . _ :
: L . Request(cbData, cbLen) Runnin
(IPC Client) :fk User Click! 1 9

2 , . Context
(Context] o :E[:IText Input, ¢
cbData, cbLen.... Trmmmmemeee
“ ’ o Response
\’ e pt ____________ » |PC Server
e IPC Call(cbData, cbLen) ‘WResponse: 0x00000020:
@ "Response: OxIfffiff4
» Handle Return Values |l¢——t——=====c==--c-c-ooocoo-oo--

Typical IPC workflow of Performance Monitor in Windows Domain

Typical Remote IPC in Windows Domain

Domain Controller [PC Protocol Domain Member
< Perfo[r;gnéﬁer:;; niter LT, o Request(cbData, cbLen) Running
v 1 #\R User C hcki Context
r Context] oEE[:ITeXT Input, ¢
| cbData, cbLen.... T o Res .
esponse
\’ T p _____________ » |PC Server
e IPC Call(cbData, cbLen) ‘WResponse: 0x00000020:
@ "Response: OxIfffiff4
» Handle Return Values |l¢——t——=====c==--c-c-ooocoo-oo--

User Click/Input -> Client Generate IPC Context -> Send IPC Request ->
Get Response -> Process Return values

Threat Model in Windows IPC Clients

Trusted zone Request data Untrusted zone
—— Trust Server-1
| Boundary Example Clients:
€L L | Server-2 .
L T < Response data Performance Monitor,
Client | Server-x EventlLog Viewer,
RemoteDesktop Client,
- In scenarios, we found lots of IPC Clients have NetworkManger, ...

higher privilege than the server

- The IPC Server is untrusted and low-privileged,
the client is the testing target

- If the IPC Client is vulnerable, it will threaten the
security of the server it runs on.

Case Study: CVE-2024-38025

1 PERF_MACHINE: :BuildNameTable (PERF_MACHINE =*this,
m IPC Client IPC Server — void xa2) { Click and user input
” v54 :|RegConnectRegistrzﬂkv53,
— HKEY_PERFORMANCE_NLSTEXT, &phkResult);
a2 = phkResult;

[

Request

A

P «” Response: 0x00000001

cbData = 4;
if (|RquueeralueEka(HKEY)aZ, L"Last Help",
— 0164, &Type, (LPBYTE)&Data, &cbData))

- . .
< ’ Response: Oxffffiif ~ g,

=3 n =Y ad

Domain Controller Domain Member
7 goto LABEL_121;
8 1f (|[RegQuervValuekExW| (HKEY)aZ, L"Last Counter",
— 0i64, &Type, v83, &cbDbata))
9 goto LABEL_121;
CVE-2024-38025: A client vulnerability in o v84 = cbData;
. . .. nif (v84 > 0x40000) {goto FAILURE; }
Windows Performance Monitor. A malicious 2 if (v84 + «Data < 0) {goto FAILURE; }
Low_privileged(Monitored Machine) 31if (!« (_DWORD x)v83 < *Data && +Data < 0) {gOtO
. . — FAILURE; }
triggers a crash on the domain controller Wv89 = 8 x (v84 + 1);
n1achine. 15 v22 = operator new (v89 + 7);
16 // arbitrary memory write Return Value

7 if ('RegQueryValueExW (v1l3, ValyeName, 0i64,
— &Type, (LPBYTE){(W89 + *v83), &cbData))
18 }

Challenges in Vulnerability Discovery

Identification of IPC Clients Testing Efficiency

Context resuming and testing is often
time-consuming, require better solution to
Improve efficiency.

It is difficult to automatically identify IPC clients from
large-scale binaries, especially in closed-source systems
like Windows. Unlike server-side testing, where publicly
available documentation helps identify remote APls,
client-side applications often lack such documentation,

making it harder to pinpoint IPC calls. Domain Controller
Performance Monitor |, __________ .

Triggering IPC Calls (IPCilient) {“’RLSGI Lhckl
f Context A o [::lTe\t Illpllt

For effective fuzzing, it is essential to trigger as many IPC _cbData, cbLen....] T

calls as possible within a client to test a wide range of v

return values. € 'Pc calicbbata, cbLen)

Clients involve diverse environments (GUI, CLI, public)

APIs), and multiple IPC calls are interdependent, adding Handle Return Values [«

complexity to triggering the necessary calls for fuzzing.

Overview of GLEIPNIR

Phase 1: Identify IPC Clients and Servers Phase 2: Prepare Contexts Phase 3: Snapshot-based Fuzzer

/ \
Clients <——— Ul Automator < User Click | (Context }——b Mutator
Identifier > : |
[
@j Input Generator <—— User Input | | o\xﬂ.t:te Return
\ /
PC Clients B ae .
1 A Client ControlFlow {} Snapshot for . osmp Condition
. I 1 J—e) Wind —>»Fuzzing Controller <
101110 Constraint Resolver N Indows
10 —)'
1010 100 Mapping / ﬁ
1011011 . §
S Client and Server Context Capt e Load Hook Exception | DirtyPage || Coverage
Server| Binaries =~ ontext L-apturer Program Monitor Monitor Monitor
IPC Call T A .
IPC Call T > €@ write Memor C?)
¥\ = IPC Server .
~ ===~ "\ Return Data Execute Monitor
- Server ») @ o o
” Identifier i —>Q=8
- IntelPML InteIPT
IPC Servers

Overview of GLEIPNIR. The orange boxes highlight the functional component of GLEIPNIR, the Client Identifier,
Server ldentifier, Ul Automator, Input Generator, Constraint Resolver, Mutator, Hook, Fuzzing Controller,
coverage Monitor, Dirtypage Monitor, and Exception Monitor

|[dentify IPC Clients and Servers(Phase 1)

Identify IPC Clients and Servers contain 4 Steps:

|dentify IPC Clients

Identify IPC Servers

Map Client and Server

|denitfy SIDs and MIDs on Client

Phase 1: Identify IPC Clients and Servers

Clients

10 10

Server|

|]
ol
0

1
10 10
110

11
1

1

00
[/ |
oo

Binaries

>

Identifier

[

Mapping
Client and Server

J

Server

Identifier

|[dentify IPC Clients and Servers(SID&MIDs)

TABLE 1
CLIENT-SIDE IPC APIs useD IN RPC, COM AND WINSOCK.

IPC Stage RPC API COM API WinSock API
RpcStringBindingComposeW,
RpcBindingFromStringBindingW
NdrClientCall (V1~V4),
NdrAsyncClientCall (V1~V2) ,Ndr64AsyncClientCall
Finalization RpcBindingFree NdrCStdStubBuffer_Release closesocket, WSACleanup

Initialization CoCreatelInstanceEx ISAStartup, connect

Data Access CbjectStublessClient(Proxy Methods) getaddrinfo, send, recv

Heuristic based algorithm to analyze the IPC client APls,

, , . Analyze proxy stub and create mappings
including call sites, parameters, callers of the APIs, bottom up yze proxy PRINg

MIDL_STUBLESS_PROXY_INFO MIDL_STUB_DESC RPC_CLIENT_INTERFACE Server RPC Endpoint(UUID)
MIDL_STUB_DESC" pStubDesc —» RPC_CLIENT_INTERFACE" pinfo unsigned int length ProcO([out]lpcbData,
u8* ProcFormatString PFN_RPC_ALLOCATE pfnAllocate RPC_SYNTAX_IDENTIFIER Intfld(UUID) Proci([in]lpData, [in]lpcbLen)
u16® FormatStringOffset PFN_RPC_FREE pfnFree RPC_SYNTAX_IDENTIFIER TransSyntax Proc2([in]intVar)
RPC_SYNTAX_IDENTIFIER" pTransSyntax MIDL_STUB_DESC_0" imp_handle_info Proc3([out]intVar)

Fig. 4. Parsing Procedure of MIDL_STUBLESS_PROXY_INFO.

Prepare Contexts(Phase 2)

Phase 2: Prepare Contexts

«— Ul Automator < User Click
4 |

ﬁ <—— Input Generator < User Input
\
PC Clients ’

Client ControlFlow @

- Ul Applications (User Inputs and Clicking) B |
- CLI Applications (User Inputs) 7

Prepare Contexts for three
types of target Clients:

Public APlIs

[

IPC Servers

f o

—

Context Capturer

—
S
T

~
A

IPC Server
Return Data

Prepare Contexts(Phase 2)

Run CgmrnandLme Extract Result Prompting
with input Template _,L
,M_ Memory Execution
—> —» Memory Prompt —>»
CLI Under Commands
T Testing

[' Output: New Command with Input]4 ‘

|

CLI Apps: Generate Input by designing LLM based workflow

Trigger IPC&Log

Ul Automator
Contexts

GUI Apps: Generate Input/Click using proposed Ul Automator

Prepare Contexts(Phase 2

Prompt Type

Template

Instantiation

Interaction 1: CmdLine Arguments Generation

CmdLine Con-

Start Prompt: [As a professional security researcher, we

As a professional security researcher, we want to test the Com-

text want to test the CommandLine based <<AppName> App. We | mandLine based “nfsadmin.exe” App. We need to pass proper
need to pass proper arguments to make it functional. Here’s | arguments to make it functional. Here’s the default output of
the default output of the App: <Hint>] the App: “Invalid option argument. Usage: nfsadmin [server |
client | mapping | [\\ host]. For detailed help type nfsadmin
[server|client|mapping] /7”7
Command [List of Tested Commands: “listgroups, addmembers, ..., | [nfsadmin.exe, {Help Text}]
Memory <Output>"
Command What is the command currently being tested? | What is the Command currently being tested? What is the
Question What is the execution result of the command? | execution result of the Command? (“nfsadmin.exe”, “Invalid

(<CommandLine >+<result>)

option argument”)

Input question

What is the next commandline to execute?

What is the next commandline to execute?

LLM Answer

Current command: “<Command>". Status: <result>. Oper-
ation: “<NextInput>"

Current Command: “List Help”. Status: Yes. Operation: “nfsadmin
mapping /77

Interaction 2: CmdLine Arguments Generation

CLI Context

The tested result is : <ReturnValue >

The tested result is: nfsadmin mapping [computer name] [com-
mon_options]...

Command [List of Tested commands: “listgroups, addmembers, ..., | [nfsadmin.exe, “"nfsadmin.exe mapping /7", {Help Text}]
Memory <Output>"

Command What is the command currently being tested? | What is the command currently being tested? What is the
Question What is the execution rtesult of the command? | execution result of the command? (“nfsadmin.exe mapping /7,

(<<CommandLine >+<result>)

“Yes™)

Input Question

What is the next commandline to execute?

What is the next commandline to execute?

LLM Answer

Current command: “<command>>". Status: result. Operation:
“<Nextlnput>"

Current command: “List mapping’s help”. Status: Yes. Operation:
“nfsadmin -u -p mapLookup”

Example of the LLM workflow for testing CLI Apps, more details please refer to the paper.

Prepare Contexts(Phase 3)

Phase 3: Snapshot-based Fuzzer

] Context Mutator
Based on the contexts acquired, need ‘]
a solution to recover the contexts T © Mutate Return

. . Value
Efficiently each run: O stor Condition

> Sna_lpshotfor —» Fuzzing Controller <
) Windows
- Snapshot based fuzzing
B Handle network paCkEtS o Load Hook Exception DirtyPage. Coverage

Program Monitor Monitor Monitor

o) T

O cExecute © Vonitor

InteIPML‘ ‘ IntelPT

- Choose fuzzing strategy

il
-

Prepare Contexts(Phase 3)

- Mutation and Injection: The fuzzing controller retrieves
mutated return values from the Mutator and injects them

into the memory using a hook program after loading a

RegQueryValueExW 1 Hook Program

snapshot. ,
NdrClientCall <
. . . . Proxylnfo BaseRegQueryValue

- Test Execution and Monitoring: It resumes the client Pm}h’lum T
process and uses three monitors to collect data and Status (in] IpValueName
decide whether to continue or stop the test. arg0 [Out] IpType

arg1 [Out] IpData
- Iteration and Seed Management: Upon test completion, arg2 [Out] lpebData

arg3 [Out] IpcbLen

the controller either starts the next mutation or saves and

restores seed queue values for further testing. Fig. 9. The hook example for IPC call in Figur‘c BaseRegQueryValue
is the server method. NdrClientCall is the IPC API in Tab[l

- Exception and dirtypage Monitoring: These Monitors

tracks exceptions and memory changes for manual

vulnerability logging and control when to stop the fuzzer.

Evaluations

» RQ1: How effective is GLEIPNIR in identifying clients and servers?
» RQ2: How effective is GLEIPNIR in preparing the context?

» RQ3: How effective is GLEIPNIR in detecting client
vulnerabilities?

» RQ4: How efficient is GLEIPNIR in fuzzing clients?

» RQ5: How does GLEIPNIR compare with other fuzzing
approaches?

» RQ6: How effective are the strategies adopted by GLEIPNIR?

Evaluations(1/6)

» RQ1: How effective is GLEIPNIR in identifying clients and

servers?
NUMBER OF INFERRED [PC CLIENTS
Client Number Matched Expected IPC Call
') Server Server RPC COM Winsock2 Total
Built-in App 18 73 34 1.182 324 180 1.686
Public API 145 56 64]74 212 62 1,148
Total 163 129 148 2.056 536 242 2.834

GLEIPNIR identifies 145 Public APIs, and 129 servers,
missing 19 servers due to legacy clients with removed
servers. After manual verification, no false positives were
found. The 2,834 IPC calls identified include 72.54% RPC,
18.91% COM, and 8.54% Winsock, with RPC and COM
being the primary IPC methods.

Evaluations(2/6)

» RQ2: How effective is GLEIPNIR in preparing the context?

RESULT OF PREPARE FUZZING CONTEXTS. RIC STANDS FOR RECOVERED
[PC CALL. TIC sTANDS FOR TRIGGERED [PC CALL. AND TW/O STANDS
FOR TRIGGERED WITHOUT CONSTRAINTS RESOLVE.

GLEIPNIR prepared contexts for 2,834 IPC

Events

calls at 537 unique remote methods. It D Application RIC TIC TwloCS e s

: : 01 Performance Monitor 78 72 66 36 1
triggered 1,686 IPC calls from Builtin 02 | Eventlos Viewer 00 88 % T >
: : : 03 | Device Manager 32 26 24 27 1
appllcatlons and 1'148 from PUbllC APIS 04 | Windows Server Backup 60 45 42 32 1
H H H H 05 | Windows Disk Management 86 70 65 26 2
using user interactions and constraint 06 | Service Management 70 59 50 63 I
H 07 | Routing and Remote Access 116 92 86 77 6
solving. A total of 2,169 IPC requests were 08 | Togiee and N 0 e s o O
1 1 H H 09 | Shared Folders 48 37 37 52 3
trlggerecl’ Wlth constraint SOIVIng 10 | File Server Resource Manager 73 56 54 49 14
1 1 o 11 | DFS Management 56 40 33 39 4
Improving rESUItS by 11.28%. 12 | Group Policy Management 84 54 50 96 22
13 | dfs replication 54 42 41 0 24

14 | wmic 92 76 64 0 66

15 | nfsadmin 60 H 40 0 32

16 | mount 62 45 38 0 28

17 | fip 42 32 29 0 42

18 | Windows Admin Center 491 365 300 184 17

Builtin Total 1,686 1,307 1,162 846 338

Public APIs 1,148 862 187 0 38

Total 2834 2169 1,949 846 410

Evaluations(3/6

» RQ3: How effective is GLEIPNIR in detecting client
vulnerabilities?

LIST OF VULNERABILITIES DISCOVERED BY GLEIPNIR (CONFIRMED BY MSRC).

14 vu I nera bI|ItIeS have ID IPC Client Name Function Name Windows Version Statlls Security Impact
1 Routing and Remote Access DeleteProtocolFromRouterConfig Windows 11 Insider Build 26063.1 CVE-2024-30014 Remote code execution
C E b d 19 h 2 Roul?ng and Remote Access C‘.DhchcIu)-'(knllpmlmlt::Qucr)-‘Dulu(I)b]ccl W:mdows 11 Ins?alcr Bu:1ld 26()6.}.1 QTVE—E()M—_SO()IS Remote code cxccul@on
V num ers, an ave 3 Routing and Remote Access TESComponent::Construct Windows 11 Insider Build 26063.1 CVE-2024-30022 Remote code execution
. 4 Windows Performance Monitor | GetSystemPerfData Windows 11 Insider Build 26040.1 CVE-2024-38019 Remote code execution
been Conflrmed by 5 Windows Performance Monitor | PERF_MACHINE::BuildNameTable Windows 11 Insider Build 26040.1 CVE-2024-38025 Remote code execution
. 6 Windows Performance Monitor | UpdateMultiCounterV2CounterValue Windows 11 Insider Build 26040.1 CVE-2024-38028 Remote code execution
|V|ICFOSOft. These 7 Windows Performance Monitor | CollectServerQueueObjectData Windows 11 Insider Build 26040.1 confirmed Remote code execution
pey . 8 Windows Performance Monitor | PerflibV2QueryCounterData Windows 11 Insider Build 26040.1 confirmed Remote code execution
vu I nera bl I Ities Caused 9 Windows Eventlog Viewer Event::SetData Windows 11 Insider Build 26040.1 confirmed Information Disclosure
. . 10 Windows Eventlog Viewer Event::SetDataEx Windows 11 Insider Build 26040.1 confirmed [nformation Disclosure
memory corru pt|0n, Wlth 11 Windows Eventlog Viewer Event::ProcessData Windows 11 Insider Build 26040.1 pending Information Disclosure
. 12 Windows Admin Center ApplicationServer Windows 11 Insider Build 26040.1 confirmed Remote code execution
20 Iead|ng to remote COde 13 Windows Admin Center CategorySample Windows 11 Insider Build 26040.1 CVE-2024-43475 Information Disclosure
. . 14 Windows Disk Management ActivationUser Windows 11 Insider Build 26040.1 pending Information Disclosure
execut|on and 5 reSUIt|ng 15 Windows Disk Management AppExtension Windows 11 Insider Build 26040.1 pending Remote code execution
16 Windows Task scheduler TaskSchedulerProcess Windows 11 Insider Build 26040.1 pending Remote code execution
in info rm ation |ea ka ge_ 17 Windows DES Replicator BundlePackage Windows 11 Insider Build 26040.1 pending Remote code execution
18 PublicAPI MSMQManagement.BytesInQueue Windows 11 Insider Build 26040.1 CVE-2024-20680 Remote code execution
19 PublicAPI CollectDiskObjectData Windows 11 Insider Build 26040.1 pending Remote code execution
20 PublicAPI MprAdminPortEnum Windows 11 Insider Build 26080.1 CVE-2024-38114 Remote code execution
21 PublicAP1 MprAdminConnectionEnum Windows 11 Insider Build 26080.1 CVE-2024-38115 Remote code execution
22 PublicAPI MprAdminDeviceEnum Windows 11 Insider Build 26080.1 CVE-2024-38116 Remote code execution
23 PublicAPI MprConfigTransportEnum Windows 11 Insider Build 26080.1 CVE-2024-30023 Remote code execution
24 PublicAPI MprAdminlnterfaceEnum Windows 11 Insider Build 26080.1 CVE-2024-30024 Remote code execution
25 PublicAPI MprConfiginterfaceEnum Windows 11 Insider Build 26080.1 CVE-2024-30029 Remote code execution

Evaluations(4/6)

» RQ4: How efficient is GLEIPNIR in fuzzing clients?

Basic Blocks Coverage Over Time - Builtin Applications (Group1)

ao

Basic Blocks Coverage (%)

=== Perforrmance Monitor (%)
=== Event Viewar (%)
=== Device Manager (%)

Windows Server Backup (%)
=== Windows Disk Management (%)
=== Sarvice Management (%)

Fig. 11.

4 8 12 16 20 24

Tirma (Haureet

(a) Performance of fuzzing app-groupl

4000

3000

2000

1000

ks (Absolute;

=}

Basic Blo

Basic Blocks Coverage (%)

o
=3

&
=]

B
=3

b
=3

Basic Blocks Coverage Over Time - Builtin Applications (Group2)

=== Routing and Remote Access (%)
=== Task Scheduler (24— —8——
==~ Thared Folders (%)
File Server Resource Manager (%)
=== DF5 Management (%)
——- Group Policy Managemant (%)

4 8 12 16 20 24
Tima [Hours)

(b) Performance of fuzzing app-group2

10000

Basic Blocks (Absolute)

Basic Blocks Coverage (%)

Basic Blocks Coverage Over Time - Builtin Applications (Group3)

m
=}

-
=}

@
=]

w
=]

2
=)

w
=}

[
=]

10

=== dfs replication (%)
——— WmiC (%)
=== nfsadmin (%}
mount (%)
—— ftp (%)
=== Windows Admin Center (3}

4 8 12 16 20 24
Time {Hours}

(c) Performance of fuzzing app-group3

25000

" = =]
= =) &
= = = =
=4 =3 =1 =1
=1 =] =]
Basic Blocks (Absolute)

=)

Performance of testing built-in applications. The left y-axis represents the percentage of basic block coverage relative to IPC-related code, while the
right y-axis displays the absolute values of covered basic blocks. Absolute values are shown with solid lines, and percentages are depicted with dashed lines.

Figure shows the testing efficiency of GLEIPNIR across 18 built-
in applications. Within four hours, the test coverage increased
rapidly, with four applications stabilizing. After 24 hours, all
applications' coverage stabilized, detecting 14 vulnerabilities.

Evaluations(5/6)

» RQ5: How does GLEIPNIR compare with other fuzzing
approaches?

COMPARISON OF GLEIPNIR SNAPSHOT FuzzZING AGAINST WINAFL AND WINNIE. FOR "SPEED” AND "COVERAGE.” THE LAST ROW IN THE TABLE
INDICATES THE AVERAGE VALUES ACROSS ALL APPLICATIONS. FOR "BUGS/VULNERABILITIES FOUND,” THE LAST ROW DENOTES THE TOTAL NUMBER
ACROSS ALL APPLICATIONS.

Application Speed(exec/sec) Coverage(# of new BBs) Bug/Vuln Found
ppiCE WinAFL ~ WINNIE GLEIPNIR WinAFL ~ WINNIE GLEIPNIR | WIinAFL ~ WINNIE GLEIPNIR

RemoteQMStartReceive2 |.8 2.2 238 320 365 1,026 1/0 1/1 3/1
QuerySnapshotsByVolume 2.1 2.3 215 336 352 2,072 2/0 2/0 5/2
QMMgmgGetlnfo [.8 24 176 291 310 1,872 2/1 2/1 6/2
CollectDiskObjectData 3.5 3.6 252 190 252 2417 1/1 2/1 4/1
MprAdminPortEnum 3.2 3.1 222 224 265 1,644 3/1 3/1 3/
MprAdminConnectionEnum 3.5 4.2 275 230 280 1.571 1/0 2/0 3/0
MprAdminDeviceEnum 3.1 3.8 185 298 365 1.820 1/0 1/0 2/0
MprConfigTransportEnum 3.0 3.3 218 318 327 1.440 4/1 2/1 S/
MprAdminlnterfaceEnum 3.5 3.6 289 320 330 1,520 2/0 2/0 3/0
MprConfiginterfaceEnum 3.3 3.9 275 370 389 1,798 3/0 3/0 4/0

Average/Total 2.88 3.24 234.5 289.7 323.5 1,718 20/4 20/5 40/8

Evaluations(6/6)

» RQ6: How effective are the strategies adopted by GLEIPNIR?

TESTING STRATEGIES AND THEIR RESULTS. CS STANDS FOR

During GUI testing, replacing our CONSTRAINT SOLVING, WHILE PUB REPRESENTS PUBLIC API.
depth-first and IP-based input - .

))) Strategies TIPC Vulns | AvgSpeed (exec/sec)
strategies with random strategies GUI-RandomInput 0 0 -
resulted in zero IPC calls and no GUI-RandomClick | 665 8 -

. : GUI-W/O CS 950 13 -
vulnerability detections. The random GULGLEIPNIR 1068 16]
click strategy triggered 665 IPC calls CLI-RandomInput 0 0 -

g . CLI-W/O CS 220 2 -
and detected 8 vulnerabilities, which is CLLGLEIPNIR 539 1]
403 fewer calls and 8 fewer PUB-W/O CS 750 32 -

e - PUB-GLEIPNIR 862 40
vulnerabilities than the quglnal WO Snapshoi - o .
strategy. For CLI applications, the Stop-500 - 20 282

- : : Stop-1000 - 25 240
random input strategy failed to .trlgger Stop-2000] > 186
any IPC calls or detect vulnerabilities. Stop-3000 - 16 120

Conclusion

» We present GLEIPNIR, focusing on client-side vulnerabilities often overlooked
in previous research targeting server-side issues.

» The Solution applies static analyses to identify IPC clients and servers to establish
mappings between them, using LLM and Ul automation techniques to prepare contexts

for further testing.

» In testing 76 client applications over 7 days, GLEIPNIR identified 25 vulnerabilities.
The identified vulnerabilities led to 14 CVEs and a total bounty reward of $36,000

Thanks for listening!
Q&A

Contact: gufangming@iie.ac.cn

	幻灯片 1: Sheep's Clothing, Wolf's Data: Detecting Server-Induced Client Vulnerabilities in Windows Remote IPC
	幻灯片 2: Why research focus on Windows Remote IPC?
	幻灯片 3: Windows IPC – Communication Infrastructure
	幻灯片 4: Typical Remote IPC in Windows Domain
	幻灯片 5: Typical Remote IPC in Windows Domain
	幻灯片 6: Threat Model in Windows IPC Clients
	幻灯片 7: Case Study: CVE-2024-38025
	幻灯片 8: Challenges in Vulnerability Discovery
	幻灯片 9: Overview of GLEIPNIR
	幻灯片 10: Identify IPC Clients and Servers(Phase 1)
	幻灯片 11: Identify IPC Clients and Servers(SID&MIDs)
	幻灯片 12: Prepare Contexts(Phase 2)
	幻灯片 13: Prepare Contexts(Phase 2)
	幻灯片 14: Prepare Contexts(Phase 2)
	幻灯片 15: Prepare Contexts(Phase 3)
	幻灯片 16: Prepare Contexts(Phase 3)
	幻灯片 17: Evaluations
	幻灯片 18: Evaluations(1/6)
	幻灯片 19: Evaluations(2/6)
	幻灯片 20: Evaluations(3/6)
	幻灯片 21: Evaluations(4/6)
	幻灯片 22: Evaluations(5/6)
	幻灯片 23: Evaluations(6/6)
	幻灯片 24: Conclusion
	幻灯片 25: Thanks for listening! Q&A

