
Sheep's Clothing, Wolf's Data: 
Detecting Server-Induced Client 

Vulnerabilities in Windows Remote IPC
Fangming Gu1,2, Qingli Guo1,2, Jie Lu3, Qinghe Xie1,2,

Beibei Zhao1,2, Kangjie Lu4, Hong Li1,2 ,Xiaorui Gong1,2

1Institute of Information Engineering, Chinese Academy of Sciences
2School of Cyber Security, UCAS

3Institute of Computing Technology, Chinese Academy of Sciences
4University of Minnesota



Why research focus on Windows Remote IPC? 

We comprehensively reveal the security threats of remote
IPC clients, which have been overlooked in Windows.



Windows IPC – Communication Infrastructure

Windows IPC(Interprocess communications) 
contains a set of communication mechanisms

which supports: 

- Local and Remote Machine communication(Server&Client)
- Privilege Separation (Security boundaries)
- Flexibility of IPC Mechanisms(9 ways)
- Proxy-Based Remote Communication

Ref: Interprocess communications - Win32 apps | Microsoft Learn

https://learn.microsoft.com/en-us/windows/win32/ipc/interprocess-communications


Typical Remote IPC in Windows Domain

Typical IPC workflow of Performance Monitor in Windows Domain



Typical Remote IPC in Windows Domain

User Click/Input -> Client Generate IPC Context -> Send IPC Request -> 
Get Response -> Process Return values



Threat Model in Windows IPC Clients

- In scenarios, we found lots of IPC Clients have 
higher privilege than the server
- The IPC Server is untrusted and low-privileged, 
the client is the testing target
- If the IPC Client is vulnerable, it will threaten the
security of the server it runs on.

Example Clients:
Performance Monitor,
EventLog Viewer,
RemoteDesktop Client,
NetworkManger, …



Case Study: CVE-2024-38025

CVE-2024-38025: A client vulnerability in 
Windows Performance Monitor. A malicious 
Low-privileged(Monitored Machine) 
triggers a crash on the domain controller
machine.



Challenges in Vulnerability Discovery

Identification of IPC Clients

It is difficult to automatically identify IPC clients from 
large-scale binaries, especially in closed-source systems 
like Windows. Unlike server-side testing, where publicly 
available documentation helps identify remote APIs, 
client-side applications often lack such documentation, 
making it harder to pinpoint IPC calls.

Triggering IPC Calls

For effective fuzzing, it is essential to trigger as many IPC 
calls as possible within a client to test a wide range of 
return values.
Clients involve diverse environments (GUI, CLI, public 
APIs), and multiple IPC calls are interdependent, adding 
complexity to triggering the necessary calls for fuzzing.

Testing Efficiency

Context resuming and testing is often 
time-consuming, require better solution to
Improve efficiency.



Overview of GLEIPNIR

Overview of GLEIPNIR. The orange boxes highlight the functional component of GLEIPNIR, the Client Identifier, 
Server Identifier, UI Automator, Input Generator, Constraint Resolver, Mutator, Hook, Fuzzing Controller, 
coverage Monitor, Dirtypage Monitor, and Exception Monitor



Identify IPC Clients and Servers(Phase 1)

Identify IPC Clients and Servers contain 4 Steps:

- Identify IPC Clients
- Identify IPC Servers
- Map Client and Server
- Idenitfy SIDs and MIDs on Client



Identify IPC Clients and Servers(SID&MIDs)

Heuristic based algorithm to analyze the IPC client APIs, 
including call sites, parameters, callers of the APIs, bottom up

Analyze proxy stub and create mappings



Prepare Contexts(Phase 2)

- UI Applications (User Inputs and Clicking)
- CLI Applications (User Inputs) 
- Public APIs

Prepare Contexts for three 
types of target Clients: 



Prepare Contexts(Phase 2)

GUI Apps UI Automator
Trigger IPC&Log

Contexts

CLI Apps: Generate Input by designing LLM based workflow

GUI Apps: Generate Input/Click using proposed UI Automator



Prepare Contexts(Phase 2)

Example of the LLM workflow for testing CLI Apps, more details please refer to the paper.



Prepare Contexts(Phase 3)

- Snapshot based fuzzing
- Handle network packets
- Choose fuzzing strategy

Based on the contexts acquired, need 
a solution to recover the contexts 
Efficiently each run: 



Prepare Contexts(Phase 3)

- Mutation and Injection: The fuzzing controller retrieves 
mutated return values from the Mutator and injects them 
into the memory using a hook program after loading a 
snapshot.

- Test Execution and Monitoring: It resumes the client 
process and uses three monitors to collect data and 
decide whether to continue or stop the test.

- Iteration and Seed Management: Upon test completion, 
the controller either starts the next mutation or saves and 
restores seed queue values for further testing.

- Exception and dirtypage Monitoring: These Monitors 
tracks exceptions and memory changes for manual 
vulnerability logging and control when to stop the fuzzer.



Evaluations

➢RQ1: How effective is GLEIPNIR in identifying clients and servers?

➢RQ2: How effective is GLEIPNIR in preparing the  context?

➢RQ3: How effective is GLEIPNIR in detecting client 
vulnerabilities?

➢RQ4: How efficient  is GLEIPNIR in fuzzing clients?

➢RQ5: How does GLEIPNIR compare with other fuzzing 
approaches? 

➢RQ6: How effective are  the strategies  adopted by GLEIPNIR?



Evaluations(1/6)

➢RQ1: How effective is GLEIPNIR in identifying clients and 
servers?

GLEIPNIR identifies 145 Public APIs, and 129 servers, 
missing 19 servers due to legacy clients with removed 
servers. After manual verification, no false positives were 
found. The 2,834 IPC calls identified include 72.54% RPC, 
18.91% COM, and 8.54% Winsock, with RPC and COM 
being the primary IPC methods.



Evaluations(2/6)

➢RQ2: How effective is GLEIPNIR in preparing the  context?

GLEIPNIR prepared contexts for 2,834 IPC 
calls at 537 unique remote methods. It 
triggered 1,686 IPC calls from BuiltIn
applications and 1,148 from Public APIs 
using user interactions and constraint 
solving. A total of 2,169 IPC requests were 
triggered, with constraint solving 
improving results by 11.28%.



Evaluations(3/6)

➢RQ3: How effective is GLEIPNIR in detecting client 
vulnerabilities?

14 vulnerabilities have 
CVE numbers, and 19 have 
been confirmed by 
Microsoft. These 
vulnerabilities caused 
memory corruption, with 
20 leading to remote code 
execution and 5 resulting 
in information leakage.



Evaluations(4/6)

➢RQ4: How efficient  is GLEIPNIR in fuzzing clients?

Figure shows the testing efficiency of GLEIPNIR across 18 built-
in applications. Within four hours, the test coverage increased 
rapidly, with four applications stabilizing. After 24 hours, all 
applications' coverage stabilized, detecting 14 vulnerabilities.



Evaluations(5/6)

➢RQ5: How does GLEIPNIR compare with other fuzzing 
approaches?



Evaluations(6/6)

➢RQ6: How effective are  the strategies  adopted by GLEIPNIR?

During GUI testing, replacing our 
depth-first and IP-based input 
strategies with random strategies 
resulted in zero IPC calls and no 
vulnerability detections. The random 
click strategy triggered 665 IPC calls 
and detected 8 vulnerabilities, which is 
403 fewer calls and 8 fewer 
vulnerabilities than the original 
strategy. For CLI applications, the 
random input strategy failed to trigger 
any IPC calls or detect vulnerabilities.



Conclusion

➢ We present GLEIPNIR, focusing on client-side vulnerabilities often overlooked 
in previous research targeting server-side issues.

➢ The Solution applies static analyses to identify IPC clients and servers to establish
mappings between them, using LLM and UI automation techniques to prepare contexts
for further testing.

➢ In testing 76 client applications over 7 days, GLEIPNIR identified 25 vulnerabilities.
The identified vulnerabilities led to 14 CVEs and a total bounty reward of $36,000



Thanks for listening!
Q&A

Contact: gufangming@iie.ac.cn


	幻灯片 1: Sheep's Clothing, Wolf's Data: Detecting Server-Induced Client Vulnerabilities in Windows Remote IPC
	幻灯片 2: Why research focus on Windows Remote IPC? 
	幻灯片 3: Windows IPC – Communication Infrastructure
	幻灯片 4: Typical Remote IPC in Windows Domain
	幻灯片 5: Typical Remote IPC in Windows Domain
	幻灯片 6: Threat Model in Windows IPC Clients
	幻灯片 7: Case Study: CVE-2024-38025
	幻灯片 8: Challenges in Vulnerability Discovery
	幻灯片 9: Overview of GLEIPNIR
	幻灯片 10: Identify IPC Clients and Servers(Phase 1)
	幻灯片 11: Identify IPC Clients and Servers(SID&MIDs)
	幻灯片 12: Prepare Contexts(Phase 2)
	幻灯片 13: Prepare Contexts(Phase 2)
	幻灯片 14: Prepare Contexts(Phase 2)
	幻灯片 15: Prepare Contexts(Phase 3)
	幻灯片 16: Prepare Contexts(Phase 3)
	幻灯片 17: Evaluations
	幻灯片 18: Evaluations(1/6)
	幻灯片 19: Evaluations(2/6)
	幻灯片 20: Evaluations(3/6)
	幻灯片 21: Evaluations(4/6)
	幻灯片 22: Evaluations(5/6)
	幻灯片 23: Evaluations(6/6)
	幻灯片 24: Conclusion
	幻灯片 25: Thanks for listening! Q&A

