
From Large to Mammoth: 
A Comparative Evaluation of 
LLMs in Vulnerability Detection

Jie Lin and David Mohaisen

University of Central Florida

NDSS Symposium 2025, San Diego, CA



Introduction to the Study

1 Context

Large Language Models 

show remarkable ability in 

in code understanding and 

and generation.

2 Why It Matters

The rise of LLMs is 

promising progress in 

vulnerability analysis and 

detection

3 What's Missing

In-depth insights into how 

how specific LLM attributes 

attributes affect detection 

detection outcomes remain 

remain underexplored.



Motivation

Traditional 
Approaches

Relies on static/dynamic analysis 

analysis and third-party tools, 

which can be resource-

intensive.

intensive.

LLMs' Potential

Capable of end-to-end code 

scanning to determine if a file is 

vulnerable without external aids.

Need for Breadth

Evaluating multiple architectures 

architectures across Java and 

C/C++ reveals strengths, 

weaknesses, and practical 

considerations.



Research Questions

1 Detection Efficacy

How accurately do large 

language models (LLMs) detect 

vulnerabilities in Java and C/C++ 

at the file level?

2 Role of Context 
Window

Does increasing the token limit 

limit (context window) lead to 

to more accurate vulnerability 

vulnerability detection?

3 Quantization 
Trade-Offs

Does model efficiency (through 

(through quantization) 

compromise detection 

accuracy?

4 Architectural Impact

Do advanced or specialized LLMs outperform earlier 

earlier versions in identifying vulnerabilities?

5 Few-Shot Learning

Does providing a handful of labeled examples 

significantly boost detection capability?



General Experiment Workflow

1

Dataset 
Preparation

Collect, clean, and 

filter raw Java and 

C/C++ code.

2

Curated 
Datasets

Finalize balanced sets 

sets of vulnerable and 

and non-vulnerable 

samples.

3

Experimental 
Pipeline

LLMs process code using 

using zero-shot, few-

shot, and controlled 

shot, 

comparison approaches.

approaches.

4

Evaluation

Compare predictions 

predictions against 

ground truth using 

custom and standard 

standard metrics.



Data Curation & Preprocessing

Data Sources

Java: Vul4J dataset (1,803 

(1,803 fix commits; 51 

projects)

C/C++: Big-Vul dataset 

(4,432 commits; 348 

projects)

Cleaning Process

• Syntax parsing with 

Tree-sitter

• Remove comments 

and whitespace

• Exclude non-code files 

and incomplete repos

Final Datasets

Java: 280 files (140 

vulnerable, 140 non-

vulnerable)

C/C++: 200 files (100 

vulnerable, 100 non-

vulnerable)



Model Selection & Configurations
Model Parameters Version Quantizations Context Window

LLaMA-2 7B,13B,70B - q5_K_M 4096

CodeLLaMA 7B,34B,70B - q5_K_M 16384(7B/34B), 2048(70B)

LLaMA-3 8B,70B - q5_K_M 8192

Mistral 7B v0.2 q5_K_M 32768

Mixtral 8√ó7B v0.1 q5_K_M 32768

Gemma 2B,7B v1.1 q5_K_M & fp16 8192

CodeGemma 7B v1.1 q5_K_M & fp16 8192

Phi-2 2.7B v2 q5_K_M & fp16 2048

Phi-3 3.8B* - q5_K_M & fp16 4096

GPT-4 - - - -



Experimental Setup (Continued)

Example System Prompt

"You are an expert Java programmer who can 

carefully analyze the provided Java code.

The goal is to judge if the provided code is 

vulnerable or not. Your answer should

be concise, with a yes or no to represent the code's 

type. If it is vulnerable, then

yes; otherwise, no. Also, please explain concisely 

why you made the decision."

Model Parameters for (open-
source)

• Temperature = 0.5

• Fixed Seed = 42

• Output Token Limit = 2048



Controlled Model Comparison (AP/VAP)

Model Parameters Quantization Context Window AP VAP

LLaMA-2 70B q5_K_M 4096 70 82.43

CodeLLaMA 70B q5_K_M 2048 39.29 58.11

LLaMA-3 8B q5_K_M 8192 38.57 52.7

Mistral 7B q5_K_M 32768 20.71 39.19

Mixtral 8x7B q5_K_M 32768 12.86 21.62

Gemma 2B fp16 8192 78.57 93.24

CodeGemma 7B q5_K_M 8192 48.57 59.46

Phi-2 2.7B q5_K_M 2048 40.71 55.41

Phi-3 3.8B q5_K_M 4096 30 45.95

GPT-4 - - - 37.86 51.35



Controlled Model Comparison (AP/VAP)

Key Takeaways

• Top Performers: Gemma (AP=78.57%, 

VAP=93.24) and LLaMA-2 (70.00%, 82.43) 

lead metrics.

• Surprising Results: Specialized code models 

perform below base models.

• GPT-4: Ranks lower (AP=37.86%, 

VAP=51.35) than several open-source models.

• Impact: Open-source solutions prove more 

effective than expected.



Controlled Model Comparison (EP/VEP)

Model Parameters Quantization Context Window EP VEP

LLaMA-2 13B q5_K_M 4096 71.43 83.78

CodeLLaMA 7B q5_K_M 16384 92.14 98.65

LLaMA-3 70B q5_K_M 8192 92.86 98.65

Mistral 7B q5_K_M 32768 97.86 97.3

Mixtral 8x7B q5_K_M 32768 100 100

Gemma 7B q5_K_M 8192 94.29 98.65

CodeGemma 7B q5_K_M 8192 95 98.65

Phi-2 2.7B q5_K_M 2048 42.14 58.11

Phi-3 3.8B q5_K_M 4096 52.14 66.22

GPT-4 - - - 100 100



Controlled Model Comparison (EP/VEP )

Key Takeaways

• Top Performers: GPT-4 and Mixtral achieve 

perfect EP/VEP scores, with CodeLLaMA and 

LLaMA-3 close behind.

• Model Evolution: Newer variants and 

domain-specific models consistently 

outperform their predecessors in explicitness.

• Trade-offs: High explicitness (EP/VEP) 

doesn't always correlate with strong 

detection accuracy (AP).



Performance Analysis: AP/VAP Results for 
Positive Sample Testing

Model Size

Larger parameter counts don't always yield higher AP/VAP

Quantization

Effectiveness varies by model architecture

Context Window

Generally, larger CW improves detection, but not guaranteed

Mixed Results

Code-focused training doesn't always outperform general-

purpose models

purpose 

Inconsistent Improvements

Newer versions (e.g., LLaMA-3, Phi-3) don't consistently surpass 

predecessors

Key Takeaway

Complex interplay between model size, quantization, CW length, and 

architectural tweaks



Positive and Negative Java Samples 
Settings for 
Vulnerability Detection

Extended Evaluation

280 Java files (140 vulnerable + 

+ 140 non-vulnerable) tested in 

in zero-shot prompt strategy

System Prompt

Consistent with previous tests, 

tests, asking for yes/no + concise 

concise reasoning

Performance Metrics

Precision, Recall, and F1 score 

used to evaluate detection 

accuracy



Positive and Negative Java Samples Results

Model Parameters Quantization Context 

Window

Precision Recall F1

LLaMA-3 70B q5_K_M 8192 23.53 2.86 5.1

Gemma 2B fp16 8192 44.35 78.57 56.7

Gemma 7B fp16 8192 46.19 77.86 57.98

CodeGemma 7B q5_K_M 8192 65.38 48.57 55.74

Phi-3 3.8B fp16 4096 23.4 23.57 23.49



Positive and Negative Java Samples Analysis

1 Key Observations

Highest precision: 

CodeGemma 7B at 65.38%. 

Highest recall: Gemma 2B at 

78.57%.

2 Parameter Size 
Impact

Larger models don't always 

outperform smaller ones

3 Quantization 
Effects

Varies by model family; some 

some improve with fp16, 

others with q5_K_M

4 Architecture Comparisons

Advanced or larger architectures don't guarantee better performance



Positive and Negative C/C++ 
Samples Settings for 
Vulnerability Detection

Extended Evaluation

200 C/C++ files (100 vulnerable + 

vulnerable + 100 non-

vulnerable) tested in zero

vulnerable) 

-

shot prompt strategy

shot 

System Prompt

Consistent with previous tests, 

asking for yes/no + concise 

reasoning

Performance Metrics

Precision, Recall, and F1 score 

used to evaluate detection 

accuracy



Positive and Negative C/C++ Samples Results

Model Parameters Quantization Context 

Window

Precision Recall F1

CodeLLaMA 7B q5_K_M 16384 28.57 32 30.19

LLaMA-3 70B q5_K_M 8192 0 0 0

Gemma 7B q5_K_M 8192 29.29 41 34.17

Gemma 7B fp16 8192 29.58 42 34.71

Phi-3 3.8B fp16 4096 4.12 4 4.06



Vulnerability Detection in C/C++ Analysis

1 Best Overall 
Performance (F1)

Gemma 7B (fp16) at 34.71% 

(Precision: 29.58%, Recall: 

42.00%)

2 Performance Range

Precision peaks around 30%, 

some models (e.g., Phi-3) 

struggle with many false 

positives

3 Quantization 
Impact

Varies by model family; some 

some benefit from fp16, others 

others from q5_K_M

4 Model Size Effects

Larger models don't consistently outperform smaller 

smaller counterparts

5 Zero Performance Concern

LLaMA-3 70B scores 0.00% in precision, recall, F1, 

F1, suggesting severe task mismatch



Few-Shot Learning (Java) 
Experimental Settings

1 Setup

The prompt is enhanced 

with two example cases, 

one containing a 

vulnerability and the other 

other secure.

2 Model Selection

We chose top-

performing models from the 

performing 

the zero-shot phase 

(LLaMA-2 70B, Mistral 7B, 

7B, Gemma 7B, Phi-2 2.7B) 

2.7B) for this experiment.

experiment.

3 Goal

This setup aims to assess 

assess how a limited 

number of examples (few

(few-

-

shot) influences 

vulnerability detection 

accuracy.



Few-Shot Learning (Java) Results

Model Parameters Quantization Context 

Window

Precision Recall F1

LLaMA-2 70B q5_K_M 4096 27.66 37.41 31.8

Mistral 7B q5_K_M 32768 33.33 2.16 4.05

Gemma 7B fp16 8192 43.24 46.04 44.6

Phi-2 2.7B q5_K_M 2048 0 0 0



Learning from Examples (C/C++) 
Results and Analysis

Setup

Four models tested with two example 

code samples (one vulnerable, one 

safe)

Model Performance

All models showed 0% accuracy with 

specific patterns:

• Mistral 7B: Consistently labeled all 

code "safe"

• CodeLLaMA 7B: Inconsistent errors 

in both directions

• Gemma 7B: Only 4% safe detection 

with 46% false alarms

• Phi-2: Merely 1% safe detection 

detection with 49% false alarms

alarms

Key Implications

Poor few-shot learning performance 

suggests immediate need for:

• Different training methods

• Better example selection



Vulnerability Type Identification (Java) Settings

Why This Matters

Moves beyond simple 

classification to specific 

vulnerability types (e.g., SQL 

injection)

Experimental 
Setup

Modified prompt to request 

request CVE ID and short 

description of each 

vulnerability

Metrics

AP (Accurate Responses 

Percentage) and C (Correct 

Vulnerability Type Count)



Vulnerability Type Identification (Java) Results

Model Parameters Quantization Context 

Window

Zero-Shot AP (%) Few-Shot AP (%)

LLaMA-2 70B q5_K_M 4096 68.57 21.01

CodeLLaMA 7B q5_K_M 16384 12.86 34.06

LLaMA-3 70B q5_K_M 8192 4.29 20.29

Gemma 7B q5_K_M 8192 75.71 37.68

Gemma 7B fp16 8192 77.86 39.86



Vulnerability Type Identification (Java) Analysis

1 Few-Shot Impact

Many models lose accuracy 

from zero-shot to few-shot 

(e.g., Gemma 7B drops from 

77.86% to 39.86%)

2 Type 
Identification

Very limited success; mostly 

0 correct type 

identifications across 

models

3 Performance 
Comparison

Simpler "is it vulnerable?" 

vulnerable?" tasks yielded 

yielded higher AP than 

specific type identification

identification



Prompt Evaluation Time Analysis

1

Context Window 
Impact

Larger CW: Slower prompt 

processing, faster response 

generation

2

Parameter Size 
Effect

Bigger models lead to longer 

longer total processing times

times

3

Quantization 
Benefits

Efficient methods (e.g., 

q5_K_M) reduce evaluation 

duration



Addressing Research Questions

RQ1: LLMs for 
Vulnerability 
Detection

Yes, but with substantial variability 

variability across languages and 

and tasks

RQ2: Context 
Window Impact

Larger CW generally leads to better 

context retention and higher 

accuracy

RQ3: Quantization 
Effects

Impact is model-dependent; some 

some improve with fp16, others 

others with q5_K_M

RQ4: Advanced Architectures

Not consistently better; architectural updates don't 

don't guarantee improved detection

RQ5: Few-Shot Learning

Counterintuitively, often degraded performance 

compared to zero-shot approaches



Conclusion

1 Study Overview

Evaluated 38 LLM 

configurations for 

vulnerability detection in 

Java and C/C++

2 Key Takeaways

Architectural gains not 

guaranteed; context 

window crucial; few-

shot scenarios can degrade 

shot 

degrade performance;

open-sourced Models can 

can surpass closed-

source models. 

source 

3 Future 
Directions

Refine architectures, 

balance context, improve 

improve prompt 

engineering, explore more 

more code domains



Q&A
Jie Lin (ji132432@ucf.edu)

David Mohaisen (mohaisen@ucf.edu)

mailto:ji132432@ucf.edu
mailto:mohaisen@ucf.edu

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29

