From Large to Mammoth: A Comparative Evaluation of LLMs in Vulnerability Detection

Jie Lin and David Mohaisen

University of Central Florida

NDSS Symposium 2025, San Diego, CA

Introduction to the Study

2

Context

1

Large Language Models show remarkable ability in in code understanding and and generation.

Why It Matters

The rise of LLMs is promising progress in vulnerability analysis and detection

3

What's Missing

- In-depth insights into how
- how specific LLM attributes
- attributes affect detection
- detection outcomes remain
- remain underexplored.

Motivation

Traditional Approaches

Relies on static/dynamic analysis analysis and third-party tools, which can be resource-intensive. intensive.

LLMs' Potential

Capable of end-to-end code scanning to determine if a file is vulnerable without external aids.

C/C++ reveals strengths,

considerations.

Need for Breadth

- Evaluating multiple architectures
- architectures across Java and
- weaknesses, and practical

Research Questions

Detection Efficacy

How accurately do large language models (LLMs) detect vulnerabilities in Java and C/C++ at the file level?

Role of Context Window

2

Does increasing the token limit limit (context window) lead to to more accurate vulnerability vulnerability detection?

accuracy?

Architectural Impact

Do advanced or specialized LLMs outperform earlier earlier versions in identifying vulnerabilities?

Few-Shot Learning

Does providing a handful of labeled examples significantly boost detection capability?

Quantization **Trade-Offs**

Does model efficiency (through

(through quantization)

compromise detection

General Experiment Workflow

Dataset Preparation

Collect, clean, and filter raw Java and C/C++ code.

Curated Datasets

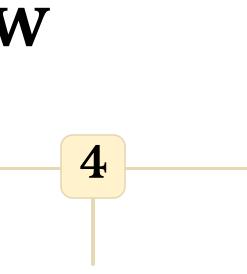
2

Finalize balanced sets sets of vulnerable and and non-vulnerable samples.

Experimental Pipeline

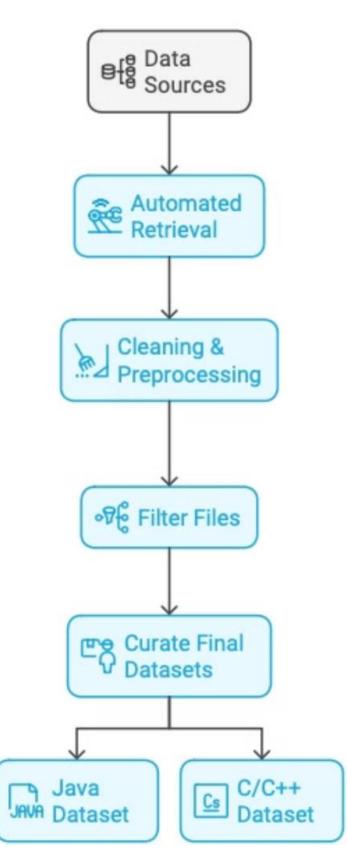
3

LLMs process code using using zero-shot, few-shot, shot, and controlled comparison approaches. approaches.



Evaluation

Compare predictions predictions against ground truth using custom and standard standard metrics.



Data Curation & Preprocessing

Data Sources

Java: **Vul4J** dataset (1,803) (1,803 fix commits; 51) projects)

C/C++: **Big-Vul** dataset (4,432 commits; 348 projects)

Cleaning Process I

- Syntax parsing withJava: 280 files (140Tree-sittervulnerable, 140 non-Remove commentsvulnerable)
- and whitespace
- Exclude non-code files and incomplete repos

Final Datasets

C/C++: **200** files (100 vulnerable, 100 nonvulnerable)

Model Selection & Configurations

Model	Parameters	Version	Quantizations	Context Window
LLaMA-2	7B,13B,70B	-	q5_K_M	4096
CodeLLaMA	7B,34B,70B	-	q5_K_M	16384(7B/34B), 2048(70
LLaMA-3	8B,70B	-	q5_K_M	8192
Mistral	7B	v0.2	q5_K_M	32768
Mixtral	8√ó7B	v0.1	q5_K_M	32768
Gemma	2B,7B	v1.1	q5_K_M & fp16	8192
CodeGemma	7B	v1.1	q5_K_M & fp16	8192
Phi-2	2.7B	v2	q5_K_M & fp16	2048
Phi-3	3.8B*	-	q5_K_M & fp16	4096
GPT-4	-	-	-	-

'0B)			

Experimental Setup (Continued)

Example System Prompt

"You are an expert Java programmer who can carefully analyze the provided Java code. The goal is to judge if the provided code is vulnerable or not. Your answer should be concise, with a yes or no to represent the code's type. If it is vulnerable, then yes; otherwise, no. Also, please explain concisely why you made the decision."

Model Parameters for (opensource)

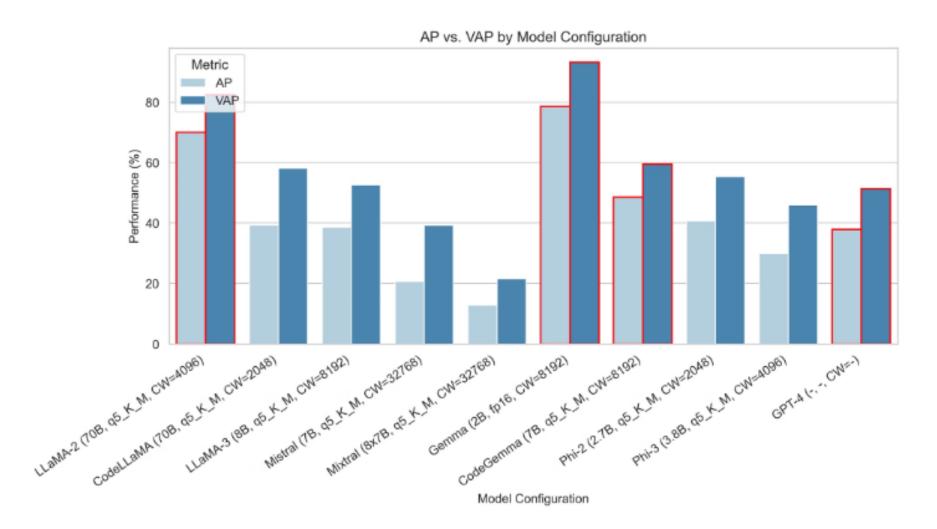
- Temperature = 0.5
- Fixed Seed = 42
- Output Token Limit = 2048

Controlled Model Comparison (AP/VAP)

Model	Parameters	Quantization	Context Window	AP
LLaMA-2	70B	q5_K_M	4096	70
CodeLLaMA	70B	q5_K_M	2048	39.29
LLaMA-3	8B	q5_K_M	8192	38.57
Mistral	7B	q5_K_M	32768	20.71
Mixtral	8x7B	q5_K_M	32768	12.86
Gemma	2B	fp16	8192	78.57
CodeGemma	7B	q5_K_M	8192	48.57
Phi-2	2.7B	q5_K_M	2048	40.71
Phi-3	3.8B	q5_K_M	4096	30
GPT-4	-	-	-	37.86

VAP		
82.43		
58.11		
52.7		
39.19		
21.62		
93.24		
59.46		
55.41		
45.95		
51.35		

Controlled Model Comparison (AP/VAP)



Key Takeaways

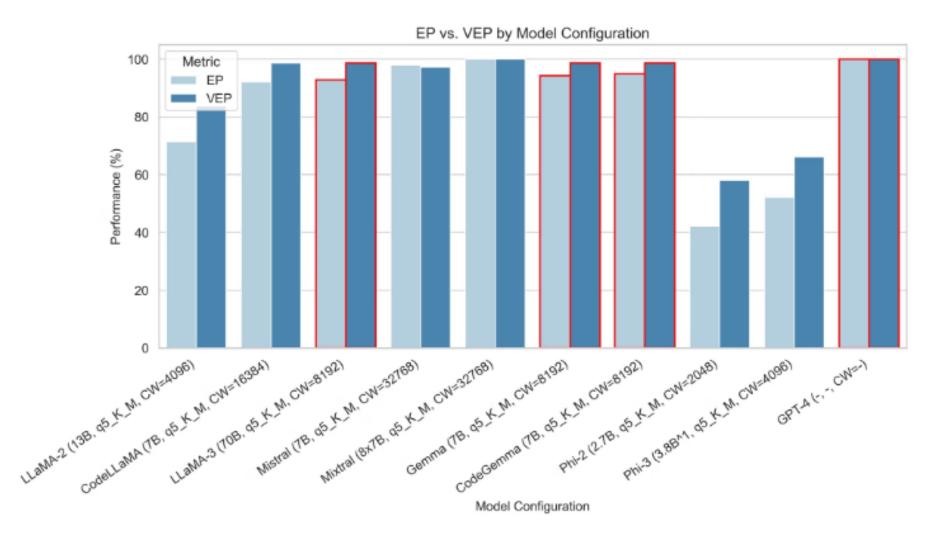
- Top Performers: Gemma (AP=78.57%, VAP=93.24) and LLaMA-2 (70.00%, 82.43) lead metrics.
- Surprising Results: Specialized code models perform below base models.
- GPT-4: Ranks lower (AP=37.86%, VAP=51.35) than several open-source models.
- Impact: Open-source solutions prove more effective than expected.

Controlled Model Comparison (EP/VEP)

Model	Parameters	Quantization	Context Window	EP
LLaMA-2	13B	q5_K_M	4096	71.43
CodeLLaMA	7B	q5_K_M	16384	92.14
LLaMA-3	70B	q5_K_M	8192	92.86
Mistral	7B	q5_K_M	32768	97.86
Mixtral	8x7B	q5_K_M	32768	100
Gemma	7B	q5_K_M	8192	94.29
CodeGemma	7B	q5_K_M	8192	95
Phi-2	2.7B	q5_K_M	2048	42.14
Phi-3	3.8B	q5_K_M	4096	52.14
GPT-4	-	-	-	100

VEP
83.78
98.65
98.65
97.3
100
98.65
98.65
58.11
66.22
100

Controlled Model Comparison (EP/VEP)



Key Takeaways

- LLaMA-3 close behind.
- Model Evolution: Newer variants and domain-specific models consistently
- doesn't always correlate with strong detection accuracy (AP).

• Top Performers: GPT-4 and Mixtral achieve perfect EP/VEP scores, with CodeLLaMA and

outperform their predecessors in explicitness.

• Trade-offs: High explicitness (EP/VEP)

Performance Analysis: AP/VAP Results for **Positive Sample Testing**

Model Size

Larger parameter counts don't always yield higher AP/VAP

Context Window

Generally, larger CW improves detection, but not guaranteed

Quantization

Effectiveness varies by model architecture

Mixed Results

Code-focused training doesn't always outperform general-purpose purpose models

Inconsistent Improvements

Newer versions (e.g., LLaMA-3, Phi-3) don't consistently surpass predecessors

Key Takeaway

Complex interplay between model size, quantization, CW length, and architectural tweaks

Positive and Negative Java Samples Settings for Vulnerability Detection

Extended Evaluation

280 Java files (140 vulnerable ++ 140 non-vulnerable) tested inin zero-shot prompt strategy

System Prompt

Consistent with previous tests, tests, asking for yes/no + concise concise reasoning

Performance Metrics

Precision, Re used to evalu accuracy

Precision, Recall, and F1 score

used to evaluate detection

Positive and Negative Java Samples Results

Model	Parameters	Quantization	Context Window	Precision	Recall	F1
LLaMA-3	70B	q5_K_M	8192	23.53	2.86	5.1
Gemma	2B	fp16	8192	44.35	78.57	56.7
Gemma	7B	fp16	8192	46.19	77.86	57.98
CodeGemma	7B	q5_K_M	8192	65.38	48.57	55.74
Phi-3	3.8B	fp16	4096	23.4	23.57	23.49

Positive and Negative Java Samples Analysis

Key Observations

Highest precision:

CodeGemma 7B at 65.38%.

Highest recall: Gemma 2B at

78.57%.

Parameter Size Impact

Larger models don't always outperform smaller ones

Effects

Varies by model family; some

some improve with fp16,

others with q5_K_M

Advanced or larger architectures don't guarantee better performance

2

Quantization

Positive and Negative C/C++ Samples Settings for **Vulnerability Detection**

Extended Evaluation

200 C/C++ files (100 vulnerable + vulnerable + 100 non-vulnerable) vulnerable) tested in zero-shot shot prompt strategy

System Prompt

Consistent with previous tests, asking for yes/no + concise reasoning

accuracy

Performance Metrics

Precision, Recall, and F1 score

used to evaluate detection

Positive and Negative C/C++ Samples Results

Model	Parameters	Quantization	Context Window	Precision	Recall
CodeLLaMA	7B	q5_K_M	16384	28.57	32
LLaMA-3	70B	q5_K_M	8192	0	0
Gemma	7B	q5_K_M	8192	29.29	41
Gemma	7B	fp16	8192	29.58	42
Phi-3	3.8B	fp16	4096	4.12	4

F1	
30.19	
0	
34.17	
34.71	
4.06	

Vulnerability Detection in C/C++ Analysis

Best Overall Performance (F1)

Gemma 7B (fp16) at 34.71% (Precision: 29.58%, Recall: 42.00%)

2

Performance Range

Precision peaks around 30%,

some models (e.g., Phi-3)

struggle with many false

positives

3

Impact

Varies by model family; some some benefit from fp16, others others from q5_K_M

Model Size Effects

Larger models don't consistently outperform smaller smaller counterparts

Zero Performance Concern

LLaMA-3 70B scores 0.00% in precision, recall, F1, F1, suggesting severe task mismatch

Quantization

Few-Shot Learning (Java) **Experimental Settings**

2

Setup

The prompt is enhanced with two example cases, one containing a vulnerability and the other other secure.

Model Selection

We chose top-performing performing models from the the zero-shot phase (LLaMA-2 70B, Mistral 7B, 7B, Gemma 7B, Phi-2 2.7B) 2.7B) for this experiment. experiment.

3

Goal

accuracy.

This setup aims to assess assess how a limited number of examples (few-(few-shot) influences vulnerability detection

Few-Shot Learning (Java) Results

Model	Parameters	Quantization	Context Window	Precision	Recall	F1
LLaMA-2	70B	q5_K_M	4096	27.66	37.41	31.8
Mistral	7B	q5_K_M	32768	33.33	2.16	4.05
Gemma	7B	fp16	8192	43.24	46.04	44.6
Phi-2	2.7B	q5_K_M	2048	0	0	0

Learning from Examples (C/C++) **Results and Analysis**

Setup

Four models tested with two example code samples (one vulnerable, one safe)

Model Performance

All models showed 0% accuracy with specific patterns:

- Mistral 7B: Consistently labeled all \bullet code "safe"
- CodeLLaMA 7B: Inconsistent errors • in both directions
- Gemma 7B: Only 4% safe detection \bullet with 46% false alarms
- Phi-2: Merely 1% safe detection detection with 49% false alarms alarms

Key Implications

suggests immediate need for:

- Different training methods
- Better example selection

Poor few-shot learning performance

Vulnerability Type Identification (Java) Settings

Why This Matters

Moves beyond simple classification to specific vulnerability types (e.g., SQL injection)

Experimental Setup

Modified prompt to request request CVE ID and short description of each vulnerability

Metrics

AP (Accurate Responses Vulnerability Type Count)

Percentage) and C (Correct

Vulnerability Type Identification (Java) Results

Model	Parameters	Quantization	Context Window	Zero-Shot AP (%)	Few-Shot AP (%)
LLaMA-2	70B	q5_K_M	4096	68.57	21.01
CodeLLaMA	7B	q5_K_M	16384	12.86	34.06
LLaMA-3	70B	q5_K_M	8192	4.29	20.29
Gemma	7B	q5_K_M	8192	75.71	37.68
Gemma	7B	fp16	8192	77.86	39.86

Vulnerability Type Identification (Java) Analysis

Few-Shot Impact 1

Many models lose accuracy from zero-shot to few-shot (e.g., Gemma 7B drops from 77.86% to 39.86%)

Type Identification

Very limited success; mostly 0 correct type identifications across models

3

identification

Performance Comparison

- Simpler "is it vulnerable?"
- vulnerable?" tasks yielded
- yielded higher AP than
- specific type identification

Prompt Evaluation Time Analysis

1

Larger CW: Slower prompt processing, faster response generation

Parameter Size Effect

2

Bigger models lead to longer longer total processing times times

Quantization **Benefits**

Efficient methods (e.g.,

- q5_K_M) reduce evaluation
 - duration

3

Addressing Research Questions

RQ1: LLMs for Vulnerability Detection

Yes, but with substantial variability variability across languages and and tasks

RQ2: Context Window Impact

Larger CW generally leads to better context retention and higher accuracy

RQ3: Quantization Effects

others with q5_K_M

RQ4: Advanced Architectures

Not consistently better; architectural updates don't don't guarantee improved detection

RQ5: Few-Shot Learning

Counterintuitively, often degraded performance compared to zero-shot approaches

Impact is model-dependent; some some improve with fp16, others

Conclusion

Study Overview

Evaluated 38 LLM configurations for vulnerability detection in Java and C/C++

2

Key Takeaways

Architectural gains not guaranteed; context window crucial; few-shot shot scenarios can degrade degrade performance; open-sourced Models can can surpass closed-source source models.

3

Future **Directions**

- Refine architectures,
- balance context, improve
- improve prompt
- engineering, explore more
- more code domains

Jie Lin (ji132432@ucf.edu)

David Mohaisen (<u>mohaisen@ucf.edu</u>)

