
1Huazhong University of Science and Technology
2University of Waterloo

3Sangfor Technologies Inc.
4The Hong Kong Polytechnic University

Be Careful of What You Embed:
Demystifying OLE Vulnerabilities

Yunpeng Tian1 , Feng Dong1, Haoyi Liu1, Meng Xu2,
Zesen Ye3, Zhiniang Peng1,3, Shenghui Li1, Xiapu Luo4, Haoyu Wang1

What is OLE?

NDSS 20251

https://support.microsoft.com/en-us/office/embed-or-link-
to-a-file-in-word-8d1a0ffd-956d-4368-887c-b374237b8d3a

Introduction to OLE
• OLE(Object Linking and Embedding) is a technology that allows
sharing of data and functionalities between Windows applications.
•Developed by Microsoft in the early 1990s.

Application Scenarios of OLE
•Document Editing: Embedding Excel spreadsheets in Word
documents.
•Presentations: Embedding Visio diagrams in PowerPoint.
•Data Sharing: Sharing data between different software applications
to maintain data consistency.

Understanding OLE

NDSS 20252

Basics of OLE 2.0:

• COM Interfaces: All OLE components, as
COM components, expose the IUnknown
interface, allowing clients to discover other
interfaces like IOleObject, IOleLink, and
IViewObject2 for specific OLE functionalities.

• Structured Storage: Since different OLE
components have varying implementations
of IPersistStorage, the format of stored data
can differ significantly.

OLE Object Categories:

• Embedded Objects: Self-contained, stored in
host document (e.g., Word in Excel).

• Linked Objects: References external files,
updates reflect in the host document.

Focus: In-process embedded objects.

OLE components are special COM components

How OLE Works

• Step 1: Retrieve the CLSID from the
document.

• Step 2: Invoke CoCreateInstance to load the
module

• Step 3: Invoke IPersistStorage::Load to
deserialize the OLE object

NDSS 20253

Summary of Known Office Vulnerabilities

NDSS 20254

Key Findings:

Embedded OLE Object Parsing Problems:
• Account for 43.24% of vulnerabilities.
• Pose significant current risk.

End-of-Life Applications:
• 27.03% of vulnerabilities are no longer

applicable.

Difficult to Exploit:
• 13.51% are unlikely to be practically

exploited (no incidents in the past five
years).

OLE Attack Vectors

NDSS 20255

• Type-1: Loading a COM Component Not Intended for OLE

• Type-2: DLL Preloading Attacks

• Type-3: OLE Data Parsing Error in IPersistStorage

OLE Attack Vectors

Type-1: Loading a COM Component Not
Intended for OLE

NDSS 20256

Type-1 CVEs account for 3 out of the 21 surveyed
CVEs.

• CLSID used to index and load components.

• With thousands of CLSIDs existing in the
system, only a subset corresponds to actual
OLE components

• Triggered by loading COM components not
intended for OLE.

• Existing checks in Office are inadequate,
risking vulnerabilities like uninitialized reads.

Example: CVE-2015-1770
• Caused by improper initialization of OSF.DLL.
• Despite having a CLSID, OSF.DLL is not meant

to be an OLE component.
• Crash traced to uninitialized fields during

component loading.

In CVE-2015-1770, a COM instance is created by
calling CoCreateInstance

OLE Attack Vectors

Type-2: DLL Preloading Attacks

NDSS 20257

Type-2 CVEs account for 11 out of the 21
surveyed CVEs.

OLE components load unauthenticated DLLs.
• If the DLL is requested while the

Registry does not hold a complete path
for the DLL, Windows searches for the
required library according to a
predefined sequence of directories (i.e.,
DLL search order).

• Variations in Windows installations can
lead to path searching for DLLs, allowing
malicious insertion.

Example: CVE-2023-35343

• In CoCreateInstance at Windows Geolocation
Service, the GetFindMyDeviceEnabled
method is invoked:

• LibraryW =
LoadLibraryW(L"mdmcommon.dll");

• mdmcommon.dll does not exist in Windows
Server.

If there is a malicious mdmcommon.dll in the
current directory, it could lead to RCE.

OLE Attack Vectors

Type-3: OLE Data Parsing Error in
IPersistStorage

NDSS 20258

Example: CVE-2017-11882
• Found in EQNEDT32.exe, used in Office for

equation parsing.
• Vulnerability leads to stack overflow during font

name parsing.
• Exploited via spear-phishing, allows execution of

arbitrary code.

Data parsing is prone to vulnerabilities due to
untrusted input.
• IPersistStorage::Load is responsible for

loading objects stored within the storage
section in the input document

• Many OLE-related vulnerabilities stem from
IPersistStorage::Load.

Security Implications:
• Systems must enforce strict data validation for

storage data.
• Distinct methods of CLSID and storage data

handling highlight differences between Type-1
and Type-3 vulnerabilities

Type-3 CVEs account for 7 out of the 21
surveyed CVEs.

Overview
Facilitate the efficient and accurate detection of OLE-related vulnerabilities.

• Phase 1: Analyzing OLE components.

• Phase 2: Constructing an OLE runtime.

• Phase 3: Fuzz OLE-specific storage segment.

• Phase 4: Behavior Detection.

• Phase 5: Vulnerability Analysis.

NDSS 20259

Analyzing OLE components

NDSS 202510

To analyze OLE components, we first need to extract COM components and then analyze the OLE
components from them.

1.COM Component Collection:
Search Windows registry (HKEY_CLASSES_ROOT\CLSID) for CLSIDs.
Get DLL locations from InprocServer32 and LocalServer32 sub-keys.

2.OLE Component Identification:
Create objects from CLSIDs and check for IOleObject interfaces.

3.Interface Analysis:
Use PowerShell's Get-Member to list interfaces and properties.
OleViewDotNet is used to decompile and export interface declarations.

(for type-1)

Constructing an OLE runtime

NDSS 202511

We need to recreate the runtime environment for OLE
components, but reverse engineering the GUI and Office
applications themselves is challenging.

Solution:
• A misaligned feature enables loading and initializing OLE

components without GUI interactions, eliminating the need for
reverse engineering and simulating GUI interactions.

• Create RTFs for each OLE component using embedded CLSID.
• Simulate user actions to load OLE components and trigger

initialization.

An example of an RTF document that triggers the loading of an
OLE object without requiring user interaction

(for type-2)

Fuzz OLE-specific storage segment

NDSS 202512

We want to perform fuzz testing on OLE, but OLE components
have a large number of structural validations, and each OLE
component has its own format. Randomly generated formats
are difficult to pass these validations.

1) ActiveX-based input generation:
To build an initial corpus for known storage formats, we
developed 74 kinds of ActiveX controls . For example, the
CheckBox Control with CLSID: 8BD21D40-EC42-11CE-9E0D-
00AA006002F3 is related to the module FM20.DLL. From the
checkbox control, we can extract the binary file format required
by the FM20.DLL component.

ActiveX controls, based on
OLE's lower-level objects and
interfaces, are embeddable OLE
objects in Word or Excel files,
offering interactive features.

(for type-3)

Fuzz OLE-specific storage segment

NDSS 202513

2) Micro-snapshot fuzzing:
Fuzzing OLE components with unknown storage formats and no ActiveX support:

•Naive Approach: Treat input as a blob and apply random mutations, but this is often ineffective
for structured formats.

•Ideal Approach: Reverse engineer input formats and use grammar-based generation for
accurate mutations, though not practical due to many closed-source OLE components with little
documentation.

•Our Solution: For unknown formats, use micro-snapshot fuzzing, which divides the input blob
into chunks, each corresponding to an event in snapshot fuzzing.

Fuzz OLE-specific storage segment

NDSS 202514

2) Micro-snapshot fuzzing:
Input Processing: Inputs are read chunk-by-chunk via the
standard interface CExposedStream::Read and are not re-read.
The second parameter of CExposedStream::Read is the buffer
for storing data, the third is the amount to read, and the last is
an integer pointer for the actual bytes read.

Snapshot Mechanism: If a chunk of input yields new coverage,
OLEXPLORE takes a snapshot of the current process, which is
restored in subsequent fuzzing to mutate the next chunk.

Systematic Exploration:
Base Case: Probe for one-chunk snapshots by mutating the
chunk marked by the first CExposedStream::Read .
Inductive Case: For each k-chunk snapshot, resume the
snapshot, generate, and check the (k + 1)-th chunk for new
coverage. If new coverage is found, save it as a (k + 1)-chunk
snapshot.

Behavior Detection & Vulnerability Analysis

Vulnerability Detection:

• Create mock DLLs to test priority in loading sequence.

• Use Process Monitor to track DLLs loaded by
CoCreateInstance.

• Detect unintended DLL loading using the
LoadLibraryEx API.

• Enable PageHeap to detect memory errors and
vulnerabilities.

Vulnerability Analysis :

• Use WinDbg to analyze crash dumps and identify
vulnerabilities.

• Conduct tests in Protected View Mode to check
security measures. Exploitation involves disguising RTFs,
delivering DLLs, and bypassing Protected View.

NDSS 202515

Evaluation
Evaluation Setup:

• Tested on Windows 10, Server 2019, 2022, 2023, and Windows 11.

• Default OS settings with applications like Visual Studio and Microsoft Exchange.

• Desktop system: Intel i9-13900H, 32GB RAM.

Research Questions:

• RQ1: How effective are the most important components of OLEXPLORE (i.e., OLE identification and
storage fuzzing)?

• RQ2: How effective is OLEXPLORE on detecting vulnerabilities within OLE components specific to
Office?

• RQ3: How precise is OLEXPLORE in detecting unsafe OLE components?

NDSS 202516

Evaluation
RQ1: Evaluation of OLExplore’s Components

Identifying OLE components from COM components:

• Analyzed 7,361/7369 COM components on Windows 10/11.

• Prioritized Microsoft COM components for their widespread use.

• Examined 257 OLE objects.

Effectiveness of micro-snapshot fuzzing：

• With Micro-Snapshot Fuzzing

• Found 4 out of 7 identified Type-3 bugs in non-ActiveX items.

• Without Micro-Snapshot Fuzzing

• None of these bugs were found by randomly mutating the entire "structured storage."

NDSS 202517

Evaluation
RQ1: Evaluation of OLExplore’s Components

 Performance of micro-snapshot fuzzing：

NDSS 202518

A 2500-minute testing period on inkobj.dll

• Micro-snapshot improves early-stage
coverage via snapshotting.

• Execution Rate in inkobj.dll :
With snapshotting: 107 execs/s.
Without snapshotting : 375 execs/s.

• Lower speed but higher coverage
enhances vulnerability detection.

Evaluation
RQ2: How effective is OLEXPLORE on detecting vulnerabilities within OLE components specific to
Office?

NDSS 202519

• 26 vulnerabilities found, 17
of which have been
assigned CVE IDs.

• 18 vulnerabilities listed are
capable of being exploited
for remote code execution.

Evaluation
RQ3: How precise is OLEXPLORE in detecting unsafe OLE components?

NDSS 202520

Type-1 and Type-3 vulnerabilities on Windows
10 version 10.0.19041.1237 yielded a total of 12
crash dump files. Out of these, 5 were confirmed
as CVEs, while the remaining 7 were identified as
null pointer issues upon further examination.

Similarly, on Windows Server 2022 version
10.0.20348.1487, the count of null pointer
problems stands at 8.

The rationale for classifying these bugs as false
positives rather than CVEs is rooted in their
exploitability, or lack thereof, under modern Windows
and Office mitigation mechanisms; such issues are
substantially less likely to be leveraged for security
attacks.

Conclusion

• We conducted an exhaustive survey on all publicly disclosed OLE-related vulnerabilities and delved
into the fundamental causes of these flaws. Building on the outcomes of our investigation, we
identified current attack surfaces for OLE and employed three vulnerability patterns to evaluate the
exploitability of OLE.

• We developed OLEXPLORE, a pioneering tool for systematic vulnerability detection in OLE
components. Novel techniques proposed in OLEXPLORE include: GUI-interaction bypassing, Micro-
snapshot fuzzing, A vulnerability weaponization technique to bypass Office Protected View Mode.

• We systematically analyzed all registered COM components (a superset of OLE components) in
popular Windows platforms, identified 257 OLE components, and reported 26 bugs. Out of those,
17 vulnerabilities have been assigned CVE numbers, each with the potential for Remote Code
Execution.

21

Thank You ! Questions?

22

Summary of Known Office Vulnerabilities

NDSS 202523

Exploited Office Vulnerabilities in the last 10 years

Observations:
• Decrease in exploitable vulnerabilities over the

last 10 years.

Reasons for Decline:
• Microsoft's effective patching.
• Many vulnerabilities reaching end of lifecycle.

Attackers need to find new attack surfaces.
• OLE vulnerabilities remain significant due to

their high proportion.
• Essential to conduct security checks on OLE

objects.

OLE Attack Vectors

Type-3: OLE Data Parsing Error in
IPersistStorage

NDSS 202524

OLE Structured Storage:
• Stores heterogeneous data objects within a

single file transparently.

• Stream (IStream Interface): Acts like
traditional files with read/write methods.

• Storage (IStorage Interface): Functions like
directories, containing streams and other
storages.

• In the past, data format variations required
manual reverse engineering for fuzz testing.

Type-3 CVEs account for 7 out of the 21
surveyed CVEs.

A sketch of the format of a compound document with OLE objects embedded

Evaluation
RQ2: How effective is OLEXPLORE on detecting vulnerabilities within OLE components
specific to Office?

NDSS 202525

Type-1 vulnerability example: CVE-2022-21971

Uninitialized Pointer Dereference:

In the destructor
WapAuthProvider::~WapAuthProvider,
a pointer at offset 0x50 is freed without initialization,
leading to potential remote arbitrary code execution.

Evaluation
RQ2: How effective is OLEXPLORE on detecting vulnerabilities within OLE components
specific to Office?

NDSS 202526

Type-2 vulnerability example: CVE-2023-35343

Missing Library Loading:

The system attempts to load
mdmcommon.dll via LoadLibraryW, but the
file is absent in Windows Server environments.

Attackers can exploit this by placing a
malicious DLL in the target directory for
remote code execution.

Evaluation
RQ2: How effective is OLEXPLORE on detecting vulnerabilities within OLE components
specific to Office?

NDSS 202527

Type-3 vulnerability example: CVE-2022-23290

Memory Corruption Due to Partial Initialization:

In CSketchInk::FreeStrokeList, an uninitialized
pointer causes memory corruption when
accessing allocated memory, indicated by
abnormal values (c0c0c0c0c0c0c0c0).

	幻灯片 0
	幻灯片 1: What is OLE?
	幻灯片 2: Understanding OLE
	幻灯片 3: How OLE Works
	幻灯片 4: Summary of Known Office Vulnerabilities
	幻灯片 5: OLE Attack Vectors
	幻灯片 6: OLE Attack Vectors
	幻灯片 7: OLE Attack Vectors
	幻灯片 8: OLE Attack Vectors
	幻灯片 9: Overview
	幻灯片 10: Analyzing OLE components
	幻灯片 11: Constructing an OLE runtime
	幻灯片 12: Fuzz OLE-specific storage segment
	幻灯片 13: Fuzz OLE-specific storage segment
	幻灯片 14: Fuzz OLE-specific storage segment
	幻灯片 15: Behavior Detection & Vulnerability Analysis
	幻灯片 16: Evaluation
	幻灯片 17: Evaluation
	幻灯片 18: Evaluation
	幻灯片 19: Evaluation
	幻灯片 20: Evaluation
	幻灯片 21: Conclusion
	幻灯片 22
	幻灯片 23: Summary of Known Office Vulnerabilities
	幻灯片 24: OLE Attack Vectors
	幻灯片 25: Evaluation
	幻灯片 26: Evaluation
	幻灯片 27: Evaluation

