L-HAWK: A Controllable Physical Adversarial Patch Against a Long-Distance Target

Taifeng Liu¹, Yang Liu¹, Zhuo Ma¹, Tong Yang², Xinjing Liu¹, Teng Li¹, Jianfeng Ma¹

¹AI-Ants Lab, Xidian University ²Peking University

Autonomous Intelligent Mobile Systems

Visual Recognition in Autonomous Driving

◆ AD is vulnerable and susceptible to physical adversarial patches.

Research on Adversarial Patch Attacks

Traditional Adversarial Attack is Not Controllable

The risk of adversarial patches being discovered increases.

Can we control an adversarial patch to affect only one specific target, rather than all passing vehicles?

Research on Adversarial Patch Attacks

Discovery: The camera sensor is susceptible to **special signals** such as ultrasonic waves, electromagnetic pulses, lasers, etc.

Al-AntS

6

[2] Rolling colors: Adversarial laser exploits against traffic light recognition (USENIX Security 2022)

[3] GlitchHiker: Uncovering Vulnerabilities of Image Signal Transmission with IEMI (USENIX Security 2023)

[4] TPatch: A Triggered Physical Adversarial Patch (USENIX Security 2023)

NDSS 2025 L-HAWK Taifeng Liu | tfliu@gmx.com

L-HAWK: Controllable Adversarial Attacks

• Why **laser signal** can be used to **control** the adversarial patch?

> The **color stripe** caused by laser signal attack.

Without laser attacks

With laser attacks

L-HAWK: Controllable Adversarial Attacks

Challenge 1: How to make the adversarial patch can be controlled by the laser signal?

• Challenge 2: How to increase the *attack robustness* of in the physical world?

• Challenge 1: How to ensure that the adversarial patch can be controlled by the laser signal?

The intensity of color stripe is affected by multiple factors, e.g., laser power, attack distance, ambient light intensity.

- Challenge 1: How to ensure that the adversarial patch can be controlled by the laser signal?
 - > The previous patch optimization method¹: (only optimize the patch)

$$arg \min_{\delta} \mathbb{E}_{x,t}[\mathcal{L}(x,\delta,t)]$$

Some color stripes can not control the patch due to *strong or weak intensity*.

> Thus, we optimize not only the patch but also the color stripe:

$$arg \min_{\delta,t} \mathbb{E}_x [\mathcal{L}_*(x,\delta,t)], \ s.\,t.\,\,t \in \{\mathcal{S}(p,d, heta,l) \mid p,d, heta,l \in P,D,\Theta,L\}$$

[1] TPatch: A Triggered Physical Adversarial Patch (USENIX Security 2023)

Asynchronous Learning For Optimizing

• We propose an <u>asynchronous learning method</u> that facilitates multi-objective adversarial patch and color stripe optimization.

Challenge 2: How to increase the attack robustness of laser signal in the physical world?

[1] Rolling colors: Adversarial laser exploits against traffic light recognition (USENIX Security 2022)

Trigger Modeling

 We approximate real-world noise by evaluating differences between continuous camera frames.

Digital Evaluation

- ➤ 3 object detectors and 8 image classifiers
- > 94.4% average attack success rate of four attacks

Physical World Evaluation in Stationary Setups

> 92.8% average attack success rate against 4 cameras

Physical World Evaluation in Moving Setups

- ➢ 56% average attack success rate across all attacks at 50 km/h
- > 91.9% average attack success rate at 50m

Digital Evaluation

Compared to TPatch (Usenix'23), our average ASRs has improved by more than 5 times.

Method	HA	CA	TA-D	TA-C
Patch optimization in TPatch [10]	10.7%	0.5%	14.4%	35.1%
Our joint optimization	36.9%	25.1%	42.8%	62.3%
Our joint optimization & trigger modeling	97.6%	95.5%	99.6%	85%

> Transfer Attacks: we achieve an average ASR above 44%.

Atack Type	НА			СА			ТА-D				
Black Detector White Detector	Faster R-CNN	YOLO v3	YOLO v5	Faster R-CNN	YOLO v3	YOLO v5	Faster R-CNN	YOLO	v3 YOLO v5		
Faster R-CNN	96.6%	59.3%	27.4%	97.0%	93.4%	68.8%	100.0%	94.0%	45.6%		
YOLO v3	56.3%	98.6%	97.6%	6.1%	99.3%	72.4%	0.12%	100.0%	6 21.9%		
YOLO v5	89.0%	63.6%	99.9%	10.4%	99.6%	98.4%	48.0%	99.4%	99.6%		
Black Classif White Classifier	ier VGG-13	VGG-16	VGG-19	ResNet-50	ResNet-10)1 ResNe	t-152 Incept	ion-v3	MobileNet-v2		
VGG-ens	94.9%	97.1%	99.9%	58.0%	44.0%	62.9	9% 35.	5%	40.3%		
ResNet-ens	14.9%	50.1%	57.4%	95.8%	96.6%	93.0	5% 22.4	4%	56.8%		

Physical World Evaluation in Stationary Setups

Laser Aiming Equipment: attack distance >50m.

> Evaluation in complex physical environments.

Physical World Evaluation in Moving Setups

Various Speeds Evaluation: the attack is still effective at all.

End-to-End Evaluation: >80% average ASRs.

♦ Algorithm Level

- Adversarial Training and Input Transformation-Based Method
- Adversarial Patch Detection

Sensor Level

- Multi-Sensor Fusion
- Random Rolling Shutter Mechanism

• A controllable physical adversarial patch attack based on laser signal attacks.

♦ A comprehensive study of laser attacks.

An asynchronous learning method for optimizing laser parameters and physical adversarial patches and a progressive sampling-based method are proposed to improve the attack robustness in the real world.

◆ Validated attacks in the physical world.

L-HAWK: A Controllable Physical Adversarial Patch Against a Long-Distance Target

Thanks for listening!

