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Traffic Sign Recognition (TSR) Systems

* Traffic Sign Recognition (TSR) system employs camera sensors with Deep Neural
Networks (DNNs) to detect road signs
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* Traffic Sign Recognition (TSR) system employs camera sensors with Deep Neural
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* Such TSR systems generally exist in top leading car brands in the United States [1]

TOYOTA  cHeEVROLET HONDA S HYUNDAI

Jeep & s G T &
SUBARU

[1] Leading car brands in the United States in 2023, based on vehicle sales:



https://www.statista.com/statistics/264362/leading-car-brands-in-the-us-based-on-vehicle-sales/

Failure of TSR Can Lead to Accidents

Millions of people drive, ride, or walk
through stop sign intersections daily.

However, nearly 70,000 accidents occur yearly due to people running
stop signs; a third result in injuries.

There are many scenarios in which a person may find themselves in a
stop sign car accident. For instance, a driver may be hit by someone
running a stop sign, or the driver may hit the person running the stop
sign. More than two cars may be involved in an intersection with a 3- or 4-
way stop. Proving who is at fault can be challenging in stop sign violations
that result in an accident. Consulting with a St. Louis car accident lawyer
can help you determine liability and pursue fair compensation.




Prior Commercial TSR Security Research

Millions of people drive, ride, or walk
through stop sign intersections daily.

However, nearly 70,000 accidents occur yearly due to people running
stop signs; a third result in injuries.

There are many scenarios in which a person may find themselves in a
stop sign car accident. For instance, a driver may be hit by someone
running a stop sign, or the driver may hit the person running the stop

sign. More than two cars may be involved in an intersection with a 3- or 4-

way stop. Proving who is at fault can be challenging in stop sign violations
that result in an accident. Consulting with a St. Louis car accident lawyer
can help you determine liability and pursue fair compensation.
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You can confuse self-driving
cars by altering street signs

It doesn't take much to send autonomous cars crashing into
each other.

Jon Fingas
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Jon Fingas: engadget




Importance of Commercial TSR Security

Limitations:
* Almost all only evaluate attack effects on academic TSR models,

leaving the impacts on commercial TSR systems largely unclear.




Importance of Commercial TSR Security

Limitations:

* Almost all only evaluate attack effects on academic TSR models,
leaving the impacts on commercial TSR systems largely unclear.

* A few recent works tried to understand commercial TSR system-
level impacts, but limited to one particular vehicle model,
sometimes even an unknown one, making both the
generalizability and representativeness questionable




Research Question

Research Question:

Can any of the existing physical-world TSR
adversarial attacks achieve a general impact on
commercial TSR systems today?



Our Contributions

* The first large-scale measurement of physical-world adversarial
attacks against commercial TSR systems

* Discovery and analysis of a spatial memorization design that
commonly exists in today’s commercial TSRs

* Propose new attack success metric designs and use this metric to
revisit the evaluations, designs, and capabilities of existing attacks in
this problem space



Measurement Study Setup Overview

4 of these 5 vehicle
models are studied
(with 1 confusing model

for anonymity):
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Test Environment Setups

14



Test Environment Setups
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Commercial Systems
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4 out of these 5 models are tested by us

* Not to directly reveal the exact model by including 1 confusing vehicle model
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. Top 15 leading car brands in the United States
CO m m erc | a I SySte m S based on vehicle sales in 2023
—

Car brand Sales number TSR

Ford 1,904,038 v/

Toyota | 1,888.941 | v

Chevrolet | 1,702,700 |

Honda 1,156,591 v
Nissan 834,091 v
Hyundai v
Kia 782,468 7
Jeep v
Subaru
GMC v
Ram %
Tesla 498,000 v/
Mazda IW\ 7
BMW v
Volkswagen v/

4 out of these 5 models are tested by us '
* Not to directly reveal the exact model by including 1 confusing vehicle model



Top 15 leading car brands in the United States

CO m m erCia I SySte m S based on vehicle sales in 2023

NOT any of the four
tested car models
for anonymity

4 out of these 5 models are tested by us '
* Not to directly reveal the exact model by including 1 confusing vehicle model
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Commercial Systems

TSR functions of the four vehicle models tested
in our measurement study

TSR functionality
Vehicle model STOP sign  Speed limit sign
Car 1 (denote as C1) v X
Car 2 (denote as C2) v v
Car 3 (denote as C3) X v
Car 4 (denote as C4) X v
speep| @
LIMIT
25| 4
[ )

4 out of these 5 models are tested by us
* Not to directly reveal the exact model by including 1 confusing vehicle model y



Selected Attacks

* Focus on the hiding attack on measurement study
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* Focus on the hiding attack on measurement study

* Three prior works so far that were able to demonstrate black-box
attack transferability for the hiding attack effect in the physical world
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Selected Attacks

* Focus on the hiding attack on measurement study

* Three prior works so far that were able to demonstrate black-box
attack transferability for the hiding attack effect in the physical world

* Highest potential to successfully attack commercial systems

Physical Adversarial Examples for Object Detectors Session 9B: ML Security 111 €CS "19, November 11-15, 2019, Londen, United Kingdom Foo]ing the Eyes of Autonomous Vehicles: Robust
Physical Adversarial Examples Against Traffic Sign
Recognition Systems

Kevin Eykholt', Ivan Evtimov?, Earlence Fernandes?, Bo Li®,
Seeing isn’t Believing: Towards More Robust Adversarial Attack
Against Real World Object Detectors

Amir Rahmati*S, Florian Tramer’, Atul Prakash', Tadayoshi Kohno?, Dawn Song®

!'University of Michigan haol2 hut?
2Universi achis Yue Zhao'*, Hong Zhu'*, Ruigang Li
University of Washington SSKL, sttt of ol

3Univcrsity of California, Berkeley 25¢hool of Cyber
“Stony Brook University *Department of Co
5 3 5 {zhaoyue, zhuhong |
“Stanford University
6Samsung Research America

ng’, Kai Chen'2*
ina

RP,: Eykholt et al. WOOT 2017 SIB: Zhao et al. ACM CCS 2019 FTE: Jia et al. NDSS 2022

23



Surrogate Model

* Cover both one-stage and two-stage object detectors



Surrogate Model

* Cover both one-stage and two-stage object detectors
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Surrogate Model

* Cover both one-stage and two-stage object detectors
* Generally used as surrogate model in the prior security research on TSR
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Generated Attack Visualization
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TSR System-Level Attack Success Metric
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TSR System-Level Attack Success Metric

NOT any of the four tested car models for anonymity

SPEED
LIMIT

25

29



TSR System-Level Attack Success Metric

If the TSR system is able to correctly display the sign, the attack
fails; otherwise, the attack succeed. Repeat N times.
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NOT any of the four tested car models for anonymity



Overall Testing Results

Original paper  Surrogate ¢ C3 4 A

transferability model STOP STOP Speed limit  Speed limit  Speed limit Ve

Benign traffic sign 100% (3/3) 100% (3/3) 100% (3/3) 100% (3/3) 100% (3/3) 100%

RP 18.9% Y5 0% (0/3) 0% (0/3) 0% (0/3) 0% (0/3) 0% (0/3) 0%

2 2 FR 0% (0/3) 100% (3/3) 0% (0/3) 0% (0/3) 0% (0/3) 20%

SIB 46.1% Y5 0% (0/3) 100% (3/3) 0% (0/3) 0% (0/3) 0% (0/3) 20%

i FR 0% (0/3) 0% (0/3) 0% (0/3) 0% (0/3) 0% (0/3) 0%

FTE 80.8% Y5 0% (0/3) 0% (0/3) 0% (0/3) 0% (0/3) 0% (0/3) 0%

o FR 0% (0/3) 0% (0/3) 0% (0/3) 0% (0/3) 0% (0/3) 0%
Ave. over all attacks 51.6% 0% 33.3% 0% 0% 0% 6.67%
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Certain Commercial TSRs are More Vulnerable

Original paper  Surrogate ¢ 2 C3 4 A

transferability model STOP STOP Speed limit  Speed limit  Speed limit Ve

Benign traffic sign 100% (3/3) 100% (3/3) 100% (3/3) 100% (3/3) 100% (3/3) 100%

RP 18.9% Y5 0% (0/3) 0% (0/3 0% (0/3) 0% (0/3) 0% (0/3) 0%

2 2 FR 0% (0/3) 100% (3/3) 0% (0/3) 0% (0/3) 0% (0/3) 20%

SIB 46.1% Y5 0% (0/3) 100% (3/3 0% (0/3) 0% (0/3) 0% (0/3) 20%

i FR 0% (0/3) 0% (0/3) 0% (0/3) 0% (0/3) 0% (0/3) 0%

FTE 80.8% Y5 0% (0/3) 0% (0/3) 0% (0/3) 0% (0/3) 0% (0/3) 0%

o FR 0% (0/3) 0% (0/3) 0% (0/3) 0% (0/3) 0% (0/3) 0%
Ave. over all attacks 51.6% 0% 33.3% 0% 0% 0% 6.67%
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Certain Commercial TSRs are More Vulnerable

Original paper  Surrogate ¢ 2 C3 4 A
transferability model STOP STOP Speed limit  Speed limit  Speed limit Ve
Benign traffic sign 100% (3/3) 100% (3/3) 100% (3/3) 100% (3/3) 100% (3/3) 100%
RP 18.9% Y5 0% (0/3) 0% (O 0% (0/3) 0% (0/3) 0% (0/3) 0%
2 2 FR 0% (0/3) 100% (3/3) 0% (0/3) 0% (0/3) 0% (0/3) 20%

e

SIB 16,19 Y5 0% (0/3) [100% (3/31 0% (0/3) 0% (0/3) 0% (0/3)  20%
70 0% (0/3) 0% (0/3) 0% (0/3) 0% (0/3) 0% (0/3) 0%
FTE £0.80% Y5 0% (0/3) 0% (0/3) 0% (0/3) 0% (0/3) 0% (0/3) 0%
07 FR 0% (0/3) 0% (0/3) 0% (0/3) 0% (0/3) 0% (0/3) 0%

Ave. over all attacks 51.6% 0% 33.3% 0% 0% 0% 6.67 %
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Certain Commercial TSRs are More Vulnerable

Original paper  Surrogate ¢ 2 C3 4 A

transferability model STOP STOP Speed limit  Speed limit  Speed limit Ve

Benign traffic sign 100% (3/3) 100% (3/3) 100% (3/3) 100% (3/3) 100% (3/3) 100%

RP 18.9% Y5 0% (0/3) 0% (O 0% (0/3) 0% (0/3) 0% (0/3) 0%

2 2 FR 0% (0/3) 100% (3/3) 0% (0/3) 0% (0/3) 0% (0/3) 20%

SIB 46.1% Y5 0% (0/3) 100% (3/3 0% (0/3) 0% (0/3) 0% (0/3) 20%

- FR 0% (0/3) 0% (0/3) 0% (0/3) 0% (0/3) 0% (0/3) 0%

FIE 80.8% Y5 0% (0/3) 0% (0/3) 0% (0/3) 0% (0/3) 0% (0/3) 0%

o FR 0% (0/3) 0% (0/3) 0% (0/3) 0% (0/3) 0% (0/3) 0%
Ave. over all attacks 51.6% 0% 33.3% 0% 0% 0% 6.67%

Observation #1: For certain commercial TSR systems, although from top brands in the US,
their TSR functionality can actually be much more vulnerable than academic TSR models

under black-box transfer attacks.
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Attack Lacks Generalization across Commercial TSRs

Original paper  Surrogate ¢ 2 C3 4 A
transferability model STOP STOP Speed limit  Speed limit  Speed limit Ve
Benign traffic sign 100% (3/3) 100% (3/3) 100% (3/3) 100% (3/3) 100% (3/3) 100%
RP 18.9% Y5 0% (0/3) 0% (0/3) 0% (0/3) 0% (0/3) 0% (0/3) 0%
2 2 FR 0% (0/3) 100% (3/3) 0% (0/3) 0% (0/3) 0% (0/3) 20%
SIB 46.1% Y5 0% (0/3) 100% (3/3) 0% (0/3) 0% (0/3) 0% (0/3) 20%
i FR 0% (0/3) 0% (0/3) 0% (0/3) 0% (0/3) 0% (0/3) 0%
FTE 80.8% Y5 0% (0/3) 0% (0/3) 0% (0/3) 0% (0/3) 0% (0/3) 0%
o FR 0% (0/3) 0% (0/3) 0% (0/3) 0% (0/3) 0% (0/3) 0%

Ave. over all attacks 51.6% 0% 33.3% 0% 0% 0% I6.67 %I
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Attack Lacks Generalization across Commercial TSRs

Original paper  Surrogate ¢ 2 C3 4 A
transferability model STOP STOP Speed limit  Speed limit  Speed limit Ve
Benign traffic sign 100% (3/3) 100% (3/3) 100% (3/3) 100% (3/3) 100% (3/3) 100%
RP 18.9% Y5 0% (0/3) 0% (0/3) 0% (0/3) 0% (0/3) 0% (0/3) 0%
2 2 FR 0% (0/3) 100% (3/3) 0% (0/3) 0% (0/3) 0% (0/3) 20%
SIB 46.1% Y5 0% (0/3) 100% (3/3) 0% (0/3) 0% (0/3) 0% (0/3) 20%
i FR 0% (0/3) 0% (0/3) 0% (0/3) 0% (0/3) 0% (0/3) 0%
FTE 80.8% Y5 0% (0/3) 0% (0/3) 0% (0/3) 0% (0/3) 0% (0/3) 0%
o FR 0% (0/3) 0% (0/3) 0% (0/3) 0% (0/3) 0% (0/3) 0%

Ave. over all attacks | 51.6% | 0% 33.3% 0% 0% 0% 16.67 %}
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Attack Lacks Generalization across Commercial TSRs

Original paper  Surrogate ¢ C2 C3 4 A
transferability model STOP STOP Speed limit  Speed limit  Speed limit Ve
Benign traffic sign 100% (3/3) §100% (3/3)}] 100% (3/3) 100% (3/3) 100% (3/3) 100%
RP 18.9% Ys 0% (0/3) 0% (0/3) 0% (0/3) 0% (0/3) 0% (0/3) 0%
2 o FR 0% (0/3) 100% (3/3) 0% (0/3) 0% (0/3) 0% (0/3) 20%
SIB 46.1% Y5 0% (0/3) 100% (3/3) 0% (0/3) 0% (0/3) 0% (0/3) 20%
70 FR 0% (0/3) 0% (0/3) 0% (0/3) 0% (0/3) 0% (0/3) 0%
FTE £9.80% Y5 0% (0/3) 0% (0/3) 0% (0/3) 0% (0/3) 0% (0/3) 0%
070 FR 0% (0/3) 0% (0/3) 0% (0/3) 0% (0/3) 0% (0/3) 0%
Ave. over all attacks | 51.6% | 0% 33.3% 0% 0% 0% 16.67 %}
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Attack Lacks Generalization across Commercial TSRs

Cl Cc2 C3 C4

Original paper  Surrogate A
transferability ~ model STOP STOP Speed limit  Speed limit  Speed limit Ve
Benign traffic sign 100% (3/3) [100% (3/3)] 100% (3/3) 100% (3/3) 100% (3/3) 100%
RP 18.9% Y5 0% (0/3) 0% (0/3) 0% (0/3) 0% (0/3) 0% (0/3) 0%
2 -z FR 0% (0/3) §100% (3/3)] 0% (0/3) 0% (0/3) 0% (0/3)  20%
SIB 16,19 Y5 0% (0/3) §100% (3/3)] 0% (0/3) 0% (0/3) 0% (0/3)  20%
e FR 0% (0/3) 0% (0/3) 0% (0/3) 0% (0/3) 0% (0/3) 0%
FTE £0.80% Y5 0% (0/3) 0% (0/3) 0% (0/3) 0% (0/3) 0% (0/3) 0%
o7 FR 0% (0/3) 0% (0/3) 0% (0/3) 0% (0/3) 0% (0/3) 0%
Ave. over all attacks | 51.6% | 0% 33.3% 0% 0% 0% l6.67%]

Observation #1 (cont'd): Such black-box commercial system attack capability is currently not
generalizable over different representative commercial system models and sign types.
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Attack Lacks Generalization across Commercial TSRs

Original paper  Surrogate ¢ 2 C3 4 A
transferability ~ model STOP STOP Speed limit  Speed limit  Speed limit Ve
Benign traffic sign 100% (3/3) 100% (3/3) 100% (3/3) 100% (3/3) 100% (3/3) 100%
RP 18.9% YS 0% (0/3) 0% (0/3) 0% (0/3) 0% (0/3) 0% (0/3) 0%
2 77 FR 0% (0/3)  100% (3/3) 0% (0/3) 0% (0/3) 0% (0/3)  20%
SIB 46.1% Y5 0% (0/3)  100% (3/3) 0% (0/3) 0% (0/3) 0% (0/3)  20%
7 FR 0% (0/3) 0% (0/3) 0% (0/3) 0% (0/3) 0% (0/3) 0%
FTE £9.8% Y5 0% (0/3) 0% (0/3) 0% (0/3) 0% (0/3) 0% (0/3) 0%
0% FR 0% (0/3) 0% (0/3) 0% (0/3) 0% (0/3) 0% (0/3) 0%

Ave. over all attacks 51.6% 0% 33.3% 0% 0% 0% 6.67 %
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Attack Lacks Generalization across Commercial TSRs

3) Successful attacks against YOLO v5 based object de-
tector and TSR system in a 2021 model vehicle: To the best of
our knowledge, this is the first set of adversarial attacks against

Original pa YOLO v5 based object detectors in the physical domain. We C4
transferabill successfully launch four attack vectors, especially NTA and Speed limit Ave.
_ ' TA, that are life-threatening in the real world. Our physical

Benign traffic sign ] AEs also exhibit satisfactory transferability when attacking 100% (3/3)  100%

a production-grade TSR system of a brand-new 2021 model 0% (0/3) 0%

RP: 18.9% | vehicle. 0% (03)  20%
[Jia et al. NDSS 2022: Fooling the Eyes of Autonomous Vehicles: Robust 0% (0/3) 20%

SIB 46.1% Physical Adversarial Examples Against Traffic Sign Recognition Systems] 0% (0/3) 0%
FTE £0.89% Y5 0% (0/3) 0% (0/3) 0% (0/3) 0% (0/3) 0% (0/3) 0%
g FR 0% (0/3) 0% (0/3) 0% (0/3) 0% (0/3) 0% (0/3) 0%
Ave. over all attacks 51.6% 0% 33.3% 0% 0% 0% 6.67%

40



Attack Lacks Generalization across Commercial TSRs

3) Successful attacks against YOLO v5 based object de-
tector and TSR system in a 2021 model vehicle: To the best of
our knowledge, this is the first set of adversarial attacks against

Original pa YOLO v5 based object detectors in the physical domain. We C4
transferabill successfully launch four attack vectors, especially NTA and Speed limit Ave.
_ ' TA, that are life-threatening in the real world. Our physical

Benign traffic sign ] AEs also exhibit satisfactory transferability when attacking 100% (3/3)  100%

a production-grade TSR system of a brand-new 2021 model 0% (0/3) 0%

RP: 18.9% | vehicle. 0% (03)  20%
[Jia et al. NDSS 2022: Fooling the Eyes of Autonomous Vehicles: Robust 0% (0/3) 20%

SIB 46.1% Physical Adversarial Examples Against Traffic Sign Recognition Systems] 0% (0/3) 0%
FTE £0.89% Y5 0% (0/3) 0% (0/3) 0% (0/3) 0% (0/3) 0% (0/3) 0%
g FR 0% (0/3) 0% (0/3) 0% (0/3) 0% (0/3) 0% (0/3) 0%
Ave. over all attacks 51.6% 0% 33.3% 0% 0% 0% 6.67%

Observation #1 (cont'd): This further reveals the lack of generalizability of the reported
commercial TSR system attack success in the original FTE paper, which cannot be revealed
without the large-scale commercial system testing efforts in this paper.
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Discrepancy in Commercial and Academic TSR

Original paper  Surrogate C3 4

transferability model

it Speed limit Speed limit V%

Benign traffic sign ) 100% (3/3) 100% (3/3) 100%

Y5 0% (03) 0% (03) 0%
RP; 18.9% FR 0% (03) 0% (03)  20%
Y5 0% (0/3) 0% (03)  20%
SIB 46.1% FR 0% (03) 0% (0/3) 0%
Y5 0% (0/3) 0% (03) 0%
FTE 89.8% FR 0% (0/3) 0% (03) 0%

0% 0% I6.6’7 %I

Ave. over all attacks I 51.6% I
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Finding: Unexpected Spatial Memorization Design
in Commercial TSR Systems

* Observation #2: One major factor might be an unexpected spatial
memorization design that commonly exists in commercial TSRs.




Finding: Unexpected Spatial Memorization Design

in Commercial TSR Systems

* Observation #2: One major factor might be an unexpected spatial
memorization design that commonly exists in commercial TSRs.

Observation #2 (cont'd): Spatial memorization design exhibits an effect that once a sign is
detected, both the detected sign type and the detected location are persistently
memorized until the sign’s reaction task is finished
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Finding: Unexpected Spatial Memorization Design
in Commercial TSR Systems

* Observation #2: One major factor might be an unexpected spatial

memorization design that commonly exists in commercial TSRs.
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Finding: Unexpected Spatial Memorization Design
in Commercial TSR Systems

* Observation #2: One major factor might be an unexpected spatial
memorization design that commonly exists in commercial TSRs.

STOP ssign is
shown for 1 sec
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Finding: Unexpected Spatial Memorization Design
in Commercial TSR Systems

* Observation #2: One major factor might be an unexpected spatial

memorization design that commonly exists in commercial TSRs.




Finding: Unexpected Spatial Memorization Design
in Commercial TSR Systems

* Observation #2: One major factor might be an unexpected spatial
memorization design that commonly exists in commercial TSRs.

Hide the STOP sign




Finding: Unexpected Spatial Memorization Design
in Commercial TSR Systems

* Observation #2: One major factor might be an unexpected spatial

memorization design that commonly exists in commercial TSRs.

Wait for 60 sec




Finding: Unexpected Spatial Memorization Design
in Commercial TSR Systems

* Observation #2: One major factor might be an unexpected spatial

memorization design that commonly exists in commercial TSRs.




Finding: Unexpected Spatial Memorization Design
in Commercial TSR Systems

* Observation #2: One major factor might be an unexpected spatial

memorization design that commonly exists in commercial TSRs.

Observation #2 (cont'd): Spatial memorization design exhibits an effect that once a sign is
detected, both the detected sign type and the detected location are persistently
memorized until the sign’s reaction task is finished
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Limitation of Existing Model-Level Attack Success
Metrics

* The spatial memorization design can significantly impact the success
of existing adversarial attacks at the TSR system level
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* The spatial memorization design can significantly impact the success
of existing adversarial attacks at the TSR system level
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Limitation of Existing Model-Level Attack Success
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* The spatial memorization design can significantly impact the success
of existing adversarial attacks at the TSR system level
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Limitation of Existing Model-Level Attack Success
Metrics

* The spatial memorization design can significantly impact the success
of existing adversarial attacks at the TSR system level

Y[\ }\ I Sl I SZ ‘I @

I 1 I 2 'I EEEEE
" fua = 0% -fija = 100%:-
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Limitation of Existing Model-Level Attack Success
Metrics

* The spatial memorization design can significantly impact the success
of existing adversarial attacks at the TSR system level

Existing TSR
- S | S | @ model-level attack
b - I 2 "I success metric:
fia=0% fia=100% | [EF B fur = 50%
000
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Limitation of Existing Model-Level Attack Success

Metrics

* The spatial memorization design can significantly impact the success
of existing adversarial attacks at the TSR system level

Existing TSR TSR system-

S, S, @ model-level attack  level attack
[ I o success metric: SUCCESS:
* fia = 0% -ffa = 100%- E’ii,;: fua = 50% 0%
(XX ]
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Limitation of Existing Model-Level Attack Success

Metrics

* The spatial memorization design can significantly impact the success
of existing adversarial attacks at the TSR system level

Existing TSR TSR system-

S, S, @ model-level attack  level attack
[ I o success metric: SUCCESS:
* fia = 0% -ffa = 100%- E’ii,;: fua = 50% 0%
(XX ]

Due to the spatial
memorization
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Limitation of Existing Model-Level Attack Success

Metrics

* The spatial memorization design can significantly impact the success
of existing adversarial attacks at the TSR system level

Existing TSR TSR system-

S, S, @ model-level attack  level attack
[ I o success metric: SUCCESS:
© fida = 0% -fiZx = 100%:- 25 faa = 50% 0%
fan = 0% fia=100% 200
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Limitation of Existing Model-Level Attack Success

Metrics

* The spatial memorization design can significantly impact the success
of existing adversarial attacks at the TSR system level

Existing TSR TSR system-

T S, @ model-level attack level attack
b [ | =| success metric: SUCCeSS.
 fda = 0% -fiéy = 100%- | [iwr fia = 50% 0%
fla=0% f2 = 100% ‘2.5. Fun = 50%
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Limitation of Existing Model-Level Attack Success

Metrics

* The spatial memorization design can significantly impact the success
of existing adversarial attacks at the TSR system level

Existing TSR TSR system-

T S, @ model-level attack level attack
b [ | g success metric: SUCCESS.
 fda = 0% -fiéy = 100%- | [iwr fia = 50% 0%
fin=0% fix=100% | B2 fan=50% 100%
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Limitation of Existing Model-Level Attack Success
Metrics

* The spatial memorization design can significantly impact the success
of exjsting adversarial attacks at the TSR om leve

Given that such an unexpected spatial memorization design can create
such a significant discrepancy between the TSR model-level attack
effect and that at the TSR system level, we further design new attack

success metrics that can mathematically model its impact on the TSR
system-level attack success for both hiding and appearing attacks
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New Attack Success Metric Design that Can
Mathematically Model Spatial Memorization

IIIII

Distance: d , 000

P
<«
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New Attack Success Metric Design that Can
Mathematically Model Spatial Memorization

I 1 1 ! @
1 1 1 J
s L "1 | |sPEED
I I I I IIIII
1 51 1 52 11 Sn 1 25
Distance: d . 000
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New Attack Success Metric Design that Can
Mathematically Model Spatial Memorization

——— | 11 : @
B | | 1 1 ::
" ' = =1 | [sreep
[fiaorfan | fdaorfia | | fdaorfia | é"‘%
1 51 1 52 11 Sn 1
< Distance: d , 000
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New Attack Success Metric Design that Can
Mathematically Model Spatial Memorization

~\
Spatial memorization segments ¢—): length = v  t.
t: minimum time to spatially memorize a detected sign
J

Speed:
A‘ v | ssmo o gsmy 11 - Ssm @

! W v 1 | [sPeep
[fiaorfan | fdaorfia | | fdaorfia | é"‘%
1 51 1 52 11 Sn 1
< Distance: d , 000




New Attack Success Metric Design that Can
Mathematically Model Spatial Memorization

~\

Spatial memorization segments ¢—): length = v  t.
t: minimum time to spatially memorize a detected sign

Speed: v

. |leA0rfA1A I fiiaor fia 1 I fiiaor faa I
l 51 I 52 l l Sn |
Distance: d >

EEEEE
IIIII

d
<«

SysHA = [ [(fiia)

=1

n = H(ff;m)ﬁ

i=1

* Hiding attack: The attack has to be continuously successful at all
possible detection moments that can trigger such memorization

before the vehicle passes the sign.
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New Attack Success Metric Design that Can
Mathematically Model Spatial Memorization

~\

Spatial memorization segments ¢—): length = v  t.
t: minimum time to spatially memorize a detected sign

. |leA0rfA1A I fia or f&a 1 I ftiaor faa I
1 51 1 52 11 Sn |
Distance: d >

P
<«

EEEEE
IIIII

n

SysHA = [[(fiia)* = [[(fira) ™=

=1 i=1

SysAA =1 (1 - fia) ™

i=1

* Appearing attack: As long as attack can succeed in any of detection
moments, the TSR system-level attack effect can be achieved.

68



New Attack Success Metric Design that Can
Mathematically Model Spatial Memorization

Spatial memorization segments ¢—): length = v  t.
t: minimum time to spatially memorize a detected sign

ISs™ S3™i I Sy @
SPEED

|leA or faa | fifa or fia | | SHa O fAA I LIMIT

1 51 1 52 11 Sn 1 25

< Distance: d , 000

n

SysHA = [[(fiia)* = [[(fira) ™=

=1 i=1
n

SysAA =1 (1 - fia) ™

i=1

* Appearing attack: As long as attack can succeed in any of detection
moments, the TSR system-level attack effect can be achieved.

Observation #3: Due to spatial memorization, hiding attacks are theoretically harder (if not
equally hard) than appearing attacks in achieving TSR system-level attack success.
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New Attack Success Metric Design that Can
Mathematically Model Spatial Memorization

=
=

SysAA = Z :
Ae(P(S)\0) \S:€A

‘When fHA = fAA SySHA =
11 i1 (fAA) , which is actually one 1nstance of Ae (TP(S)
A) ie, A= S Thus, we can calculate SysAA — SysHA:

Theoretical [y e el \ umerical

Attack Success Rate
=
(3

o
(=)

=
(=)

Analysis > (H Gt 1 a- Ao
AEP(S)\{0,5} \Si€A 5;€(S\A)

“)

For VA € P(S) \ {0, S}, fAA > 0and (1 - fi,) >

0, where S; € A and S; (S '\ A), we can have

TIFa L) 7% TI(L — f,)7% >0, thus SysAA — SysHA > 0,

and consequently, SysAA > SysHA. O

Attack Success Rate
o
[

e
=]

Observation #3: Due to spatial memorization, hiding attacks are theoretically harder (if not
equally hard) than appearing attacks in achieving TSR system-level attack success.

Analysis
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Observations for Revisiting Existing Research

New Metric Design:
Surrogate TSR System-Level
Attack Success Metrics

v
[ | [ St

L " " N N s |
'“ - |
paaorfia g finorfia 7y faerfia
VS S e S

Revisiting Evaluations, Designs, and Attack Capabilities of Prior

Works in this Problem Space
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Observations for Revisiting Existing Research

New Metric Design:
Surrogate TSR System-Level
Attack Success Metrics

Spatial memorization segments —i): length = v = t.
t: minimum time to spatially memorize a detected sign

Speed: v

|f 0;]’; |f orf | I" urfMI
1

I55’“ st"‘l I I'“ 5"" @

Di mnce.-i (1] ]

SysHA = H fHA % H fHA ot

i=1

SysAA =1 ][]0 - fia)™

i=1

Revisiting Evaluations, Designs, and Attack Capabilities of Prior
Works in this Problem Space

White-Box Attack
Prior works may not be effective
at TSR system level. (Drop from
~56% to ~7%)

faa

Distance ranges (meters) A SysHA
ve.
0-5 5-10 10-15 15-20 20-25 25-30

RP, 41.8% 10.0% 23.8% 65.4% 99.9% 100%'56.8%' 6.6% |
SIB 84.6% 56.6% 82.0% 99.2% 100% 100%|37.1%|45.1%|
FTE 88.9% 57.1% 13.6% 3.1% 47.8% 74.5%'47.5%'5.2% I
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Observations for Revisiting Existing Research

New Metric Design: * Revisiting Evaluations, Designs, and Attack Capabilities of Prior
Surrogate TSR System-Level Works in this Problem Space

Attack Success Metrics :
I White-Box Attack : Black-Box Transfer Attack
R ] | Prior works may not be effective = Attack success of prior works at TSR system
v miimum tme 0 spadally memorize  deected sign | at TSR system level. (Drop from : level can be much lower than expected
Sote N Cnl o e s | 56%to"7%) i (~13%) for hiding attack.
L M L N ;3 N |
Vinorfia y fiaorfia 7y fiorfia -: I
[ 1 5 11 S 1
Distance: d I
I Transfer attack success rates (averaged over a set of six transfer target models (§IV-B)
n n
. m _d_ Original paper fua SvsHA
SysHA = H(f ﬁA) "= H( ﬁA) nut | transferability  0-5m  5-10m  10-15m  15-20m  20-25m  25-30m  Ave. ¥s
i=1 i=1 I 18.9% 364% 32.0% 29.6%  460%  61.3%  50.0% 42.6% 14.5%
n I 46.1% 207% 265% 372%  42.6% 549%  512%  38.9% 12.4%
S:YSAA — 1 _ H(l _ f;‘&A) pogyr 89.8% 292% 36.4% 29.3% 34.0% 45.5% 40.1% 35.7% 11.0%
i | 51.6% 28.8% 31.6% 32.0% 409%  539%  47.1%  39.1% |12.6% I
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Observations for Revisiting Existing Research

New Metric Design: * Revisiting Evaluations, Designs, and Attack Capabilities of Prior
Surrogate TSR System-Level Works in this Problem Space

Attack Success Metrics White-Box Attack

Prior works may not be effective
at TSR system level. (Drop from
~56% to ~7%)

Black-Box Transfer Attack
Attack success of prior works at TSR system
level can be much lower than expected
(~13%) for hiding attack.

Spatial memorization segments —i): length = v = t.
t: minimum time to spatially memorize a detected sign

Speed: v

|f orfn |f|m0|'fu\| |f urf
5

ISOSTE T s @
- Revisiting Existing Attack Success Metrics
Using the hiding and appearing attacks proposed from the same prior work, the

hiding one can be much harder. However, if using the existing metrics, such
relative attack hardness can be the completely opposite

Di (anced' (1] ]

SysHA = H(fﬁA)% ]:[ (fiia) ™

=1

Hiding attack  Appearing attack
SIB [5] fua  SysHA  faa  SysAA

SysAA =1 - [[(1 - fia) =

i=1

White-box attack 87.1% 45.1% 29.1% 87.6%
Black-box transfer attacksf] 38.9% 12.4% 31.7% 64.2%
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Observations for Revisiting Existing Research

Revisiting Evaluations, Designs, and Attack Capabilities of Prior
Works in this Problem Space

New Metric Design:
Surrogate TSR System-Level

nearly negligible (e.g., only 1% increase) at the TSR system level

|
Attack Success Metrics I
—— |
e o s s ]
|
Speadiv | S com i - v g, RP; [9 SysAA
e T T B S | 2 0-5m 5-10m 10-15m 15-20m 20-25m Ave.
Viorfiay farril e | (5 | wio NAE 86.8% 100% 64.7% 66.9% 19.5% [67.6%
Disaer: & see I w/ NAE 100% 100% 100% 88.3% 25.8% 082.8%f 100%
RP, w/o Nested AE RP, w/ Nested AE
n n |
SysHA = H fHA )" H fHA i ]
i=1 =1 I
n I Judgement of the Value of New Attack Designs
. d . o q a A
SysAA =1 — H(l — f;A) ot I The benefits of certain attack designs can be seemingly high (e.g., >20%
i—1 attack success rate increase) using prior TSR model-level success metrics, but
|
|
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Conclusion

e First large-scale measurement of physical-world adversarial attacks against
commercial TSR:
* Uncover a total of 7 novel observations

* Discovery and analysis of spatial memorization:
* Discover a spatial memorization design that commonly exists in today’s commercial TSRs
* Create a discrepancy between TSR model-level attack effect and that at TSR system level.

* New attack success metric designs:
* Mathematically model the impact of this design on the TSR system-level attack success
* Revisit the evaluations, designs, and capabilities of existing attacks in this problem space




Conclusion

e First large-scale measurement of physical-world adversarial attacks against
commercial TSR:
* Uncover a total of 7 novel observations

* Discovery and analysis of spatial memorization:
* Discover a spatial memorization design that commonly exists in today’s commercial TSRs
* Create a discrepancy between TSR model-level attack effect and that at TSR system level.

* New attack success metric designs:
* Mathematically model the impact of this design on the TSR system-level attack success
* Revisit the evaluations, designs, and capabilities of existing attacks in this problem space

e Performed Responsible Vulnerability Disclosure:

* Informed AD companies under our measurements and provided anonymity to protect the
affected vehicle manufacturer




Thank you!

Revisiting Physical-World Adversarial Attack on Traffic
Sign Recognition: A Commercial Systems Perspective

Ningfei Wang, Shaoyuan Xie, Takami Sato, Yunpeng Luo,

Kaidi Xu*, Qi Alfred Chen
University of California, Irvine and *Drexel University Scan to visit our

@ ningfei.wang@uci.edu, kx46@drexel.edu, and alfchen@uci.edu project website

Autonomous & Smart Systems D 1
ASZ Guard Guard Research Group U c I ﬁ UNIIV'EeR§I?Y
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