SketchFeature: High-Quality Per-Flow Feature Extractor Towards Security-Aware Data Plane

EV/HA,

THE FUTURE

Sian Kim¹, Seyed Mohammad Mehdi Mirnajafizadeh², Bara Kim³ Rhongho Jang²*, DaeHun Nyang¹*

1 Ewha Womans University
2 Wayne State University
3 Korea University

Corresponding authors.

- Background and Challenges
- Contributions of SketchFeature
- Analysis and Evaluations
- Conclusion

Al-enhanced In-network Defense

• Importance of Data for In-network Defense

- Security systems rely on high-quality network data to detect threats.
 - \rightarrow Incomplete, low-resolution features lead to misclassification and blind spots.
 - \rightarrow Real-time data visibility is critical for proactive threat mitigation.
- Feature extraction in the data plane remains a significant challenge.

※ Hardware constraints (e.g., limited computational resources)

Feature Extraction

- 1st-order features: Flow-agnostic, per-packet (e.g., TTL, packet size).
- 2nd-order features: Flow-aware, per-flow statistical features (e.g., mean, variance).
- 3rd-order features: Per-flow distribution features (e.g., inter-packet delay, packet size distribution).
 - \rightarrow Higher-order features provide superior attack detection capacities
 - % High computational complexity

Symptom Detectors

Symptom Detector

- Selectively escalates only a subset of flows, identified as suspicious, to the control plane.
- Instead of performing full per-flow feature extraction, it filters flows based on predefined symptoms.

• FlowLens

- Selects only top-K bins
 - \rightarrow Attackers evade detection by shifting packet size patterns

NetWarden

- Uses low-resolution quantization
 - \rightarrow High false positives and control plane flooding attacks

Challenges in Feature Extraction

Constraints of Data Plane

- Only simple arithmetic operations (e.g., addition, subtraction) are supported.
- Limited memory resources \rightarrow Difficult to store high-dimensional per-flow data.

• Challenges

- Eliminate Selective Measurement \rightarrow Extract features for all flows rather than a subset.
- Enable Full-Range, High-Resolution Features \rightarrow No top-K bin or coarse quantization limitations.
- Ensure Line-Rate Processing in the Data Plane \rightarrow Efficient memory use and low computational overhead.

Main Contributions of SketchFeature

• Ensuring HAF (High-Resolution, All-Flow, Full-Range) Feature Measurement

- Eliminates Top-K Bias \rightarrow Captures full feature distribution rather than selected bins.
- Detects a wider range of attacks with better granularity and accuracy.

• Addressing Technical Challenges for Sketch Evolution

- Sketch Virtualization to extend sketch capacity.
- Introduces Membership Test to ensure that only real encoded features are queried.

• Theoretical & Experimental Validation

- Proves error bounds & probability guarantees for 3rd-order feature extraction.
- Evaluates per-flow feature accuracy in multiple attack scenarios.

• Advancing Security Applications

- Evaluates SketchFeature's security effectiveness through various use cases.
- Successfully deployed in a commercial switch (Tofino fabric).

• Complexity reduction of per-flow distribution

- 3rd-order features involve continuous values (e.g., inter-packet delay, packet size distributions).
- ASIC-based switches cannot store every possible value due to memory constraints.
 - \rightarrow Divides feature values into discrete bins.

Data Structure

- Sketch (Count-Min Sketch with Sketch Virtualization)
- Bloom Filter (Solving Phantom Decoding issue)

• Encoding

- Convert feature value into a quantized bin (QNT).
- Update Bloom Filter \rightarrow Mark the feature as recorded.
- Hash feature into Virtual Sketch \rightarrow Update the relevant counters.

• Decoding

- Check Bloom Filter \rightarrow Prevent Phantom Decoding.
- Query Virtual Sketch \rightarrow Retrieve feature values.

• Sketch Partitioning (Baseline)

- Count-Min Sketch is great for scalar values but fails for vector (distribution) features.
- Existing methods (FlowLens, NetWarden) use hard partitioning

X Causes inefficiency

- Sketch Virtualization
 - Single sketch memory is shared across all bins.
 - Different hash functions for each bin.

• Packet size distribution of CAIDA Trace (Benign Trace)

• Sketch Partitioning

Sketch Virtualization

• Phantom Decoding Issue

• Standard sketches cannot differentiate between real and non-existent flow features.

X Causes false positives, affecting feature accuracy

• Membership Test using Bloom Filter

- Checks whether a feature actually exists before querying it.
- Prevents Phantom Decoding.

• Sketch virtualization without membership test

• Sketch virtualization with membership test

HAF Feature Quality of SketchFeature

• Per-flow distribution quality

 \rightarrow Accurate, efficient, and scalable for real-world in-network security applications

Feature Quality Evaluation

• Q1: How accurate is SketchFeature's feature extraction varying memory size?

Feature Quality Evaluation

• Q2: How well does SketchFeature handle high workloads?

End-to-end System Evaluation

• Q3: How does SketchFeature perform in security use cases?

Schemes	AUC	Acc.	F1	FPR	FNR	Schemes
Cov	D					
Perfect Measure	0.999	0.999	0.981	0.0	0.020	Perfect Meas
Baseline	0.986	0.999	0.978	0.0	0.027	Baseline
NetBeacon [63]	0.995	0.981	0.983	0.018	0.018	NetBeacon [
FlowLens [6]	0.502	0.998	0.132	0.0	0.928	FlowLens [6
SketchFeature	0.998	0.999	0.981	0.0	0.019	SketchFeatu
Cov						
Perfect Measure	1.0	1.0	1.0	0.0	0.0	Perfect Meas
Baseline	0.526	0.230	0.090	0.798	0.148	Baseline
NetWarden [50]	0.999	0.999	0.999	0.0	0.0	FlowLens [6
FlowLens [6]	0.501	0.956	0.029	0.0	0.985	SketchFeatu
SketchFeature	0.999	0.996	0.965	0.003	0.0	

PR	FNR	Schemes	AUC	Acc.	F1	FPR	FNR						
		Distrit	Distributed Denial of Service (DDoS)										
0.0	0.020	Perfect Measure	0.997	0.997	0.877	0.001	0.125						
0.0	0.027	Baseline	0.561	0.991	0.197	0.0	0.875						
018	0.018	NetBeacon [63]	0.738	0.995	0.636	0.0	0.521						
0.0	0.928	FlowLens [6]	0.504	0.991	0.126	0.0	0.932						
.0	0.019	SketchFeature	0.994	0.994	0.746	0.004	0.130						
				Botnet									
0.0	0.0	Perfect Measure	0.922	0.997	0.845	0.001	0.142						
798	0.148	Baseline	0.494	0.979	0.007	0.012	0.978						
0.0	0.0	FlowLens [6]	0.498	0.992	0.106	0.0	0.942						
0.0	0.985	SketchFeature	0.914	0.995	0.715	0.003	0.172						

Conclusion

• Extended Sketch Capacity

ightarrow Enabled 3rd-order feature extraction in the data plane

Resolved Technical Challenges

 \rightarrow Introduced membership tests to eliminate phantom decoding

• Implementation in Tofino Switch

- \rightarrow Showed feasibility of SketchFeature in the data plane
- Validated Theoretical and Experimental Performance
 - \rightarrow Proved error bounds & feasibility
- Advanced Security Applications
 - \rightarrow Demonstrated high detection accuracy in real-world scenario

Thank You