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Massive Vulnerabilities
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https://tuxcare.com/blog/the-linux-kernel-cve-flood-continues-unabated-in-2025/

The number of CVEs is vast and surging each year.

8748
10555

17014 17475 17021

20583
22998

25322

29353

36033

0

5000

10000

15000

20000

25000

30000

35000

40000

2015 2016 2017 2018 2019 2020 2021 2022 2023 2024

Yearly CVEs Count

https://app.opencve.io/statistics

2



Delayed Patching

Vulnerability fixes take long, leaving 
attackers a window of dozens of days.
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Diverse software/kernel Distributions and Versions in Use

For example, the Linux kernel encompasses numerous distributions 
and versions, reflecting its extensive adoption and customization.

https://en.wikipedia.org/wiki/Linux_kernel_version_history
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Motivation

A rapid and effective mitigation mechanism can 

cover various vulnerabilities before patch release 

while being non-intrusive and backward-compatible.
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Observation

Statistics on different memory corruption patch 
types from PatchScope [1]

[1] Zhao, Lei, et al. "PatchScope: Memory object centric patch diffing." Proceedings of the 2020 ACM SIGSAC Conference on Computer and Communications Security. 2020.
[2] Yang, Songtao, et al. "1dFuzz: Reproduce 1-Day Vulnerabilities with Directed Differential Fuzzing." Proceedings of the 32nd ACM SIGSOFT International Symposium on 
Software Testing and Analysis. 2023.

Statistics of patches patterns [2]

Many patches follow the pattern of constraint expressions.
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Constraint expressions to describe most vulnerability 
conditions.

Intuition
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Cover various vulnerabilities.



Intuition
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Existing probing mechanisms can collect runtime 
information without requiring intrusive modifications.

Non-intrusive and backward-compatible.

Constraint expressions to describe most vulnerability 
conditions.



Intuition
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Existing probing mechanisms can collect runtime 
information without requiring intrusive modifications.

Automatically generate mitigation policy based on 
vulnerability error reports.

Rapid and effective.

Constraint expressions to describe most vulnerability 
conditions.



Overview
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Source-level Policy Generation

UBSAN: array-index-out-of-bounds in 
drivers/net/hamradio/6pack.c:845:16

index 400 is out of range for type 'unsigned char 
[400]'

......

Call Trace:

dump_stack+0x107/0x163

ubsan_epilogue+0xb/0x5a

__ubsan_handle_out_of_bounds.cold+0x62/0x6c

decode_data.part.0+0x2c8/0x2e0

sixpack_receive_buf+0xcb1/0x1320

Report 
Analysis 

Static Analysis
(optional)

Source CodeThe sanitizer report for the 
instrumented binary

The source-level policy of 
the uninstrumented binary
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Policy Lowering for Binary-level Policy

0x0521de10:   DW_TAG_subprogram
                DW_AT_abstract_origin   (0x0521b972 
"decode_data")
                DW_AT_low_pc    (0xffffffff84e6acb0)
                DW_AT_high_pc   (0xffffffff84e6af81)
......
0x0521b972:   DW_TAG_subprogram
                DW_AT_name      ("decode_data")
                DW_AT_decl_file 
("/home/clive/linux_kernel/linux-5.11-
rc1/drivers/net/hamradio/6pack.c")
                DW_AT_decl_line (832)
                DW_AT_decl_column       (0x0d)
......

Policy
Lowering
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Target binaries often lack debuginfo, 
requiring policy lowering to the binary level.



Policy Enforcer - Verification 

signed policy

original policy

signature

hashing

digest1

digest2

decryption
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Policy Enforcer - Perception (optional) 

Heap

buffer A

malloc buffer A

ptrPerception point

Collecting necessary runtime information before making decisions.
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Policy Enforcer - Decision & Execution
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Heap

buffer A

malloc buffer A Free buffer A
the dangling pointer `ptr` 
point to the buffer B

Heap Heap

buffer Bptr ptr ptr

 Heap

buffer A

malloc buffer A Free buffer A

ptr

Heap

Quarantine ptr

Sweeper find the dangling pointer `ptr`

Heap

Quarantine 

buffer B

ptr

Policy Enforcer - Other mitigation actions

Quarantine and Sweeper

Regular System
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Effectiveness

Support both user-space 
programs and kernel.

Cover 9 different
types of vulnerabilities.
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Performance Evaluation - Nginx

Only +0.001ms/req

• Implementing the policy of CVE-2013-2028
• n - total number of requests
• c -  number of concurrent requests
• Each request triggers the policy execution
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Performance Evaluation - UnixBench

The combined overhead of the three mitigation mechanisms is 1.047%.
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Conclusion
• Policy-Based Protection

• Utilizes a policy-driven approach for targeted and effective 
mitigation.  

• Broad Coverage
• Demonstrated effectiveness in mitigating at least 9 different 

types of vulnerabilities.  
• Low Overhead

•  Nginx Performance: +0.001ms/req.
•  UnixBench Performance: up to 1.047% overhead.  
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Any questions?

Thanks!


