
 VulShield: Protecting Vulnerable
Code Before Deploying Patches

Yuan Li, Chao Zhang✉ ️, Jinhao Zhu, Penghui Li, Chenyang Li,
Songtao Yang, Wende Tan

Massive Vulnerabilities

120 162 309 290

3529

0
500

1000
1500
2000
2500
3000
3500
4000

2020 2021 2022 2023 2024

Linux Kernel CVE numbers

Linux Kernel CVE

https://tuxcare.com/blog/the-linux-kernel-cve-flood-continues-unabated-in-2025/

The number of CVEs is vast and surging each year.

8748
10555

17014 17475 17021

20583
22998

25322

29353

36033

0

5000

10000

15000

20000

25000

30000

35000

40000

2015 2016 2017 2018 2019 2020 2021 2022 2023 2024

Yearly CVEs Count

https://app.opencve.io/statistics

2

Delayed Patching

Vulnerability fixes take long, leaving
attackers a window of dozens of days.

3

73.9

57.8
65.9

88.6

57.1

72.9

84.9

66.3
75.6

0
10
20
30
40
50
60
70
80
90

100

Application Layer Network / Device Layer Fullstack

Mean Time to Remediate

Critical High Medium

https://www.edgescan.com/wp-content/uploads/2024/03/2023-Vulnerability-Statistics-Report.pdf

Vulnerability Localization

Vulnerability Analysis

Patch Creation

Diverse software/kernel Distributions and Versions in Use

For example, the Linux kernel encompasses numerous distributions
and versions, reflecting its extensive adoption and customization.

https://en.wikipedia.org/wiki/Linux_kernel_version_history

4

2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030

4.4.302-cip96

4.19.325-cip117

5.4.290

5.10.233-cip56

5.10.234

5.15.178

6.1.127-cip36

6.1.128

6.6.77

6.12.13

6.13.2

K
er

ne
l V

er
si

on
Maintained kernel versions

Motivation

A rapid and effective mitigation mechanism can

cover various vulnerabilities before patch release

while being non-intrusive and backward-compatible.

5

Observation

Statistics on different memory corruption patch
types from PatchScope [1]

[1] Zhao, Lei, et al. "PatchScope: Memory object centric patch diffing." Proceedings of the 2020 ACM SIGSAC Conference on Computer and Communications Security. 2020.
[2] Yang, Songtao, et al. "1dFuzz: Reproduce 1-Day Vulnerabilities with Directed Differential Fuzzing." Proceedings of the 32nd ACM SIGSOFT International Symposium on
Software Testing and Analysis. 2023.

Statistics of patches patterns [2]

Many patches follow the pattern of constraint expressions.

6

Constraint expressions to describe most vulnerability
conditions.

Intuition

7

Cover various vulnerabilities.

Intuition

8

Existing probing mechanisms can collect runtime
information without requiring intrusive modifications.

Non-intrusive and backward-compatible.

Constraint expressions to describe most vulnerability
conditions.

Intuition

9

Existing probing mechanisms can collect runtime
information without requiring intrusive modifications.

Automatically generate mitigation policy based on
vulnerability error reports.

Rapid and effective.

Constraint expressions to describe most vulnerability
conditions.

Overview

10

Source-level Policy Generation

UBSAN: array-index-out-of-bounds in
drivers/net/hamradio/6pack.c:845:16

index 400 is out of range for type 'unsigned char
[400]'

......

Call Trace:

dump_stack+0x107/0x163

ubsan_epilogue+0xb/0x5a

__ubsan_handle_out_of_bounds.cold+0x62/0x6c

decode_data.part.0+0x2c8/0x2e0

sixpack_receive_buf+0xcb1/0x1320

Report
Analysis

Static Analysis
(optional)

Source CodeThe sanitizer report for the
instrumented binary

The source-level policy of
the uninstrumented binary

11

Policy Lowering for Binary-level Policy

0x0521de10: DW_TAG_subprogram
 DW_AT_abstract_origin (0x0521b972
"decode_data")
 DW_AT_low_pc (0xffffffff84e6acb0)
 DW_AT_high_pc (0xffffffff84e6af81)
......
0x0521b972: DW_TAG_subprogram
 DW_AT_name ("decode_data")
 DW_AT_decl_file
("/home/clive/linux_kernel/linux-5.11-
rc1/drivers/net/hamradio/6pack.c")
 DW_AT_decl_line (832)
 DW_AT_decl_column (0x0d)
......

Policy
Lowering

12

Target binaries often lack debuginfo,
requiring policy lowering to the binary level.

Policy Enforcer - Verification

signed policy

original policy

signature

hashing

digest1

digest2

decryption

13

Policy Enforcer - Perception (optional)

Heap

buffer A

malloc buffer A

ptrPerception point

Collecting necessary runtime information before making decisions.

14

Policy Enforcer - Decision & Execution

decision point

text

data
&

stack

15

Heap

buffer A

malloc buffer A Free buffer A
the dangling pointer `ptr`
point to the buffer B

Heap Heap

buffer Bptr ptr ptr

 Heap

buffer A

malloc buffer A Free buffer A

ptr

Heap

Quarantine ptr

Sweeper find the dangling pointer `ptr`

Heap

Quarantine

buffer B

ptr

Policy Enforcer - Other mitigation actions

Quarantine and Sweeper

Regular System

16

Effectiveness

Support both user-space
programs and kernel.

Cover 9 different
types of vulnerabilities.

17

Performance Evaluation - Nginx

Only +0.001ms/req

• Implementing the policy of CVE-2013-2028
• n - total number of requests
• c - number of concurrent requests
• Each request triggers the policy execution

18

Performance Evaluation - UnixBench

The combined overhead of the three mitigation mechanisms is 1.047%.

19

Conclusion
• Policy-Based Protection

• Utilizes a policy-driven approach for targeted and effective
mitigation.

• Broad Coverage
• Demonstrated effectiveness in mitigating at least 9 different

types of vulnerabilities.
• Low Overhead

• Nginx Performance: +0.001ms/req.
• UnixBench Performance: up to 1.047% overhead.

20

Any questions?

Thanks!

