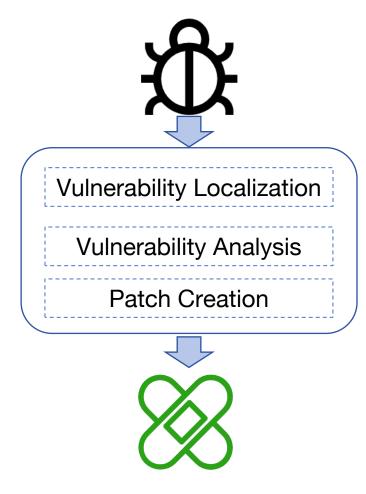
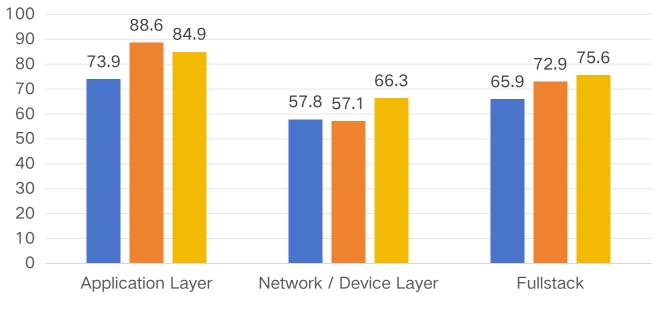

VulShield: Protecting Vulnerable Code Before Deploying Patches

Yuan Li, Chao Zhang[∞], Jinhao Zhu, Penghui Li, <u>Chenyang Li</u>, Songtao Yang, Wende Tan

Massive Vulnerabilities



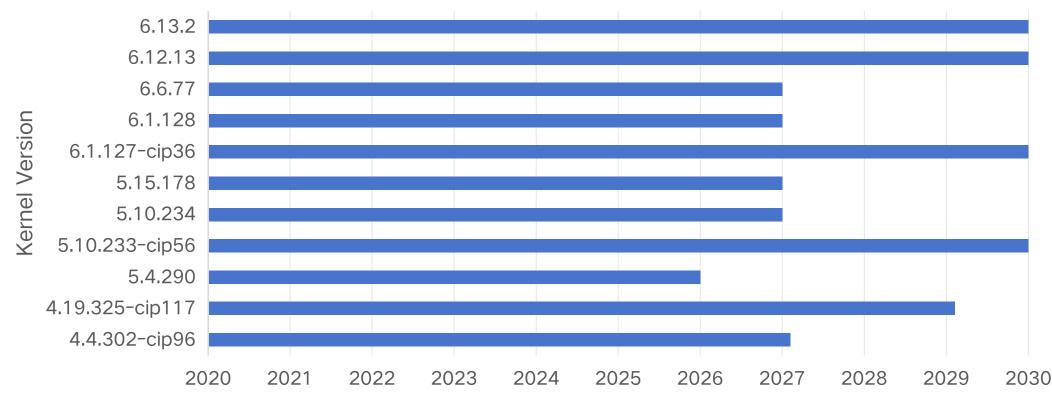
https://app.opencve.io/statistics


https://tuxcare.com/blog/the-linux-kernel-cve-flood-continues-unabated-in-2025/

The number of CVEs is vast and surging each year.

Delayed Patching

Mean Time to Remediate


Critical High Medium

https://www.edgescan.com/wp-content/uploads/2024/03/2023-Vulnerability-Statistics-Report.pdf

Vulnerability fixes take long, leaving attackers a window of dozens of days.

Diverse software/kernel Distributions and Versions in Use

Maintained kernel versions

https://en.wikipedia.org/wiki/Linux_kernel_version_history

For example, the Linux kernel encompasses numerous distributions and versions, reflecting its extensive adoption and customization.

A rapid and effective mitigation mechanism can cover various vulnerabilities before patch release while being non-intrusive and backward-compatible.

Observation

No.	Category	Percentage		
1	add input sanitization checks	43.5%		
2	change input sanitization checks	25.1%		
3	add data structures	6.1%		
4	change data structure definitions	6.5%		
5	change data structure references	22.3%		
6	change function parameters	10.9%		
7	add or change function calls	15.3%		
8	add functions	4.7%		
9	change functions	7.6%		

Statistics on different memory corruption patch types from **PatchScope** [1]

Code	Total Patches			
Pattern	#	ratio to total		
if-exit	25	2.4%		
if-return	437	42.4%		
if-goto	147	14.3%		
if-body	229	22.2%		
Misc.	193	18.7%		
Total	1031	100%		

Statistics of patches patterns [2]

Many patches follow the pattern of constraint expressions.

[1] Zhao, Lei, et al. "PatchScope: Memory object centric patch diffing." Proceedings of the 2020 ACM SIGSAC Conference on Computer and Communications Security. 2020.
[2] Yang, Songtao, et al. "1dFuzz: Reproduce 1-Day Vulnerabilities with Directed Differential Fuzzing." Proceedings of the 32nd ACM SIGSOFT International Symposium on Software Testing and Analysis. 2023.

Intuition

- Constraint expressions to describe most vulnerability conditions.

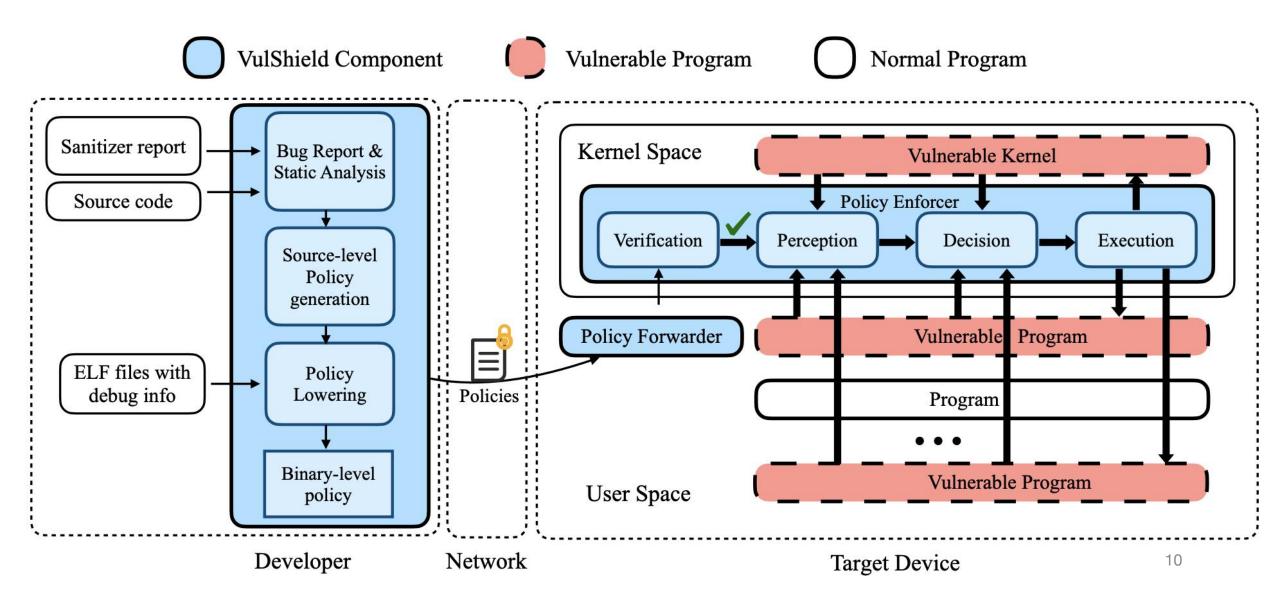
Intuition

- Constraint expressions to describe most vulnerability conditions.

Existing probing mechanisms can collect runtime information without requiring intrusive modifications.

Non-intrusive and backward-compatible.

Intuition


- Constraint expressions to describe most vulnerability conditions.

Existing probing mechanisms can collect runtime information without requiring intrusive modifications.

- Automatically generate mitigation policy based on vulnerability error reports.

Overview

Source-level Policy Generation

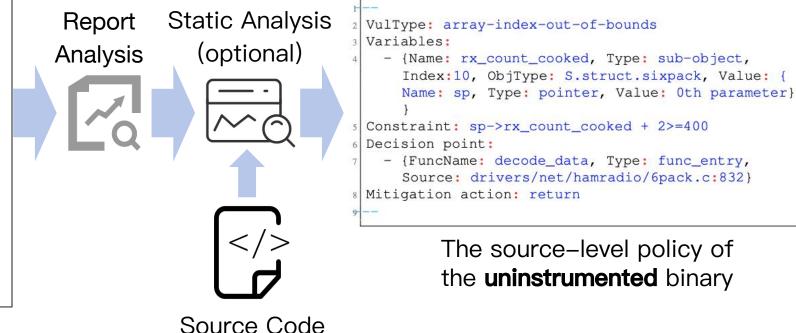
UBSAN: array-index-out-of-bounds in drivers/net/hamradio/6pack.c:845:16

index 400 is out of range for type 'unsigned char [400]'

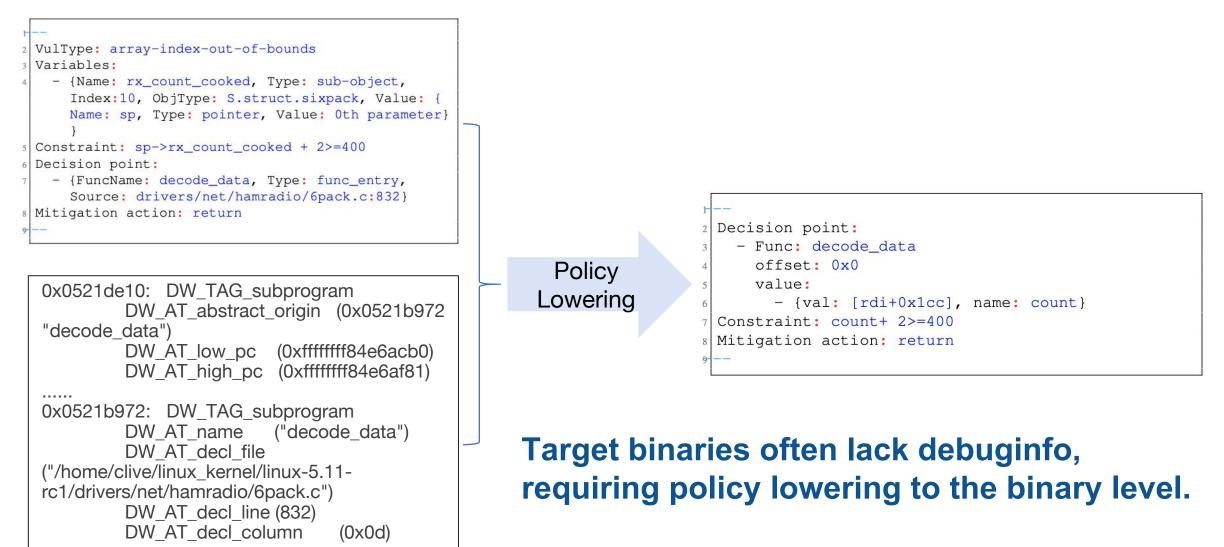
.....

Call Trace:

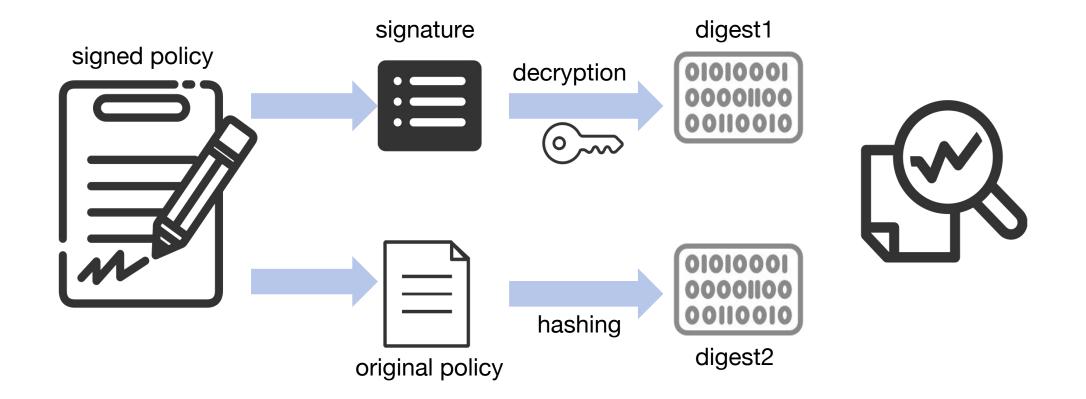
dump_stack+0x107/0x163

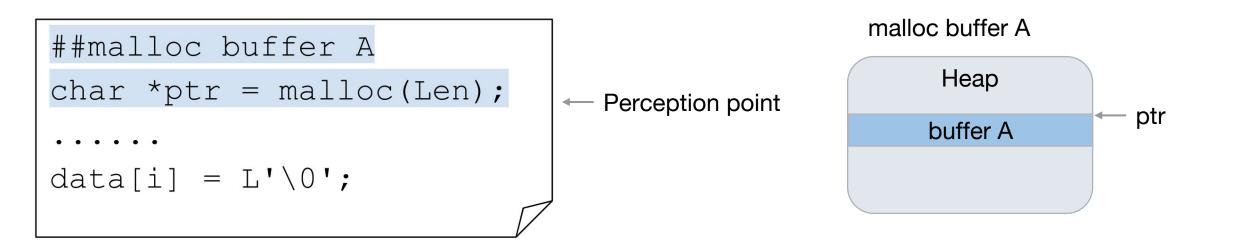

ubsan_epilogue+0xb/0x5a

__ubsan_handle_out_of_bounds.cold+0x62/0x6c

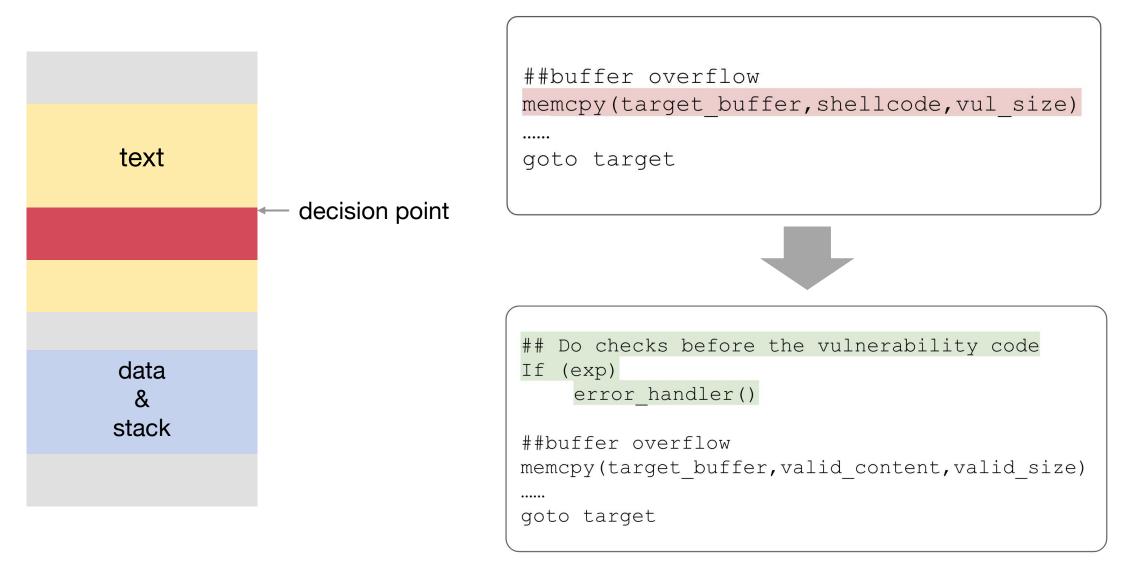

decode_data.part.0+0x2c8/0x2e0

sixpack_receive_buf+0xcb1/0x1320

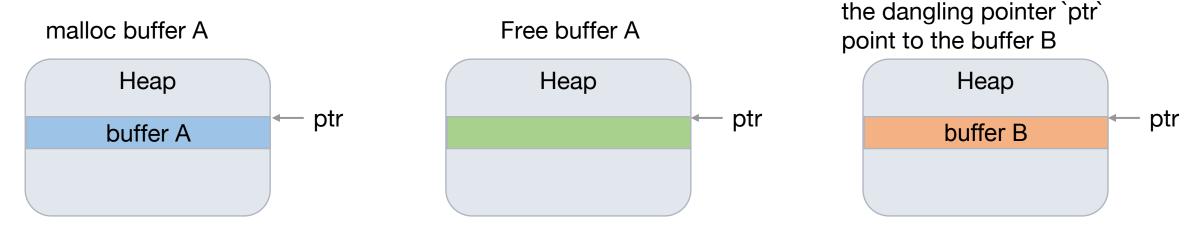

The sanitizer report for the **instrumented** binary


Policy Lowering for Binary-level Policy

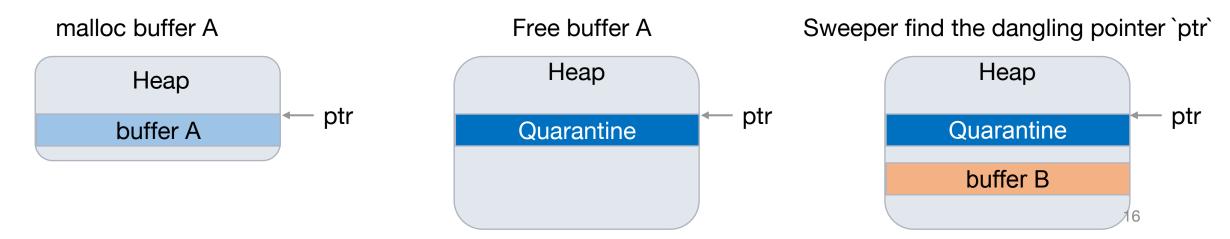
Policy Enforcer - Verification



Policy Enforcer - Perception (optional)


Collecting necessary runtime information before making decisions.

Policy Enforcer - Decision & Execution



Policy Enforcer - Other mitigation actions

Regular System

Quarantine and Sweeper

Effectiveness

Support both user-space programs and kernel.

Cover 9 different types of vulnerabilities.

Target Binary		CVE No.	Vulnerability Type	Policy Type	Is it effective?
libpng		CVE-2013-6954	NULL Pointer Dereference	Expression-based	1
-	libtiff	CVE-2016-10270	Out-of-bounds Access	Expression-based	1
		CVE-2019-7663	Invalid Address dereference	Expression-based	1
	libxml	CVE-2017-9047 Buffer Overflow		Expression-based	1
		CVE-2016-1836	Use After Free	Expression-based	1
	openssl	CVE-2016-2108	Buffer Underflow	Expression-based	✓
		CVE-2016-6309	Use After Free	Expression-based	1
		CVE-2017-3735	Out-of-bounds Access	Expression-based	~
	nhn	CVE-2018-14883	Out-of-bounds Access	Expression-based	1
Magma	php	CVE-2019-11034	Out-of-bounds Access	Expression-based	1
1994 C 1994		CVE-2019-14494	Divide By Zero	Expression-based	1
	poppler	CVE-2019-9959	Integer Overflow	Expression-based	1
		CVE-2019-10873	NULL Pointer Dereference	Expression-based	1
		CVE-2019-10872	Out-of-bounds Access	Expression-based	1
		CVE-2019-7310	Out-of-bounds Access	Expression-based	1
		CVE-2018-13988	NULL Pointer Dereference	Expression-based	1
		CVE-2018-10768	NULL Pointer Dereference	Expression-based	1
		CVE-2017-14617	Divide By Zero	Expression-based	~
	sqlite3			Expression-based	1
libIEC	61850	CVE-2018-18957	Buffer Overflow	Expression-based	1
Librel	DWG	CVE-2020-21813	Buffer Overflow	Expression-based	1
Ngi	inx	CVE-2013-2028	Integer Overflow	Expression-based	1
gp	ac	CVE-2020-19488	NULL Pointer Dereference	Expression-based	1
gpac libxml2		CVE-2021-3518	Use After Free	Expression-based	1
Linux kernel		CVE-2017-18344	Out-of-bounds Access	Expression-based	1
		CVE-2021-42008	Out-of-bounds Access	Expression-based	1
		CVE-2022-2588	Use After Free	QS	1
		CVE-2021-3492	UAF+Double Free+Mising Release	QS	+
		6dc9ae7 [50]	Use After Free	QS	<u> </u>
		ca4463b [36]	Race condition+UAF	QS	
		a834b99 [51]	Data race	DEC	

. . .

✓: effectively detect and prevent the triggering of reported vulnerabilities. +: only support partial the reported vulnerabilities

Performance Evaluation - Nginx

- Implementing the policy of CVE-2013-2028
- n total number of requests
- c number of concurrent requests
- Each request triggers the policy execution

	w/o Vuls	Shield	w/ VulShield Time per request		
Nginx	Time per	request			
	a concurrent group	a single request	a concurrent group	a single request	
n=100000, c=10	0.130 ms	0.013 ms	0.140 ms	0.014 ms	
n=100000, c=100	1.313 ms	0.013 ms	1.411 ms	0.014 ms	
n=100000, c=1000	15.075 ms	0.015 ms	15.827 ms	0.016 ms	
n=100000, c=10000	136.712 ms	0.014 ms	136.238 ms	0.014 ms	

Only +0.001ms/req

Performance Evaluation - UnixBench

Test Items	0 policy		1 policy		2 policies			3 policy	
	w/o VulShield	w/ VulShield	Expression-based	QS	DEC	Expression-based + QS	Expression-based + DEC	QS + DEC	Expression-based + QS + DEC
Dhrystone 2 using register variables	6502.0	6436.1	6411.4	6419.2	6416.2	6413.2	6364.9	6311.3	6419.9
Double-Precision Whetstone	2028.8	2029.6	2028.8	2029.2	2030.0	2029.0	2030.3	2028.8	2030.2
Execl Throughput	2262.6	2270.1	2272.2	2261.6	2267.8	2257.4	2263.9	2263.5	2266.3
File Copy 1024 bufsize	7101.5	7097.5	7016.9	7086.5	7060.4	7063.7	7054.6	7111.6	6995.6
File Copy 256 bufsize	4687.1	4717.2	4723.8	4709.9	4729.6	4722.2	4728.0	4715.8	4718.3
File Copy 4096 bufsize	12954.1	12467.8	11974.8	11915.7	12513.3	12031.6	11824.6	12317.2	11646.3
Pipe Throughput	3356.5	3354.4	3369.3	3379.8	3361.5	3381.5	3366.6	3365.0	3397.7
Context Switching	1277.8	1293.6	1293.0	1297.2	1290.0	1290.0	1290.7	1293.4	1284.7
Process Creation	2612.1	2665.5	2632.6	2642.2	2642.7	2584.2	2542.9	2597.7	2612.6
Shell Scripts (1 concurrent)	4338.5	4344.3	4348.1	4340.8	4334.4	4332.4	4333.8	4327.6	4337.6
Shell Scripts (8 concurrent)	4054.0	4058.4	4058.5	4052.8	4053.8	4045.4	4044.5	4017.0	4043.3
SysCall Overhead	2478.1	2478.4	2476.9	2478.4	2479.6	2477.2	2478.6	2476.7	2471.6
System Benchmarks Index Score	3685.7	3684.3	3665.4	3667.3	3679.7	3659.6	3647.1	3662.6	3651.2
Overhead	-	0.038%	0.551%	0.499%	0.163%	0.708%	1.047%	0.627%	0.936%

The combined overhead of the three mitigation mechanisms is 1.047%.

Conclusion

- Policy-Based Protection
 - Utilizes a policy-driven approach for targeted and effective mitigation.
- Broad Coverage
 - Demonstrated effectiveness in mitigating at least 9 different types of vulnerabilities.
- Low Overhead
 - Nginx Performance: +0.001ms/req.
 - UnixBench Performance: up to **1.047%** overhead.

Any questions?