
BULKHEAD: Secure, Scalable, and Efficient Kernel 

Compartmentalization with PKS

1

Yinggang Guo1,2, Zicheng Wang1, Weiheng Bai2, Qingkai Zeng1, Kangjie Lu2



Background

2

• OS kernel faces a continual influx of vulnerabilities.



Background

3

• OS kernel faces a continual influx of vulnerabilities.

• The monolithic architecture shares privileges between modules.



Background

4

• OS kernel faces a continual influx of vulnerabilities.

• The monolithic architecture shares privileges between modules.



Background

5

• OS kernel faces a continual influx of vulnerabilities.

• The monolithic architecture shares privileges between modules.



Background

6

• OS kernel faces a continual influx of vulnerabilities.

• The monolithic architecture shares privileges between modules.

• Kernel compartmentalization is promising to confine the effect of exploitation.



Overview

7

Challenges: mutual untrusted, privileged, numerous and complex compartments



Objectives

8



Design

9

• Security

➢ Bi-directional isolation ——> In-kernel monitor

✓ Memory isolation



Design

10

• Security

➢ Bi-directional isolation ——> In-kernel monitor

✓ Memory isolation

✓ Instruction deprivation



Design

11

• Security

➢ Bi-directional isolation ——> In-kernel monitor

✓ Memory isolation

✓ Instruction deprivation

➢ Data protection ——> Data integrity

✓ Write-protected page tables

✓ Private heap



Design

12

• Security

➢ Bi-directional isolation ——> In-kernel monitor

✓ Memory isolation

✓ Instruction deprivation

➢ Data protection ——> Data integrity

✓ Write-protected page tables

✓ Private heap

➢ Control flow protection ——> Execute-only memory



Design

13

• Security

➢ Bi-directional isolation ——> In-kernel monitor

✓ Memory isolation

✓ Instruction deprivation

➢ Data protection ——> Data integrity

✓ Write-protected page tables

✓ Private heap

➢ Control flow protection ——> Execute-only memory

➢ Compartment interface protection ——> Compartment interface integrity



Compartment Interface Integrity

14

• Compartment switches must occur at the predefined entry/exit points 

and pass data according to security policies.



Design

15

• Scalability 

➢ Support for unlimited compartments ——> Two-level compartmentalization

✓ PKS-based intra-address space isolation

✓ locality-aware inter-address space isolation with ASID



Locality-aware Two-level Compartmentalization

16

• PKS-based intra-AS isolation + locality-aware AS switching with ASID



Design

17

• Performance

➢ Fast compartment switches ——> PKRS updates

➢ Zero-copy data transfer ——> Ownership transfer

0 0 0 1 …

0 0 0 1 …

0 0 1 0 …

...

0 0 1 0 …

C1

C2

0 0 0 1 …

0 0 0 1 …

0 0 0 1 …

...

0 0 1 0 …

C1

C2



Security Analysis

18



Performance Evaluation

19



Performance Evaluation

20



Memory Overhead

21

• On average, the memory overhead is 1.66% for LMbench and 0.63% for Phoronix.



Conclusion

22

• What to use as the bulkhead ? 

➢ PKS-based bi-directional isolation

• Where to put the bulkhead ? 

➢ LLVM-based boundary analysis

• How to set up the bulkhead ? 

➢ Secure and efficient switch gates

• Compartmentalization for other systems

➢ TEE, multi-language systems, LLM systems…



Thank You!
Q & A

23


