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• OS kernel faces a continual influx of vulnerabilities.

• The monolithic architecture shares privileges between modules.

• Kernel compartmentalization is promising to confine the effect of exploitation.
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Challenges: mutual untrusted, privileged, numerous and complex compartments
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• Security

➢ Bi-directional isolation ——> In-kernel monitor

✓ Memory isolation

✓ Instruction deprivation

➢ Data protection ——> Data integrity

✓ Write-protected page tables

✓ Private heap

➢ Control flow protection ——> Execute-only memory

➢ Compartment interface protection ——> Compartment interface integrity



Compartment Interface Integrity
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• Compartment switches must occur at the predefined entry/exit points 

and pass data according to security policies.



Design

15

• Scalability 

➢ Support for unlimited compartments ——> Two-level compartmentalization

✓ PKS-based intra-address space isolation

✓ locality-aware inter-address space isolation with ASID



Locality-aware Two-level Compartmentalization
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• PKS-based intra-AS isolation + locality-aware AS switching with ASID
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• Performance

➢ Fast compartment switches ——> PKRS updates

➢ Zero-copy data transfer ——> Ownership transfer
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Memory Overhead
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• On average, the memory overhead is 1.66% for LMbench and 0.63% for Phoronix.



Conclusion
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• What to use as the bulkhead ? 

➢ PKS-based bi-directional isolation

• Where to put the bulkhead ? 

➢ LLVM-based boundary analysis

• How to set up the bulkhead ? 

➢ Secure and efficient switch gates

• Compartmentalization for other systems

➢ TEE, multi-language systems, LLM systems…
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