Longitudinal Analysis of the Third-party Authentication Landscape

Anna Vapen, Niklas Carlsson, Nahid Shahmehri Linköping University, Sweden

Background: Third-party Web Authentication

使用您	常用的	长号登录
	6	

Sign in with your Social ID:				
	H	VeriSign		

Web Authentication

- Registration with each website
- Many passwords to remember

Third-party authentication

- Use an existing **IDP** (identity provider) account to access an **RP** (relying party)
- Log in less often; Stronger authentication
- Share information between websites
- Information sharing → **privacy leaks**!

Third-party Authentication Scenario

Putting the Work in Context

- Our previous work
 - Large-scale study on the RP-IDP landscape (PAM'14)
 - Categorization of RPs (IEEE IC'16)
 - Detailed study on information flows (SEC'15)
- Current longitudinal study
 - How has the RP-IDP landscape changed over time?
 - Privacy implications of landscape structure?
 - Changes in information flows over time?

Contributions

1. Structural dynamics

– Structural model of the RP-IDP landscape

2. Protocol-based analysis

- Protocol- and IDP changes vs. popularity changes
- 3. Flow-based analysis of privacy risks
 - Information leaks between RPs and IDPs

Methodology

- Top 200 most popular websites
 - Measured at ten points in time, April 2012 to April 2015
 - Original top 200 sites from April 2012, over time
 - Current top 200 at a specific time of measurement

Current top 200 snapshots

- Data flow analysis of sites using top IDPs (2014-2015)
- Facebook permission agreements

Popular IDPs

Top 200 April 2012: 69 RPs and 180 relationships Same sites, April 2015: **+15** RPs and **+33** relationships

Num. relationships with	April 2012	April 2015
Facebook	45	52
Google	25	33
Twitter	16	20
QQ	9	18
Weibo	3	14
Non-top IDPs	82	76
% rels. with top IDPs	54.44%	64.32%
% RPs using top IDP(s)	86.96%	90.48%

Popular IDPs

Structures in the RP-IDP Landscape

Structural Model

- We have modeled the landscape as a bipartite graph
 - Mainly high-degree IDP structures

Structural Model

Place HY nodes in layers, based on their main feature

Structural Changes

- Three stages of the landscape:
 - 1. Adding many IDPs (trying out new technology)
 - 2. Nested landscape with many hybrids
 - 3. Simplified landscape
 - Regional and language-based differences:
 - English/US Web: Stage 3 with few IDPs
 - Chinese Web: Stage 3, still with many hybrids
 - Russian Web: Entering stage 2!

Example: Structural Changes

Non-Chinese Web April 2012: IDP-like hybrids (few)

Non-Chinese Web April 2015: Emerging Russian HY-structures

Relationship Types

- Relationship types:
 - **Stable:** Kept by the RP, during all 10 snapshots
 - New: Added after the first snapshot
 - **Removed:** Observed in the 1st snapshot and later removed
 - Changing: Added and removed one of more times

Protocol Usage per Relationship Type

[Protocol	Total	Stable	New	Removed	Changed
	OAuth	140	46%	33%	10%	11%
	OAuth* China	102	25%	28%	15%	31%
	OpenID	40	5%	15%	68%	13%
	OpenID to OAuth	7	86%	0%	0%	14%
	Internal/unknown	14	71%	7%	0%	21%

OAuth protocol: Less privacy preserving than OpenID!

* Parts of the Chinese OAuth relationships may be internal

RP Behavior

Information Sharing Between RP and IDPs

Types of Information Flows

Potential Information Leaks

- **Single-hop data transfer:** RP to IDP (or IDP to RP)
- **Multi-hop leak:** Indirect leak via proxy node(s)

RP-to-RP Leakage Example

RP-to-RP leaks	February 2014		April	2015
IDP	All	Severe	All	Severe
Facebook	645	150	473	66
Twitter	110	110	110	110
Google	91	0	91	0

Dataset with 44 RPs using Facebook, 14 using Twitter and 12 using Google

- Potential RP-to-RP leaks
 - Information written/posted from RP1 to IDP
 - Information read from IDP to RP2
 - Leak only possible with Write(RP1-IDP) + Read(IDP-RP2)

Facebook Use-case

- Facebook API changes in 2015 to strengthen privacy
 - Most RPs needed to change to more privacy-preserving data sharing permissions to comply
 - Four measurements: Sept. 14 May 2015
 - 63 top-200 RPs using Facebook as their IDP

Contributions and Findings

- Showed that the RP-IDP landscape can be modeled as a bipartite graph
 - Designed a model for RP-IDP structures
 - Identified structural changes over time
- Protocol- and IDP selections made by RPs
 - A few popular IDPs increasingly used
 - More data sharing less user privacy
- Identified privacy leakage risks
 - Multi-hop, enabled by the structures

Longitudinal Analysis of the Third-party Authentication Landscape

Anna Vapen, Niklas Carlsson, Nahid Shahmehri anna.vapen@liu.se

