
On User Choice for Android Unlock Patterns

Marte Loge
NTNU, Norway

marte.loge@gmail.com

Markus Duermuth
Ruhr-University Bochum, Germany

markus.duermuth@rub.de

Lillian Rostad
NTNU, Norway
lilliaro@ntnu.no

Abstract—Android Unlock Patterns are one of the most widely
used graphical password schemes. However, the scheme’s security
is limited by users not choosing patterns uniformly but with a
specific bias. In this work we take a closer look at this bias, in
particular how personal traits influence the chosen patterns. We
conducted a user study with 800 participants and demonstrate
that certain factors such as age, gender, and experience in
IT significantly influence the strength or length of the chosen
patterns. This has implications both for how we can help users
to select stronger patterns and for forensic applications.

I. INTRODUCTION

Over the last decade, mobile phones have evolved from
simple tools for making voice calls to powerful computers
which can be used to access emails and social media, make
payments, access online banking, and store private as well as
work-related sensitive information. User authentication helps
protecting the sensitive information stored on the device. Au-
thentication schemes commonly used on smartphones include
(i) knowledge-based schemes, mostly PINs and (graphical)
passwords; (ii) biometric schemes, mostly fingerprint recog-
nition (recent iPhone models and other high-end models) and
face recognition (e.g. offered on Android since version 4.0);
(iii) security tokens are rarely used on smartphones (however, a
smartphone is commonly used as second factor to authenticate
to another device or account). PINs and Android Unlock
patterns are the most frequently used schemes, but studies are
not conclusive to which one is used more often (cf. [27], [17],
[16]).

User-chosen authentication secrets are known to be rel-
atively predictable, regardless if they are PINs [10], pass-
words [20], or graphical passwords [12], [14], [26], and can
therefor be determined by guessing attacks. Even more, certain
observable properties of a person have been shown to influence
the selected authentication secret. This effect has been demon-
strated for PINs [10], where it was demonstrated that knowl-
edge of a person’s birthday significantly accelerates guessing
the person’s PIN, for passwords [11], where it was shown that
knowing background information such as birthday, occupation,
and friends can improve guessing success by around 5%, and
for the graphical password scheme PassFace [12], where it was

found that faces were selected with a strong bias based on race
and gender.

In this work, we study the effect that personal traits of
a user have on his selection of Android Unlock Patterns.
This was, to the best of our knowledge, never studied before,
the only exception being independent and concurrent work
by Aviv et al. [7] which studied the influence of collection
methods and personal traits on the collected patterns. However,
they only studied the influence of personal traits on specific
characteristics of the patterns, such as length, starting point,
and occurrence of crosses and knight-moves. In this work,
we use a Markov model-based meter to approximate the
strength of individual patterns and thus being able to analyze
the influence of personal traits on the strength of individual
patterns.

We conducted an online survey that asked users to use
the Android Unlock Pattern scheme to secure access to (i) a
shopping account, (ii) a smartphone, and (iii) a bank account.
In addition, we asked participants to answer a questionnaire
which contained standard demographic questions, and specif-
ically questions about factors that we believed may influence
the strength of the chosen patterns, such as gender, background
in IT or IT security, handedness, and others. We show that
age and gender have a significant influence on the average
strength of the patterns chosen (both male users and younger
users choose stronger patterns on average), while somewhat
surprisingly having experience in IT or IT security did not have
a statistically significant influence (but still had a statistically
significant influence on the pattern length).

Our work helps us to understand some of the factors behind
weak user-selected authentication secrets, and may hint at
directions to help users avoiding weak patterns. Our work also
shows directions to speed up the guessing of authentication
secrets in forensics, but more work is required before usable
results can be obtained.

Outline. We discuss related work in Section II, before de-
scribing details about the Android Unlock Pattern scheme
in Section III. We present the design of our user study in
Section IV and the results in Section V. We discuss these
results in Section VI and conclude with some final remarks in
Section VII.

II. RELATED WORK

Graphical passwords. Graphical passwords have the potential
to offer easier-to-use authentication, as there is indication that
graphical information is easier to remember by humans [13].
Recently they found wide-spread adoption specifically on
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mobile devices, as they are particularly well-suited for touch-
screen use, while text-based passwords are much less suited
for devices without a physical keyboard.

The first description of a graphical password scheme goes
back to a patent by Blonder [8], which describes a scheme
where a user needs to select specific points in an image. This
scheme is an example for a cued-recall based scheme, other
examples include BDAS [15] and PassPoints [29], [30], [31].
Presumably the most widely used cued-recall based scheme is
Windows Picture Password, which is quite similar to Blonder’s
original proposal and to the PassPoints scheme.

The classical example for a recall-based graphical pass-
word scheme (without a cue) is the draw-a-secret scheme
(DAS) [19], where one draws free-handed on a grid. In 2007,
Tao and Adams [23] modified this original idea by snapping
the drawn lines to the intersections of a grid, thus removing
many of the problems of ambiguities of the DAS scheme and
making it much easier to use, calling the resulting scheme
Pass-Go. This scheme was adopted, with some restrictions,
for use in the Android mobile phones in 2008, which we will
describe in more detail in Section III.

Finally, recognition-based schemes are based on recogniz-
ing a previously seen object, instead of recalling information.
One of the classical examples is the PassFace scheme, where
the user selects several pictures of faces, and has to select these
faces among a number of decoy images for authentication.
Several related schemes have been deplored, but to the best of
our knowledge there is no scheme with significant adoption.

Security of graphical passwords. For the DAS scheme,
Oorschot and Thorpe [24] analyzed the security based on
mirror symmetric fragments. They constructed dictionaries
that improve guessing attacks against graphical passwords and
estimated the realistic space of passwords being exponentially
smaller than the theoretical space. Jermyn et al. [19] ana-
lyzed the security of the DAS scheme for computer-generated
passwords. However, computer-generated passwords are in
practice only used for very few accounts, problems being user
acceptance and low usability.

For the PassPoints scheme, Dirik et al. [14] investigated the
distribution of user’s choices and found substantial bias based
on data collected from human users. Thorpe and Oorschot [25]
used a more involved method and used click-points collected
in a user-study to seed automated methods for predicting likely
click-points, further facilitating and improving this kind of
attack. Zhao et al. [32] evaluate the security of the graphical
password scheme used in Windows 8 and propose effective
guessing algorithms against them.

Android Unlock Patterns. Uellenbeck et al. [26] evaluated the
security of Android Unlock patterns and found substantial
bias both in the starting point as well as the path chosen by
users. They precisely quantified the security of the scheme
and found its security to be lower than that of a uniformly
chosen 3-digit PIN. They additionally evaluated the influence
of a changed layout and found that layout changes indeed have
a substantial influence on the security, even with the same
number of nodes. The security of variants was also studied by
Aviv et al. [4], who compared Android Unlock Patterns both
on the standard 3 × 3 grid and on a 4 × 4, and found a very

limited increase of security on the larger grid. Arianezhad et
al. [3] evaluated a gaze-based variant of the scheme using an
eye-tracker, and reported statistics about start- and end-points,
frequent stroke directions, and similar for several arrangement
of contact points.

The influence of strength meters on user-choice for An-
droid Unlock Patterns was tested by Andriotis et al. [1] and
by Song et al. [21], who used a very elaborate study setup.

Attacks beyond guessing attacks were considered by Aviv
et al. [5], who used “smudges” left on the smartphone screen
while entering a pattern to reconstruct the user’s secret. An-
driotis et al. [2] extended this attack by incorporating statistics
about patterns typically chosen by users. The accelerometer
built into basically all modern smartphones was shown [6] to
leak (partial) information about PINs and patterns entered on
a smartphone. Von Zezschwitz et al. [28] measured and com-
pared the usability of (assigned) PINs and Android Patterns
under a realistic setting over three weeks.

Individual aspects and security. A particularly interesting
aspect is to what extent the authentication secret is influenced
by the person choosing it. Specifically, if observable character-
istics of a person influences the secret this can potentially be
used to speed up guessing attacks. For text-based passwords,
Bonneau [9] found different entropy values for different groups
of users. However, due to his data collection method he was
unable to look at specific password choices and only observed
the resulting distribution of choices, so he could not investigate
any further details such as the cause for the differences in
strength. Castelluccia et al. [11] found that incorporating a
few publicly available datapoints about a user can increase the
chance of guessing a password correctly by approx. 5%. In the
context of graphical passwords, specifically for the PassFace
scheme, Davis et al. [12] showed that the bias in choosing faces
significantly depends on gender, race, and subjective beauty of
the face.

The work closest to our work is recent and independent
work by Aviv et al. [7]. They studied the influence of both
collection methods and personal traits on the collected patterns.
However, they only reported the influence of personal traits on
specific characteristics of the patterns, such as length, starting
point, and occurrence of crosses and knight-moves, and did not
report on the influence of these traits on the actual strength of
individual passwords.

III. ANDROID UNLOCK PATTERNS

Next we give a brief introduction to the Android Unlock
Pattern scheme and describe the pattern strength meter that we
used.

A. Description

Android Unlock Patterns (AUP) are a restricted variant of
the Pass-Go scheme [23], which in turn goes back to Draw-
A-Secret (DAS) [19], one of the early graphical password
schemes. They were introduced in 2008, are available on
all current Android phones, and are widely used. The most
common design, which will be used throughout this paper,
uses 9 points arranged in a 3× 3 grid. The user selects a path
through these points according to the following rules:
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Fig. 1. Points reachable from the top-left node.

Fig. 2. Strength meter examples with score 0.0361 (left) and 0.114 · 10−4

(right).

(i) At least four points must be selected,
(ii) No point can be selected more than once,

(iii) Only straight lines are allowed, and
(iv) All points along a path will be connected (unless it was

selected before).

The first rule ensure a certain minimal strength of the resulting
patterns, albeit little is known about the exact implications on
pattern strength. The other rules presumably resolve ambigui-
ties from graphical representations of the patterns, potentially
increasing usability. Figure 1 demonstrates the points reachable
from the top-left starting position.

B. Measuring pattern strength

One can easily enumerate all possible patterns that adhere
to the above rules and determine there are 389 112 valid
patterns. However, users do not choose their patterns uniformly
from this set, and previous work [26] has established that
the resulting strength fall substantially short of the theoretical
maximum. Different approaches have been used to determine
the strength of patterns. We adapt the approach by Uellenbeck
et al. [26], which is based on Markov models. We will describe
this approach in the sequel.

Markov Models. Markov models are based on the observation
that subsequent tokens, such as letters in normal text or nodes
in the Pass-Go scheme, are rarely independently chosen by
humans, but can often be quite accurately modeled based on
a short history of tokens. For example, in English texts, the
letter following a t is more likely to be an h than a q, and
for the Pass-Go scheme, nodes which are close to the current
node are more frequently chosen than distant ones. In an n-
gram Markov model one models the probability of the next
token in a string based on a prefix of length n − 1. Hence,
for a given sequence of tokens c1, . . . , cm, an n-gram Markov

model estimates its probability as

P (c1, . . . , cm) (1)

= P (c1, . . . , cn−1) ·
m∏
i=n

P (ci|ci−n+1, . . . , ci−1).

The required initial probabilities P (c1, . . . , cn−1) and
transition probabilities P (cn|c1, . . . , cn−1) can be determined
empirically from the relative frequencies from training data.
One commonly applies further post-processing to the raw
frequencies: So-called smoothing tries to even out statistical
effects, in particular it avoids relative frequencies of 0, as
these would yield an overall probability of 0 regardless of the
remaining probabilities.

Strength-estimation using Markov models. We use Markov
models to estimate the probabilities of patterns, and use those
probabilities as approximations for their strength. We closely
follow the techniques used by Uellenbeck et al. [26]. Their
best results were obtained using 3-grams, Laplace smoothing,
and using the maximum amount of data available. We train the
model on the data collected by Uellenbeck et al. This data was
collected in an “adversarial setting”, where users chose patterns
to protect an account, and were instructed that the account
is under attack by other participants. This setup yields one
“defensive” pattern, which is used to protect one’s account, as
well as five “offensive” patterns, used to attack other accounts,
per user. We used both the “defensive” and “offensive” dataset,
overall more than 600 patterns. In particularly, the model is
trained on data which was independently collected from the
data that we are considering in this work.

These estimated probabilities p̂ can be used directly as a
strength measurement. However, a more readable measure is
− log(p̂), where logarithms are to basis 2. We use this strength
measure throughout this work.

Other strength estimators have been used in previous work.
All three are based on readily observable characteristics of the
patterns. The meter by Sun et al. [22] uses length, length of the
drawn pattern, and the number of intersections. The meter by
Andriotis et al. [1] uses the length, number of knight moves,
number of overlaps, starting point, and number of changes in
direction. The meter by Song et al. [21] uses length, number
of intersections, and “non-repeated segments”. However, in all
three cases there is no theoretical foundation or evaluation for
the accuracy of the computation. Thus we refrain from using
these metrics.

IV. USER STUDY

Next we describe the design and pre-testing of our online
study.

A. Study design

We used an online study to collect patterns for the sub-
sequent analysis. Participants were recruited via mailing lists,
social networks, and word of mouth. This has the advantage
of reaching a relatively large number of participants in a short
time, but has the disadvantages that we had little control over
participants while filling in the survey (which was mitigated
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by rigorous testing of the survey) and little control over the
selection of participants (see Section IV-C for statistics about
the participants). Data was collected between February and
March of 2015 over a time span of 4 weeks.

Different input methods (touchscreen, mouse, pen-on-
paper, . . . ) used by the participant may have an effect on
the patterns chosen. For example, using a mouse cursor may
allow for a finer control and might facilitate input of more
complicated patterns, e.g., those that contain a “knight move”.
So we wanted to ensure that the users use a smartphone when
participating in the study. We used a third-party package1

to block participants that were not on a mobile device. The
package uses a number of heuristics to decide on the device
type, including scanning the user agent string transmitted
by the participant’s browser for specific keywords (such as
“mobile”, “android”, “windows ce”, “LG”, “wap1.”,. . . ), and
detecting mobile versions of browsers.

We also wanted to make the study easy to access, specif-
ically without requiring the user to install any additional
software. We opted for an HTML/JavaScript web application
together with the django/python framework. This means the
survey can be accessed using any modern web-browser in-
stalled on smartphones, and the look-and-feel can be modeled
very similar to that of Android Unlock Patterns, without being
restricted to Android Phones.

The survey was structured in four stages: (i) General in-
formation, (ii) Short introduction to Android Unlock Patterns,
(iii) Pattern collection, and (iv) Questions on demographics
and device. We provide more information about these stages
in the following sections.

Information. When entering the survey, all participants were
presented with a brief introduction to the study, its goals and
purposes, the data usage policy, and the researchers behind the
project. More detailed information is linked from this screen.
No data is collected before a visitor decides to participate by
pressing “Start Survey” as illustrated in Figure 3(a). Clicking
the green button starts the study.

Introduction to Android Unlock Patterns. Before starting the
pattern collection, we need to ensure that participants are famil-
iar with the scheme. Therefore, on the next screen (Figure 3(b))
we provide a brief explanation, and give the participant the
possibility to start a more comprehensive training (by pressing
“Start training”) or continue with the survey (by pressing
“Skip training”). In training mode (see Figure 5(c) in the
appendix), the participant can test creating patterns as often
as she likes, and optical feedback is provided on the validity
of the chosen patterns. After selecting “Continue survey”, the
participant leaves the training mode and continues with the
pattern collection as described in the sequel.

Pattern collection. In the main stage of the study, we ask the
participants to create three different patterns for three different
scenarios. One pattern for protecting an shopping account, one
for unlocking a smartphone, and a third one for protecting a
banking account. Those were presented in randomized order.
There are two reasons why we ask each participant to create

1https://code.google.com/archive/p/minidetector/

three different patterns: First, this puts pattern creation in a
context. The scenarios were selected to cover different situa-
tions with different (perceived) security requirements. Thus we
avoid problems that one user creates a relatively weak pattern
assuming a context with low security requirements (e.g. as she
is using the scheme for her smartphone and doesn’t value the
data on her smartphone very high), whereas another participant
assumes a context with high security requirements. Second, we
hope this prevents, to some extent, data being submitted by
participants that just are curious about the survey and rush to
finish the survey, introducing noise into the collected dataset.

The pattern selection step follows the original implementa-
tion on Android phones as closely as possible. (Note that, while
being functional equivalent, the visual appearance of different
Android versions can differ quite a lot.) In a first step, a user
selects a pattern that meets the requirements (Figure 3(c)). If a
selected pattern fails to meet these requirements, we give visual
feedback, as well as a textual description of the condition the
pattern failed to meet (see Figure 6(e) in the appendix). Once
the user selected a valid pattern, in a second step she is required
to confirm this pattern by re-typing it. If the confirmation fails,
the system gives visual feedback and allows the participant to
try again. If she ultimately fails to re-type the correct pattern,
it is possible to go back and create a new pattern. The type-
and-re-type approach is the same process used when creating a
pattern on a Android device. There are several positive aspects
by requiring the respondent to re-type the selected pattern
before being able to proceed in the survey. First, it stops users
that want to rush through the survey without making an effort
to submit an honest answer. Second, it also puts the respondent
in a situation where it is needed to create a pattern that is
possible for the respondent to actually remember, which is an
obvious requirement for real-world patterns.

Demographic questions. Finally, we ask several questions
about the participant’s demographics as well as the used
device. One example screen is shown in Figure 3(d), see
Figure 7 in the appendix for a more complete list. In the survey,
we ask

• for a subjective assessment of the hand size of the
respondent based on their gender, ranging from small to
extra large, illustrated by icons labeled S, M, L, XL;

• for handedness of the participant using labeled icons for
left and right;

• for a subjective assessment of the screen-size of the device
used, with options S, M, L;

• which hand is used holding the device during creation of
patterns;

• which finger was used when creating the patterns, options
were thumb, index finger, other;

• for the usual reading/writing direction of the participant,
illustrated by an arrow, written text, and an example,
options were left-to-right, right-to-felt, and top-to-down;

• for the participant’s gender, using icons for male and
female;

• for the participant’s age, using a numerical input field;
• if the participant has experience in IT or IT security, as

a yes-no question;
• for the current type of screenlock in use, if any;
• if the participant has any experience with pattern locks as

a yes-no question;
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(a) Start screen (b) Android Unlock Patterns introduc-
tion

(c) Bank pattern (d) Hand size

Fig. 3. Selected screens of the survey. More screens are provided in the appendix.

• for the mobile OS on the used smartphone (to simplify
this task we tried to automatically detect the OS and asked
the question “Is this the mobile operating system on your
mobile?”), options were yes, no, I don’t know;

• for the country of origin of the participant.

We used icons instead of textual lists of alternatives. Our
main target device are smartphones, and we believe that icons
are easier to interact with on those devices. Icons specifically
make it easier for non-natives to quickly complete the survey,
and several respondents of a pre-test told us it’s more fun to
complete the survey with icons. The icons were tested in a pre-
test, see Section IV-B. One final screen thanks the participants
for their time.

B. Pre-test: Testing the survey

We tested the survey in a controlled environment before
releasing it to the public, where we would have little control
over the participants. Specifically important for us was testing
if the chosen icons where understandable to a broad audience.
So even before the pre-test we ran a separate test for the
icons only. Test subjects were 12 students, 5 female and 7
male. We showed them the icons used, without the question
provided (whereas in the study the questions were stated in
English). The only questions that caused some irritation were
about the screen lock usage, where some symbols were not
readily understandable (we replaced it with a textual list to
choose options from), and the question about reading/writing
direction, where we added explanation in textual form.

The actual pre-test was conducted with 10 students (5
female, 5 male, a majority with an background in IT or IT
Security), in-lab but using their own device. The participants
were told (i) to speak aloud during the test about their thoughts
and reasons for their choices, (ii) that the test was not about
their ability to finish the test, (iii) that they could quit the test
at any time if they felt uncomfortable.

Based on the feedback provided by the participants while
they interacted with the test we made the following changes

to the design (Figures 3, 5, 6, 7 show the final version of the
study):

• We simplified the drop-down menu for the country se-
lection, as the original one had graphical flags for each
country, which made the component slow and thus hard
to use on some devices

• The text for the IT Security question was re-formulated
and clarified.

• For the reading/writing direction question we added a
textual description and examples to clarify the icons.

• For the screen lock question we replaced the icons with
text.

• For the hand-size question, we added that the assessment
should be compared to people of the same gender.

• Originally participants did not have to re-type their pat-
terns, and we added that.

C. Participants

A total of 802 respondents completed the whole survey, and
296 more respondents started the survey but did not complete it
(81 left before entering any data, 204 started selecting patterns
but quit before reaching the questionnaire, and 11 respondents
completed creating patterns but did not complete answering
questions). Table I provides a summary of the respondents.
As some of the respondents did not answer all demographic
questions, some questions have more than 802 answers. A
majority of the participants was male (66%), between 20 and
29 years old (62%), has some background in IT or IT security
(59%), and is from Norway (64%) or the United States (14%).
This is a consequence of the recruitment process via social
networks and mailing lists, which addressed a proportionally
higher number of students and IT security experts. About 88%
of the participants is right-handed, which roughly agrees with
estimates in the literature [18]. The vast majority reads and
writes from left-to-right (98%), which is a consequence of the
predominantly western population; we did not use this feature
in the following analysis.
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Total In %
Gender male 529 66%

female 278 34%
Handedness right 690 88%

left 97 12%
IT or IT security expert 470 59%

non-expert 332 41%
Writing-orientation left-to-right 792 98%

right-to-left 8 1%
top-to-bottom 7 1%

Age 16-19 22 3%
20-24 331 41%
25-29 169 21%
30-34 96 12%
35-39 82 10%
40-49 73 9%
50+ 30 4%

Hand-size small 103 13%
medium 406 50%
large 255 31%
extra-large 49 6%

Country Norway 517 64%
USA 115 14%
Germany 33 4%
Czech Republic 31 4%
UK 22 3%
Russia 13 2%
Rest (<10 each) 75 9%

Total (∗) 802 100%

TABLE I. STATISTICS OF THE PARTICIPANTS. ((∗) NOTE THAT 802
PARTICIPANTS COMPLETED THE ENTIRE STUDY, BUT A FEW PARTICIPANTS
ANSWERED SOME QUESTIONS BEFORE LEAVING. THUS SOME QUESTIONS

HAVE MORE THAN 802 ANSWERS.)

Total In %
Screenlock in use Android Pattern 202 31%

4-digit PIN 237 36%
Fingerprint 116 18%
Password 44 7%
slide-to-unlock 28 4%
Other 28 4%

Screensize Small 108 13%
Medium 532 65%
Large 173 21%

Mobile OS Android 464 58%
iOS 321 40%
Windows 16 2%
Blackberry 1 0%

Used AUP Yes 526 65%
No 278 35%

Total 802 100%

TABLE II. STATISTICS OF THE DEVICES USED BY THE RESPONDENTS

D. Ethical considerations

The ethics committee of NTNU approved the study and
the respective contact person was informed. While there is no
ethics committee covering this type of user studies at Ruhr-
University Bochum (RUB), federal law and privacy regulations
must be obeyed. This study complies with these strict regula-
tions. The data we collect about a participant cannot be linked
back to a respondent, as the data is in quite broad categories
only. We did not collect any identifiers (IP, device ID, name, or
similar), and did not use third-party components that still may
log such data. Before any data is recorded the respondents
are informed about the purpose of the survey and how the
contributed data will be managed, and that they can leave the
survey at any time.

V. ANALYSIS AND RESULTS

Next we describe the results of analyzing the collected
patterns.

Scenario All AUP experience No AUP experience
Shopping 7.06 6.81 7.15
Smartphone 6.45 5.95 7.39
Bank 8.08 8.19 7.69

TABLE III. MEDIAN OF PATTERN CREATION TIMES (IN SEC).

A. Methodology

Most statistical significance test are performed on strength
scores. As there is no reason to believe these follow a nor-
mal distribution (in fact a Shapiro-Wilk-Test rejects the null
hypothesis of normality with p < 10−15), we use the Mann-
Whitney U-Test for significance testing and Spearman’s rank
correlation for correlations on strength scores. Similarly, the
Shapiro-Wilk-Test rejects the null hypothesis of normality for
both the time to choose a pattern and the length of patterns,
thus we use the Mann-Whitney U-Test in these cases as well.
As we run several tests against the same dataset we use
Bonferonni correction. We claim statistical significance for
p < 0.05, and we indicate possible significant interest for
p < 0.10. We indicate these in the tables with (**) for p < 0.05
and (*) for p < 0.10.

Note that, even though we collected three patterns per user
(for the three different scenarios), we never use more than
one in the comparison, as we test the results for each (fictive)
scenario separately.

B. Results for the entire population

First, we report some results for the entire population.

Pattern creation time. The time required to complete a task is
one fundamental aspect of the usability of an (authentication)
system. We measured the pattern creation time from when the
empty grid was displayed on the screen until the user submitted
the pattern (separately for each scenario). Table III gives the
median creation times for each of the three scenarios that we
tested, both for the entire set of users as well as for the subsets
of those who reported previous experience with AUP and those
that reported no previous experience. (We use the median for
its robustness to outliers, as we have encountered some outliers
that presumably started the creation process, waited a while,
and only returned to their device much later.)

The creation times differ with the (fictive) scenario; it is
lowest for the smartphone unlock scenario (6.45 sec), middle
for the shopping scenario (7.06 sec), and highest for the
bank scenario (8.08 sec). All three differences are statistically
significant (as a Mann-Whitney U-Tests show: Shopping vs.
Smartphone p = 0.026736, Shopping vs. Bank p < 10−5,
Smartphone vs. Bank p < 10−12.) This gives an indication
that the (fictive) scenarios used in the study have actually
influenced the participants. Also, this gives indication that
users invest more effort for accounts with higher (perceived)
security requirements, and we will see in the sequel that this
increase in effort actually leads to patterns with higher strength.

Interestingly, we find no clear difference in creation times
between participants that report experience with the Android
Unlock Pattern scheme and those that report no experience.
Both for the Shopping and the Bank subsets, we find no
significant differences (p = 1 in both cases), only in the
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Shopping Smartphone Bank All
#Patterns 841 842 838 2521
Avg. Size 5.541 5.398 5.920 5.619
Avg. Length 5.050 4.920 5.666 5.212
Avg. # Intersections 0.210 0.1769 0.433 0.273
Avg. Overlaps 0.0178 0.014 0.023 0.018
Min. 2.16 2.16 2.16 2.16
1st Qu. 5.84 5.85 6.72 6.18
Median 7.98 8.16 9.35 8.42
Mean 8.86 8.88 10.40 9.37
3rd Qu. 11.12 11.17 13.11 11.72
Max. 32.11 33.19 34.82 34.82

TABLE IV. BASIC STATISTICS FOR THE PATTERN STRENGTH.

Smartphone scenario the difference is significant (p < 10−5).
It is unclear to us why the smartphone scenario behaves
differently than both other scenarios.

Pattern strength. Table IV shows the average and median
strength of the patterns in the three sets that we collected,
as well as several other statistics about the patterns. The
(median) strength of the collected patterns differs for the
different scenarios, even though they were purely fictional and
no consequences followed from it. The strength of the patterns
in the Bank scenario were significantly stronger than those in
the Shopping scenario (p < 10−8) and those in the Smartphone
scenario (p < 10−7), while there was no significant difference
between the Shopping and Smartphone scenario (p = 1).

Bias of the patterns. Is has been demonstrated before (e.g. [26],
[4], [7] and others) that patterns chosen by humans are biased.
To facilitate comparisons with previous work we give some
statistics about the structure of the observed patterns in the
sequel.

Two aspects that can be used to observe this bias are the
distribution of the starting point and the bias of the observed
n-grams. The distribution of the starting point is shown in
Figure 4(a). This distribution is similar to previously reported
numbers: The top-left node is the most frequent one with
44% starting at this particular node (Uellenbeck et al.: 43%),
followed by the top-right with 15% (Uellenbeck et al.: 9%) and
bottom left with 14% (Uellenbeck et al.: 18%), the remaining
nodes ranging from 2% to 9% (Uellenbeck et al.: 2% to 8%).

The most frequent 3-grams are shown in Figure 4(b),
where the left figure shows the most frequent 3-grams. The
similarities with previous work are striking and show a clear
tendency to avoid the middle node, as well as selecting nodes
with Euclidean distance one as next node.

A further source of bias is introduced by frequent patterns
that resemble common symbols, specifically letters from the
Latin alphabet. We inspected the dataset for occurrences of
“letters”, and found that 385 out of 3393 patterns (11.4%)
resembled a letter. Figure 4(c) shows the most frequent cases
that we found in the dataset. The most frequent letters where
three different versions of the letter “L”, as well as “Z”, “O”,
“S”, and “U”.

C. The influence of personal traits

Next, we present our main results on the influence of
specific traits of the user on the resulting pattern strength. An
overview can be found in Tables V and VI.

1st Quart. / Median / 3rd Quart. p
Gender Female Male

Shopping 5.30 7.66 10.18 5.85 8.15 11.83 0.1082
Smartphone 5.66 7.57 10.06 6.02 8.47 11.72 0.0204 (**)
Bank 6.47 8.50 11.38 6.89 9.79 13.42 0.0042 (**)

Handedness Left Right
Shopping 5.28 7.66 10.55 6.07 8.10 11.39 0.8939
Smartphone 5.62 7.84 11.06 6.02 8.29 11.22 1
Bank 6.43 8.90 12.05 6.88 9.53 13.21 0.2570

IT experience yes no
Shopping 5.85 8.15 11.65 5.48 7.66 10.27 0.1577
Smartphone 5.90 8.29 11.80 5.76 7.86 10.06 0.0725 (*)
Bank 6.92 9.43 13.14 6.46 9.09 12.57 0.3205

TABLE V. PATTERN STRENGTH FOR DIFFERENT SUBGROUPS.

ρ p
Age

Shopping -0.0803 0.1578
Smartphone -0.0435 1
Bank -0.1123 0.00986 (**)

Handsize
Shopping 0.0175 1
Smartphone 0.0408 1
Bank 0.0264 1

TABLE VI. PATTERN STRENGTH FOR DIFFERENT SUBGROUPS.

Gender. We found that gender has a significant influence
on the pattern strength in the categories Smartphone and
Bank (p = 0.0204 and p = 0.0042, respectively), where
female participants chose weaker patterns. The influence in
the Shopping scenario is not significant (p = 0.1082) (see also
Table V). Digging deeper, we see that this is at least in part
explained by differences in the patterns length chosen by the
participants: female participants choose significantly shorter
patterns in the Shopping scenario (p = 0.0060) and in the Bank
scenario (p = 0.00072), but not in the Smartphone scenario
(p = 0.721). Length is one of the more intuitive factors for
pattern strength that should be accessible to a broad audience,
but is obviously not the only one.

Handedness. We speculated that the handedness of a partici-
pant could have an influence on the chosen patterns, as certain
points might be easier to reach than others. This could have
an effect on the strength of the chosen patterns. However, we
found no significant difference in pattern strength for both
groups (see Table V).

Experience with IT or IT Security. We tested the influence of
the (self-reported) experience in IT or IT Security on the pat-
tern strength. We found no statistically significant differences,
but we found a significant interest (with p = 0.0725) for the
Smartphone scenario.

This lack of a clear influence was contrary to our expec-
tations and interesting on its own. To better understand this
phenomenon, we also considered pattern length and number of
intersections, both which are typically associated with stronger
patterns. We found a significant influence of experience on the
pattern length in the Banking scenario (Shopping: p = 0.206,
Smartphone: p = 0.534; Bank: p < 0.0001), while there
was no significant influence on the number of intersections
(Shopping: p = 0.218, Smartphone: p = 0.269, Bank: p = 1).

While we have no conclusive explanation for this behavior,
it seems plausible that users with experience where trying to
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(a) Likelihood of starting
points

(b) Most common 3-grams (segments of length 3) found in the data (frequency decreasing
from left to right)

(c) Common “letters” found in the dataset: Small “l” (count 94 left + 28 right), large “L” (count
72), “Z” (count 51)

Fig. 4. Basic characteristics of the collected patterns.

choose stronger passwords, but failed in doing so (according
to the used strength metric).

Age. The age of the participants has some influence on the
strength of the patterns (see Table VI). While the correlation
in the Shopping and Smartphone scenario was not signifi-
cant, we found a significant correlation in the Bank scenario
(p = 0.0264). The correlation factor for the Bank scenario is
moderate (ρ = −0.113), i.e., older participants tend to choose
weaker patterns. One likely explanation is younger people are
generally more technology-affine and thus more used to such
schemes.

Handsize. We assumed that a participant’s handsize could
influence how well she can draw certain complicated patterns
(e.g., patterns including a “knight move”), given that mobile
devices usually have a very limited screen-size. However, we
found no significant correlation of the (self-reported) handsize
on the strength of the chosen patterns (see Table VI).

VI. DISCUSSION

Finally, we discuss some limitations and provide an outlook
on future work.

A. Limitations

As with all surveys, we rely on the people answering the
questions truthfully, and selecting patterns that are realistic.
Actually, as our main interest is in comparing strength of
different subsets of our dataset, most of our results are invariant
to a bias in pattern strength, as long as it affects all collected
patterns the same.

As a consequence of our recruitment process via social
networks and mailing lists, our participant set is biased towards
young (62% are between 20 and 29 years) male (66%) students
with a background in IT or IT security (59%) from Norway

(64%), thus it does not represent the overall population. As we
have seen in Section V-C, specifically age and experience with
IT or IT security do influence the pattern strength. However,
in the actual comparison the influence of the biased sample
should be small, as we are comparing across these subgroups.

B. Future work

We have seen a clear influence of personal traits of a
user on the pattern strength. One obvious question regards
other measurable properties of users and their influence on
pattern strength. Particularly interesting seems the participant’s
reading- and writing-direction, which we didn’t test due to lack
of participants with non-western reading-direction.

While in this work we were only concerned with discov-
ering connections between the overall strength and personal
traits, there are two directions for future work using these
results. Motivated by these findings, one can construct sta-
tistical models for individual patterns of a single user, instead
of considering the average strength only. Such models can be
used first for helping users choose stronger patterns, taking
into account their personality, and second for improving the
guessing of patterns for the purpose of forensics.

Finally, it would be interesting to extend our findings to
other authentication schemes. While some influencing factors
are known (see Section II), we are still lacking a more
systematic understanding of those factors.

VII. CONCLUSION

In this work we have shown that personal traits of a user
influence the strength of patterns selected for the Android
Unlock Patterns. Specifically we have found statistically sig-
nificant differences in strength based on age and gender, as
well several structural properties of patterns. We believe this
work is a step towards a more personal treatment of (graphical)
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password strength, with the potential to offer more useful
password advice for users.
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APPENDIX

(a) Start screen (b) Android Unlock Pat-
tern introduction

(c) Training mode (op-
tional)

Fig. 5. Study design – Introduction

(a) Introduction to pat-
terns

(b) Shopping pattern (c) Smartphone pattern (d) Bank pattern (e) Pattern length too
short

(f) Valid pattern recorded

(g) Retype pattern (h) Retype wrong (i) Retype correct

Fig. 6. Study design – Create and retype patterns
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(a) Hand size (b) Handedness (c) Screen size (d) Hand used when cre-
ating pattern

(e) Finger used (f) Reading/writing direc-
tion

(g) Gender (h) Age (i) Country (j) Mobile OS (k) Screenlock (l) Experience

(m) Thank you

Fig. 7. Study design – Demographic questions
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