Should I Protect You?
Understanding Developers’ Behavior
to Privacy-Preserving APIs

Shubham Jain and Janne Lindqvist
Rutgers University
Email: {shubhamj, janne} @winlab.rutgers.edu

Abstract—There have been many proposals and developments
to improve smartphone users’ location privacy with respect
to mobile applications. These include user-centric application
permission models and disclosures. However, little attention has
been paid to how application developers could build privacy-
preserving apps. In this paper, we present a laboratory study
(N=25) to understand developers’ behavior to enhanced APIs,
which are a privacy-preserving modification of the existing
Android Location API. In contrast to the existing methods,
the studied API facilitates acquiring coarse location information
without accessing the geocoordinates. Our results indicate that
by offering a redesigned API, programmers can be nudged into
making choices with their programming that help to preserve
privacy of their users.

I. INTRODUCTION

The evolution of smartphones has also led to an increasing
popularity of location-based apps. In addition to navigation
and maps apps, several popular applications also use location
awareness to help people find their way around. The apps
use users’ location to supply information ranging from the
stores and restaurants nearby, to the transit system and to the
weather conditions in their region. The emergence of location
based services has also brought to light its most criticized
facet, the loss of privacy. With the freedom that developers
can exercise when implementing location-based services, their
responsibility has also grown. Not only do millions of users
rely on the features of their applications, they also entrust
them with their personal information. A breach in this trust
can hamper the long term growth of context aware ubiquitous
systems. The Location Privacy Protection Act of 2011 [1]
states that a special report by the Department of Justice
revealed that based on 2006 data, approximately 26,000 people
were victims of GPS stalking annually. However, existing
platforms offer little support for developers to build privacy-
preserving apps.

Smartphones obtain users’ locations by acquiring geo-
graphical coordinates represented by the latitude and longitude.
However, different applications require the use of different
levels of location information. The existing localization tech-

Permission to freely reproduce all or part of this paper for noncommercial
purposes is granted provided that copies bear this notice and the full citation
on the first page. Reproduction for commercial purposes is strictly prohibited
without the prior written consent of the Internet Society, the first-named author
(for reproduction of an entire paper only), and the author’s employer if the
paper was prepared within the scope of employment.

USEC 14, 23 February 2014, San Diego, CA, USA

Copyright 2014 Internet Society, ISBN 1-891562-37-1
http://dx.doi.org/10.14722/usec.2014.23045

niques provide access to a user’s precise location, by means
of geographical coordinates. While this may be useful for
the functioning of some apps, it threatens the users’ privacy
through others. Although a navigation application may need
your precise location in terms of latitude and longitude, an
application providing eCoupons to nearby stores can work
efficiently even with less precise location information, such
as street address or city name.

To the best of our knowledge, researchers have not yet stud-
ied how developers would behave if presented with privacy-
preserving APIs as an alternative with baseline localization
APIs. To address this problem, we decided to conduct lab-
oratory experiments with an existing smartphone platform
(Android) localization API and a modified privacy-preserving
version of it. Our aim was to understand how developers
deal with privacy issues when empowered with the choice of
using privacy-safe options. In this work, for practical reasons,
we focus on the redesign of the Android location APIs and
developers’ behavior using them. This redesign is influenced
by privacy-by-design principles [2], such as minimizing the use
of sensitive information and purpose-binding of information
collection. They enable developers to gather location infor-
mation of coarser granularity, thus avoiding any unnecessary
violations of users’ privacy. They also work on the same lines
as the existing APIs, with changes that present the developer
with a multitude of options to safeguard the user’s precise
location. To understand if developers can be nudged into
making privacy respecting choices, we conducted a controlled
laboratory study (N=25). The participants of the study were
offered a documentation consisting of the baseline Android and
our proposed API and asked to code for a set of programming
exercises. Our aim was to understand how developers make
their choices when presented with more options than the
current location API system. The study also gives us an insight
into the basic usability of the redesigned APIL

The contributions of this work are as follows:

e Privacy-preserving redesign of the Android location
APIs.

e A randomized controlled study for qualitative analysis
of developers’ behavior to using privacy-preserving
APIs.

e Results which demonstrate that developers can be
nudged into programming choices that help to pre-
serve privacy of their users.

e The results also show that participants find the re-
designed API easier to use.

II. RELATED WORK

Researchers have studied the principles and practices of
good API design [3]. While a good API design should be
easy to learn and use, it should also be hard to misuse and
powerful enough to satisty requirements. Clarke [4] talks about
the usability study of an API. Such a study involves providing
participants with a documentation and asking them to perform
a set of tasks. Our study is similar to this usability study,
where we use it for understanding developers. Robillard et al.
[5] discuss the obstacles in learning APIs. They perform a
study to learn these obstacles in terms of API documentation,
code examples and matching API with scenario. This is similar
to our procedure of a carefully documented API set and the
impact of example code and similar APIs.

There has recently been considerable work on smartphone
security and privacy. Becher et al. [6] give an overview of
mobile phone security history and developments, Anderson et
al. have studied different application markets and installation
mechanisms [7], and several authors have written position
papers about application markets (e.g. [8]). Considerable effort
has been spent on understanding e.g. Android security and
permissions [9], and hardening Android security model [10].
Recently, dynamic taint analysis has been implemented on
Android platform [11]. Approaches such as AppFence [12],
MockDroid [13], and TISSA [14] block data leakage to net-
work by faking the capabilities of the phone, so that potentially
sensitive data cannot be retrieved. However, none of these
works focus on application developers and how they could
build privacy-preserving applications.

Several authors have discussed privacy design principles
for interactive and ubiquitous systems. These include e.g.
Langheinrich [2], Lederer et al. [15], and Spiekermann and
Cranor [16]. On the lines of aiding developers, Felt et al. [17]
propose a set of guidelines for developers to determine the
appropriate permission-granting mechanism. One of the main
principles in data collection and processing is that it uses only
the amount of information that is needed.

Bravo-Lillo et al. [18] and Wash [19] have worked on
understanding people’s mental models related to security. More
directly related to our work, Hong et al. [20] implemented
a framework to help application developers to build privacy-
sensitive applications such as enhanced instant messaging
clients. However, that framework’s focus is on enforcing user-
set restrictions on sending data to a server, not on nudging
developers to make better applications.

Amini et al. [21] continued this line of work by implement-
ing an approach for pre-fetching and caching data of location-
based applications, however, they did not present an evaluation
of any APIs. Tam et al. [22] studied different designs for
Facebook disclosures during installation time, and Howell et al.
[12] proposed a new model for sensor access: “Show Widget,
Allow After Input and Delay”, in which access to sensors such
as cameras would be allowed only when user has actively
given input to the system (e.g. pressing keys) and after waiting
period. There is also recent work on using crowdsourcing for
understanding users’ mental models from a privacy perspective
by Lin et al. [23].

III. API DESIGN

Android allows building location sensing capabilities in
applications through the Location Services API framework.
The classes in android.location package allow an application
to access these location services. The LocationManager system
service is the main component of this framework [24]. It
provides the APIs to determine a device’s location.

A. Current Android Location API

Developers can indicate that they want to receive periodic
updates for a user’s geographical location from the Loca-
tionManager by calling the method requestLocationUpdates().
This method accepts the following parameters in order - a type
of location provider, the minimum time interval between notifi-
cations, minimum change in distance between notifications and
a LocationListener. The LocationListener in the application
must implement callback methods. The onLocationChanged()
method from the LocationListener implementation is called by
the LocationManager when the user’s location has changed
and a Location object is supplied to it. The Location class
in Android is a data class that represents a geographic loca-
tion [24]. All locations generated by the LocationManager are
guaranteed to have a valid triple: the latitude, the longitude
and a timestamp.

Geographical coordinates are the only location attributes
an application obtains directly from the Android location ser-
vices. A developer interested in obtaining some other location
information, such as city name or the postal code, must use
reverse geocoding. Reverse geocoding is the process of trans-
forming a geographical coordinate (latitude, longitude) into an
address.The Geocoder class handles reverse geocoding [24].
The method getFromLocation() in the Geocoder class returns
an array of Addresses that are known to describe the area
immediately surrounding the given latitude and longitude. This
method takes the following parameters in order - latitude,
longitude, maxResults. It returns a list of Address objects.
An object of the Address class represents a set of Strings
describing a location. This class provides the methods to obtain
various location components, such as city, postal code etc.

Location based Android applications require Coarse or Fine
location permissions. The ACCESS_COARSE_LOCATION
permission allows an application to use WiFi/cell-
network based localization instead of GPS (AC-
CESS_FINE_LOCATION), and the exact location will
be obfuscated to a coarse level of accuracy. When compared
to the proposed API, ACCESS_COARSE_LOCATION
localization is more accurate than e.g. zipcode or city level
localization.

B. Privacy Problems with Location API

More and more developers are getting easy access to a large
amount of potentially sensitive information. Several applica-
tions are known to misuse this information [11]. Protecting
a user’s location privacy needs us to be able to distinguish
between necessary and sufficient access to such information.
Since we cannot control all access to it, we could offer devel-
opers the choice to use only what is sufficient for the effective
operation of the application. A coarser granularity location
information, such as postal code, might serve the purpose for

a subset of existing applications. The current APIs contribute
to undermining all suggested privacy protecting methods, by
compelling developers to obtain users precise geographical
locations before they can acquire any other location component
such as the street, city or postal code by reverse geocoding. To
use an application that requires a coarser granularity of location
information, users must compromise their exact location if they
wish to use those apps. As discussed by Zang et al. [25],
people can be identified using their location traces. Many
applications that do not need fine-grained location attributes
are also allowed access to them, owing to the lack of a privacy-
preserving system in place.

C. Our Proposed APIs

To prevent unnecessary exposure of users’ location data,
we propose to redesign the existing APIs to form a privacy-
preserving system. Privacy preserving architectures and APIs
have been discussed earlier [21], [26], [27], but none of
them have investigated how developers would actually use the
frameworks. The redesigned API aims to encourage a privacy-
centric approach by developers and minimize the transmission
and use of sensitive user location information. In contrast
to the existing methods, the proposed API will facilitate
acquiring coarse location information without accessing the
geocoordinates.

The proposed methods are a carefully designed privacy-
preserving modification of the existing APIs. We propose
diverse methods to request updates for coarser location compo-
nents in contrast to the requestLocationUpdates() method, that
updates only for geo location. These could request for street,
city, postal code by methods such as requestCityUpdates(),
requestStreetUpdates(), and requestPostalCodeUpdates() re-
spectively. In this case, the LocationListener is notified only
when there are updates in coarse granularity location in-
formation, such as street, city or postal code. A modified
LocationManager class is shown in Table 1.

Public Methods
void | requestLocationUpdates()

Register for updates in geographical coordinates of a
location

void | requestStreetUpdates()

void | requestBuildingUpdates()
void | requestCityUpdates()

void | requestPostalCodeUpdates()

void | requestCountyUpdates()

void | requestStateUpdates()

void | requestCountryUpdates()

TABLE I: Modified Class LocationManager: This table shows a list of methods
used to register for location updates. They have been modified as part of our
proposed API, so that updates for coarse granularity location information can
also be requested. All methods take the following parameters in order- (String
provider, long minTime, float minDistance, LocationListener listener). The
parameters and description is not shown here for all methods due to space
constraints.

Correspondingly, the LocationListener will listen for
changes in street or city by using onStreetChanged() or onCi-
tyChanged() respectively. Such APIs neither listen nor update

for changes in location that are finer than the specified location
component. Table II provides a list of the public methods
modified for the class LocationListener.

Public Methods

abstract void | onLocationChanged()

Called when the geo coordinates have

changed
abstract void | onStreetChanged()
abstract void | onBuildingChanged()
abstract void | onCityChanged()
abstract void | onPostalCodeChanged|()
abstract void | onCountyChanged()
abstract void | onStateChanged()
abstract void | onCountryChanged()

TABLE II: Modified Class LocationListener: This table shows a list of the
callback methods called every time the user’s location has changed. These
methods have been modified as part of our proposed API, so that they can
be called when user’s coarse granularity location changes. All methods take
the following parameter- (Location location). The parameter and description
is not shown here for all methods due to space constraints.

Once the specific onChanged method is called, the related
location component information is extracted from the Location
object. The modified APIs provide get methods for several
location components. These vary in granularity of information.
Thus, an app concerned with finding the weather in users’
location, can simply acquire the name of the users’ city or
the postal code using getCity() or getPostalCode(). In fact,
other apps such as those that help locate the nearest store, also
largely use postal code. This is done without intercepting the
exact geographical location to obtain the required city name.
A list of the new get methods that are part of the proposed
API is in Table III.

Listing 1 provides example code for getting the weather
forecast for a user’s location. This example depicts how the
redesigned API can be used in a privacy preserving manner
without having to handle the geographical coordinates of a
user’s location. This code finds out a user’s location and sends
it to the server. Weather applications cannot provide weather
information at a finer granularity than the city or postal code,
and hence have no need for a user’s precise location. Weather
is only one of the many applications that can function even
without the exact geographical location. These applications are
a subset of the large pool of smartphone applications.

Figure 1 compares the existing Location API with an
example implementation of the proposed API. The API can
be implemented either by Google as part of the Android API
library or by a Caché implementation at the user’s handset.
When a third-party application server requests for a user’s lo-
cation, the existing API lets the server access the geographical
coordinates of the user. The proposed API, on the other hand,
can respond with an appropriate coarse location information,
by retrieving it from a local cache. Like all location-based
apps reach out to the GPS/network localization, they could
fetch different granularity for a location from the cache. The
cache gets location information from the GPS and network
entities, and higher granularity location components from e.g.
Google server. The implementation details of the caching is

// Acquire a reference to the
LocationManager locationManager =

system Location Manager
(LocationManager)
// Define a listener that
LocationListener
public void

/1 Called

responds

when a new postal code is

this . getSystemService (Context.LOCATION_SERVICE) ;

to postal code updates

locationListener = new LocationListener () {

onPostalCodeChanged (Location location) {

found by the network location provider.

String zipCode = location.getPostalCode () ;

getMyWeather (zipCode) ;
}
public void
public void
public void

+s

// Register the

onStatusChanged (String provider ,
onProviderEnabled (String provider) {}
onProviderDisabled (String provider) {}

listener with the Location Manager to

receive postal
locationManager .requestPostalCodeUpdates (LocationManager .NETWORK_PROVIDER, 0, O,

int status , Bundle extras) {}

code updates
locationListener);

Listing 1: Example source code using the proposed privacy-preserving APIs. This example is a mock code for an application
that provides weather related information. It depicts how the proposed APIs can be used to request coarse location information

like the postal code and get updates for the same.

Public Methods

double | getLatitude()

Get the latitude
double | gerLongitude()

Get the longitude
String | getStreet()

Get the street name
String | getBuilding()

Get the building number
String | getCiry()

Get the city
String | getPostalCode()

Get the postal code
String | getCounty()

Get the county
String | getState()

Get the state
String | getCountry()

Get the country

TABLE III: Modified Class Location: This table shows a list of the get methods
for the Location class. These methods have been modified as part of our
proposed API, to obtain coarse granularity location information.

beyond the scope of this paper, for example implementation
we refer to e.g. Caché [21].

IV. METHOD

In this section, we present our study design for understand-
ing how developers would use privacy-preserving APIs.

A. Participants

We recruited 25 participants for our study. Six out of these
were females and 19 were males. Our participants ranged from
18-27 years old (1 = 21, o = 2.59). Five of them were graduate
students and 20 were undergraduate students. We asked the
participants about their prior experience with Java, Eclipse
and Android. Since the knowledge of Java was a prerequisite

31 Party App Server

st 3
1 ocation Reque T

Coar'

Locag
%
I\ [}

au‘tude, Longizude
31 Party App Server

Coarse
location

Latitude,
Longitude

(a) Existing Location APT (b) Proposed Location API

Fig. 1: A comparison of the existing API with the redesigned API. The existing
API will return the geographical coordinates of the user irrespective of the
location component needed by the application, while the proposed API can
retrieve the required coarse location component from a cache and provide it
to the application.

for participating in the study, all participants knew Java. The
participant with the maximum experience (TC5) had 6-7 years
of experience programming in Java, while the participant with
the minimum experience (TB2) started programming in Java
only two months before the study. None of our participants
had extensive experience programming in Android. TC3 had
the most experience programming on Android and had been
doing it for a year. Only TD1 had programmed a location-
based service earlier. All participants were familiar with the
Eclipse IDE. Treatment Group C had the highest average for
the knowledge of Java, Eclipse and Android. On an average,
participants from Treatment Group C had 3.4 years of Java
experience, 2.35 years of familiarity of Eclipse and about 5
months of Android acquaintance. Treatment Group A had only
an average of 1.35 years of Java and 1.15 years of Eclipse
practice.

B. Study Design

The study was based on a between-subjects design, where
every participant was subjected to a single treatment only.
There were three types of treatments, one control group and
two treatment groups. Participants were randomly assigned to
each group.

C. Procedure

We screened people by means of an entry survey and
based on their Android familiarity, we divided our participants
into two major categories- the Android developers (Group
A) and the Non-Android developers (Group NA). Group A
included participants with programming experience on the
Android framework. Group NA were those participants that
were versed in the Java programming language alone and had
never coded for the Android platform. The purpose of dividing
the participants in these two groups was to account for any
bias that an Android developer may have towards existing API
and the comfort of knowing them. The NA group, in contrast,
accounts for a group of unbiased developers. This group should
ideally be inclined to making fair choices in terms of ease and
ethics, irrespective of any old habits. Table IV summarizes the
study groups.

Category Group Participant Tag
Non-Android Group Control Group C
(Group NA) Treatment Group A TA
Treatment Group B TB
Android Group Treatment Group C TC
(Group A) Treatment Group D TD

TABLE IV: Summary of all the study groups. Participants in the Non-Android
group were not familiar with the Android programming platform, while those
in the Android group had some programming experience.

1) The Non-Android Group: Group NA was subdivided
into three groups. The assignment of participants in these
three subgroups was randomized to eliminate selection bias.
This ensures that the differences in outcome observed at the
end of the study would be due to treatment and not due to
differences between groups that existed before the start of
the study. A randomized experiment is often referred to as
the gold standard for treatment outcome research. These three
subgroups comprised one Control Group and two Treatment
Groups.

The control group is a comparison group. It provides data
about counterfactual inference, i.e. what happens when there
is no treatment. The participation was anonymous, and hence
for the purpose of the study the participants were referred to
by code names. All participants in the control group had code
names starting with uppercase letter C, followed by a number.
They were provided with a useful subset of the Android
Location API documentation from the Android Developers
site [24]. This set of documentation serves as the baseline.
We refer to the treatment groups as treatment group A (TA)
and treatment group B (TB). Treatment group A participants
were assigned code TA followed by a number, while those
from treatment group B were assigned code TB followed by
a number. These two groups were offered a documentation
which had baseline Location API, and the proposed API. Both
the treatment groups were provided the same information,
but in opposite orders. This was the only difference with
the treatments. The differing treatment accounts for any bias
caused by the order in which information was provided to
developers. For TA, the redesigned API were described first
in the document, followed by the standard Android location
API. For TB, the standard Android API was followed by the
redesigned location APIL.

2) The Android Group: Since the members of Group A
were already aware of basic Android programming practices
and APIs, we divided them only into two treatment groups. We
call these groups treatment group C (TC) and treatment group
D (TD). TC was provided the same documentation as TA and
TD was provided the same documentation as TB. Participants
from treatment group C and treatment group D were assigned
codes TC and TD, both followed by a number.

3) The Documentation: Provided below is a detailed de-
scription of the document that each group was given:

e Android Location baseline API: This documentation
was a subset of the Android location API documen-
tation from the Android developers site [24]. It had
a collection of necessary information to implement a
small piece of code that acquires a user’s location. It
included a short introduction to the android.location
package and information on the three main loca-
tion related classes and relevant public methods. An
example code from the official documentation was
presented [24]. There was also a section on reverse
geocoding, with the associated classes and public
methods.

e Android Location API for treatment groups A, B,
C and D: This documentation included everything
that the baseline documentation comprised, and our
proposed APL. We portrayed these to be a part of
the usual location-based classes. For TA and TC, the
order of the presented information was- the package
introduction, the proposed API and reverse geocoding.
For TB and TD, the order of presented information
was- the package introduction, reverse geocoding and
the proposed APIL.

4) Programming Tasks: Participants were provided a doc-
umentation based on their group, and a list of three pro-
gramming tasks in randomized order. This ensured that all
participants did not program the tasks in the same order. Each
task described an application context and asked the participants
to write code to extract the user’s location for that context. The
tasks did not inform the participant about the granularity of the
information to be acquired. This was left for the participants
to figure out and code for what they thought was the best
approach. We came up with a list of about a dozen tasks and
after careful consideration we came down to three. While all
three of them could be performed using the existing API, two
of them could be coded for without acquiring the person’s
geocoordinates and by using the redesigned API. We wanted
to see how participants approach these problems using the
documentation provided.

The weather app: Most weather applications accept either
the city name or the postal code to supply the weather
forecast for the user’s location. They cannot provide weather
information at a location finer than that and hence the task can
be perfectly accomplished using the proposed API, without
getting hands on the exact geocoordinates of the user. We
asked the participants to write a code snippet to extract the
user’s location for a weather app.

The running app: We asked the participants to write that
part of the application code that accesses and stores a runner’s

location. For this application, we need the geographical coor-
dinates of the runner. This app can be developed using just the
existing APL

The address app: In this app, a user’s phone is set to silent
mode when he reaches office and set to ringer mode once he
reaches home. The participants were asked to code for the
part that obtains the user’s location to compare it against the
saved home and office addresses to take further action. This
app could ideally be done using any of the APIs, and hence
this task was chosen.

Participants were asked to write their code on blank sheets
of paper. We adopted this technique to ensure that people
put in more thought when writing the code. Since we were
not asking for an entire application or a ready-to-be-compiled
code, writing code on paper implied lesser hassle on part of
the participant. Moreover, our purpose was to observe their
understanding of the API and not to test their programming
skills. We also asked each participant to code at least one
task on a code structure that we provided them with after
programming for it on blank sheets.

D. Data Analysis

When the participants finished the exercise, we asked them
questions related to their codes, what they thought about the
documentation and the tasks that were compiled for them. We
also inquired if they were aware of location privacy issues and
if they used that knowledge while coding for the tasks. They
were asked questions specific to the method calls they made
in their codes, and why they made those choices. We asked
participants what they thought was the purpose of the study, at
the end of the study. None of the participants could guess the
actual purpose. Their codes were analyzed based on logic. As
long as there was a logical flow of statements and method calls,
with comprehensible use of programming syntax and API, we
considered the code for API analysis. We inquired about the
difficulties they had, if any, while using the APIs that they
chose.

V. RESULTS

This section presents the results of the study. We begin
by evaluating the programs submitted by the participants and
an analysis of the API used. It is seen that the apps where
the redesigned API fit well, like the weather app and the
address app, participants were naturally disposed to using
them, even without being asked to consider privacy. The
redesigned API structure nudges developers to make privacy
preserving choices, without trying too hard. We also examine
participants’ response to the provided code skeleton, which
brings to light that the basic programming intuition and logic
is unchanged by the level of comfort with the syntax of the
programming language.

All participants wrote programs for the list of problems
provided to them. In the following subsections, we address
these and the other aspects of the participants’ program code.

A. Evaluation of Completed Tasks

Participants were provided a randomized list of tasks. Nine
out of 25 participants completed all the tasks during their
session, while two did not code at all. The others completed

one or two tasks. As discussed earlier, the coding tasks were
the weather app, the running app and the address app. Out of
25, 13 participants completed the weather app, 20 completed
the running app and 19 completed the address app. These
numbers account for the variability in the tasks attempted and
the APIs used.

1) The Non-Android Group:

a) Control Group: The control group constituted of six
members. They were provided with the baseline API. This
included the Geocoder and Address classes. Only two (ClI,
C4) out of six participants used reverse geocoding. While C2
and C7 only copied the example code, C3 did not understand
the provided documentation at all. C8 attempted to use the
Address class without the Geocoder class.

b) Treatment Groups: As discussed earlier, Group NA
was divided into two treatment groups, TA and TB. The code
names for the participants from these groups also had the
relevant prefix.

TA had five participants. They were provided the set of
documentation that had the proposed API before the Geocoder
and Address classes. None of the participants used the reverse
geocoding. Four (TA2, TA3, TA4, TAS) out of five participants
used some redesigned API. The last participant, TA6, copied
the example code provided in the documentation. He did not
utilize either the proposed API or reverse geocoding, but used
only the raw coordinates for each task. Reverse Geocoding
is the process of obtaining raw location coordinates and then
transforming them into an address.

“I tried to make it the postal code or city because that is
usually what people want. They don’t usually want latitude and
longitude” - TA2, on using the getPostalCode(), requestPostal-
CodeUpdates() and onPostalCodeChanged() for the weather
task.

“Coordinates are better because they are numbers and the
easiest to find out” - TA6.

A list of treatment group A participants, who used the
redesigned API, the APIs they used along with the tasks they
used them for, is provided in Table V.

Treatment Group A

Participant | API used Task
requestPostalCodeUpdates()
TA2 onPostalCodeChanged() Weather
getPostalCode()
TA3 getBuilding() Addresses
TA4 onBuildingChanged() Addresses
TAS getCity() Weather

TABLE V: List of treatment group A participants who used the proposed
APIs. Against each participant, is a list of the API that they used and the task
they used it for. Four out of five participants in TA made use of the proposed
APIs to accomplish the coding tasks provided to them. One participant copied
the example code and did not use the proposed API or reverse geocoding. This
group was provided the documentation with proposed API followed by the
reverse geocoding classes.

TB had six participants. They were provided the documen-
tation that had the Geocoder and Address classes described

before the proposed APIL. Three (TB1, TB6, TB7) out of six
participants used some redesigned API. One (TB4) participant
did not understand the documentation and did not attempt
coding at all. TB2 copied the example code as is, while
TBS5 was the only participant who used reverse geocoding for
completing the task.

“You get them [geocoordinates] from location manager.
Then you have to use this part - geocoding. I tried to do that
for this one but I didn’t really know how to” - TB2.

TB2 tried to go beyond the example code to put the
obtained coordinates to use, but found it difficult to do so. He
mentioned that he did not go further to look at the redesigned
APIL.

Treatment Group B
Participant | API used Task
TB1 requestStreetUpdates() Addresses
TB6 requestStreetUpdates() Addresses
getStreet()
TB7 requestCityUpdates() Weather
onCityChanged()

TABLE VI: List of treatment group B participants who used the proposed
APIs. Against each participant, is a list of the API that they used and the task
they used it for. Three out of six participants in TB made use of the proposed
APIs to accomplish the coding tasks provided to them. One participant copied
the example code, and one more did not understand the documentation.
Only one participant used reverse geocoding. This group was provided the
documentation with the reverse geocoding classes followed by the proposed
APL

Table VI provides a list of the APIs from the proposed set
that TB1, TB6 and TB7 used and the corresponding tasks.

2) The Android Group: The Android group also had two
treatment groups, treatment group C (TC) and treatment group
D (TD).

TC comprised five participants who were offered the
documentation with the redesigned API listed first. All five
participants made use of the redesigned API to accomplish
the coding problems.

“the current order of information is well organized and its
better this way” - TCS.

Despite his feedback, TCS said that the order would not
have made a difference to his coding approach. Table VII
enlists all the participants, the APIs they used, and the cor-
responding tasks.

TD consisted of three participants, who were provided the
documentation with the reverse geocoding explained before
the redesigned APIL. Two (TDI1, TD2) out of three members
chose to use the redesigned API over reverse geocoding. One
participant, TD4, used the Geocoder class.

“I may have chosen this [Geocoder class] because it was
first. I was reading through and I saw this and I was like, oh
that will work” - TDA4.

Table VIII provides a participant-wise summary, the API
used, and the corresponding tasks. The fact that none of the
participants used the proposed API for the running app shows
that not all applications can use coarse location information,
but those where they can be used, participants attempted them.

Treatment Group C
Participant | API used Task
requestPostalCodeUpdates()
TC1 onPostalCodeChanged() Weather
getPostalCode()
TC2 getStreet() Addresses
getPostalCode()
TC3 getCity() Weather
getStreet()
requestPostalCodeUpdates() Weather
TC4 getPostalCode()
requestStreetUpdates() Addresses
getStreet()
requestStreetUpdates() Addresses
TCS onStreetChanged()
getStreet()
onCityChanged() Weather

TABLE VII: List of treatment group C participants who used the proposed
APIs. Against each participant, is a list of the API that they used and the
respective tasks. All five participants in TC made use of the proposed APIs to
accomplish the coding tasks provided to them. This group was provided the
documentation with proposed API followed by the reverse geocoding classes.

Treatment Group D
Participant | API used Task
D1 getSt.reet() Addresses
getCity() Weather
D2 requestStreetUpdates()
onStreetChanged() Addresses
getStreet()

TABLE VIII: List of treatment group D participants who used the proposed
APIs. Against each participant, is a list of the API that they used and the tasks
they used them for. Two out of three participants in TD made use of the pro-
posed APIs to accomplish the coding tasks provided to them. One participant
used reverse geocoding. This group was provided the documentation with the
reverse geocoding classes followed by the proposed API.

3) Evaluation: Table IX gives a summary of the treatment
groups and the statistics in terms of API usage. It provides
concise information on how many participants tried to use the
redesigned API or the existing API for fulfillment of the coding
assignment. A few that did not understand the APIs or just
copied the example code supplied with the documentation, are
also accounted for.

Programmers who had Android experience had a better
understanding of the documentation and API (Table IX). We
can say this with certainty because no participants from the
Android group (Group A) copied the example code without
attempting to understand the provided APIs. All participants
from TC preferred the redesigned API over geocoding, while
all but one from TD opted for the redesigned API. TD4, who
used geocoding, articulated that this might have been due to the
order in which the information was provided to him. The Non-
Android programmers on the other hand, had a harder time
understanding the APIs and the context for their usage. Three
participants from the treatments groups could not understand
the document and hence ended up copying the example code.

Group | Participants | Used proposed API | Used reverse geocoding | Copied example | Did not understand documentation
CG 6 - 3 2 1
TA 5 4 0 1 0
TB 6 3 1 1 1
TC 5 5 0 0 0
TD 3 2 1 0 0

TABLE IX: A treatment group-wise list of the participants. It states the number of participants in each treatment group. It offers a comparison of how many
participants from each used the proposed APIs as opposed to those that used the baseline reverse geocoding method. There is also those who either copied the

example code verbatim, or did not understand the documentation at all.

This also brings to light that developers follow example codes
very closely. Hence, if presented with appropriate privacy-
preserving examples, they can be nudged into practicing them.

Six participants preferred the redesigned API over Reverse
Geocoding because they found it easier, as stated by TB2 in
an earlier section and TBS.

“Geocoder was the most confusing part” - TBS.

TC4 thought that using the suggested API gave him more
freedom apart from being straightforward and doable. TB7
also remarked that the suggested API complied well with the
application requirement, and hence he used them. This reflects
the fact that the redesigned API are easy to use. Although
few participants actually considered privacy and others used it
because it was straight-forward and easy, it leads to the practice
of accessing only the required location information.

Table IX also indicates that, since no participants from TA
and TC used geocoding, the order in which information is
presented to a developer affects the way they perceive the
solution for a given problem. TA and TC were presented
documents with the reverse geocoding classes later, and no
participants opted for it. TA6 copied the example code from
the documentation.

“.finding the coordinates was the easiest thing to do” -
TAG.

B. Response to the Code Structure

As discussed earlier, we provided each participant with a
code structure to complete at least one of the tasks. Since
most of our study group had not programmed extensively on
Android, we wanted to simulate an environment for them as
that of experienced developers. For this, we provided them
a code structure to serve as the outline for their programs. It
imported the relevant package, defined a listener and acquired a
reference to the system LocationManager. We wanted our par-
ticipants to focus on implementing the required functionality
rather than worrying about the syntax and code organization,
like experienced developers. This motivated them into thinking
about the other important matters, such as what APIs to use
and their implications. We wanted to study the difference
between coding on plain paper versus coding on the outline
sketch. Most participants stated that completing an incomplete
code was far less worrisome than starting on a blank paper.
However, there were no significant changes with their code
except for two participants. The Table X summarizes how a
code skeleton affected programmers.

Only TC2 and TAS out of 20 participants changed their
programs significantly when using the code skeleton, while

Group | Participants | Offered No change | Significant
code in code change in
skeleton code

CG 6 5 4 0
TA 5 4 3 1
TB 6 4 2 0
TC 5 4 3 1
TD 3 3 3 0

TABLE X: This table lists the number of participants from each group who
were provided the incomplete code structure. It also lists the number of
participants who changed their code when completing the structure, and those
who did not change their codes.

15 participants did not change their code at all. The remaining
three did not understand the documentation, irrespective of the
coding skeleton.

“With the blank piece of paper I had to consider how to
start the code and since this skeleton already has the beginning
layout I would only have to focus on the problem itself rather
than worrying about the outside information, like syntax” -
TAG6 (no change in code)

“I concentrated on implementing the functionality. Typi-
cally environments like Eclipse also provide some skeleton.” -
TC5 (no change in code)

“...different because I use LocationManager and Location-
Listener well ” - TC2 (change in code)

This also reflects that even though programmers were much
comfortable coding on the skeleton, they did put considerate
thought to the API usage even before having the skeleton.

C. Location Privacy Concerns

The participants were not asked to consider privacy while
coding for the tasks. We wanted to see if the plethora of
options for obtaining the location information would auto-
matically nudge a new developer to consider privacy. After
the programming task was done, we asked each participant if
they were aware of location privacy issues surrounding mobile
applications. 13 out of the 25 participants were not aware of
any such issues. Six participants acknowledged being aware of
it but did not give it a thought while coding for the problems.
Six participants had interesting insights about location privacy.
Most of them opted for the redesigned API without privacy
being an explicit requirement.

“I know about them. It flashed my mind for a second,
like do you want to track every single detail? But then I just

continued doing what I was doing ” - TA3 (used the redesigned
API).

TC1 kept privacy in mind while coding the tasks. Which
is why he preferred using the network provider over the GPS
provider, whenever he could.

“That’s why I tried to avoid GPS when possible because
lots of people are sensitive to giving fine location data away.
And I tried to use the network when possible because even
if they’re sure they know you're connected to this tower, still
towers cover such a vast area and depending on where you are
there is such a huge number of people attached to that network
they cant identify who you are without more information on
that” - TC1 (used the redesigned API).

“Your phone is capable of sending your coordinates at all
times to a server. I chose to use postal code as opposed to
street address or coordinates because I didn’t want to send out
too much information” - TC4, discussing his code on weather
application.

There is also a light indication that with the current Android
platform, developers might be motivated to use non-privacy
preserving practices, because of the user-centric permission
model on Android systems.

“I didn’t think about it [location privacy] because I just
assume that once they [users] install the application they’ve
already given permission for it.” - TC3

VI. DISCUSSION

We performed a controlled randomized study for the anal-
ysis of privacy-preserving APIs. We analyzed the effects of
these APIs and nudging developers into using them to design
privacy friendly applications.

The evaluation of participants’ codes and post-study inter-
views affirms that a programmer can be inclined to making
privacy preserving choices, if presented with them. This find-
ing is supported by the fact that 73.6% of the participants in
our treatment groups, chose to use the redesigned API instead
of using the default reverse geocoding. Our participants who
were aware of location privacy issues, and considered them
when carrying out the tasks, were seen to be disposed to using
the proposed privacy-preserving APIs.

We also have evidence that having no prior knowledge of
Android does not affect programmers and does not hinder
them from making the desired choices. This is exhibited by
the numbers in Table IX. A fair number of participants from
treatment groups in the Non Android group (TA and TB)
preferred the proposed API.

There is indication that apart from being privacy-
preserving, the redesigned API is also straightforward to use.
Section V(A) describes how many participants chose to use
the revised API because they appeared easy and more suited
for the task.

The current Android platform does not offer developers a
chance to attempt protecting the user’s privacy. We perform
this study to learn developers’ response to an alternative
design. The new API design allows the application to acquire
only the location information necessary for the effective func-
tioning of the application. It enables them to access coarse

granularity location information easily, without intruding the
circle of finer location components.

The results clearly indicate that developers, if given a
choice, are inclined to using privacy-conserving programming
practices. All four participants from the treatment groups, who
expressed concern about user’s location privacy, preferred to
utilize the redesigned APL

The fact, as evident from Table V to Table VIII, that none
of the participants used the proposed API for the running
app, proves that not all applications can use coarse location
information. Although, it does reflect that apps where they
can be used, participants attempted them.

There is also a light indication that with the current Android
platform, developers might be motivated to use non-privacy
preserving practices, because of the user-centric permission
model on Android systems.

”[didn’t think about it [location privacy] because I just
assume that once they [users] install the application they’ve
already given permission for it 7 - TC3

TC3’s comment reflects what might be a common thought
among mobile application developers. It must be noted here
though, that the choice exercised by users might only be a
compromise if they want to make use of the application’s
features. Our study also indicates that most novice Android
developers ground their codes on the examples provided in
official documentation. This asserts that if privacy preserv-
ing examples were offered in standard API documentation,
developers would be more likely to follow the trend. For
novice developers, a good privacy protecting example in the
documentation would be enough to steer them into following
similar programming practices. It is also worth noting that
all participants who admitted to using their awareness of
location privacy issues during coding the tasks chose to use
the proposed APIL

“It [having the code skeleton] didn’t make much of a
difference because I had the example code right here” - C7

A few points worth noting about the redesigned API and
the user study are:

e The proposed APIs are a modified version of the
existing Android location API. The current API offers
no choice but to obtain the user’s geographical coor-
dinates, and thus, we propose enabling the collection
of coarse levels of location information, such as city,
county etc.

e The redesigned API would be privacy preserving only
for a subset of applications that do not require fine
grained location.

e Our participant base consisted only of students, and
not professional developers. This was to avoid the
unrealized bias, that developers have towards existing
APIs, because they already know them. The analysis
of the redesigned API is based on the common sense
and intuitions as a programmer, rather than being
proficient at the developing platform.

e The participants were not asked to consider any pri-
vacy situations before they tried the tasks. This was

to avoid any priming and conscious efforts on the
part of the participant, and to see whether or not the
increased choices nudge new developers to consider
privacy without someone pressing them to.

A. Limitations

As discussed earlier, our participant base is limited only to
students. One may question that these participants might have
been inclined to using the easier API than considering preserv-
ing privacy. To account for this phenomenon, we provided our
participants with a code outline after they had first sketched
their initial approach, so they would not have to worry about
the syntax and organization of the code. To fill in the outline,
participants were inclined to use, not what is easy, but rather
what fits the functionality of the application context best. This
fact is also backed up by our study.

Our example applications are those that directly use the
location provided by the Android location services. Applica-
tions that use external databases, that require the location in
a certain format for part of the information, are not addressed
here.

In the study, we do not account for monetary incentives
offered by third-party advertisement networks. These networks
base their advertisements on the user’s current location without
much concern for privacy. McDonald et al. [28] discuss about
the balance between user’s privacy and developer’s revenue.
Our study results exemplify that programmers follow example
codes very closely. Since we anecdotally know that many de-
velopers learning new platform turn to sites such as StackOver-
flow for programming issues, further work could also involve
providing privacy-preserving examples on StackOverflow.

VII. CONCLUSION

We have presented an extensive qualitative analysis of
results from a controlled study on how developers with only
Java or some Android experience would use location APIs
with privacy-preserving designs. This work presents the first
step on how to nudge developers for protecting people’s
privacy with API designs. Our work has implications for
redesign and documentation of location APIs. When offered
alongside the baseline API for localization, our treatment
groups chose to utilize the proposed privacy-preserving APIL.
We show that when approaching API documentation from a
“blank slate”, people tend to follow the sample code closely.
Thus, if they are presented with privacy-preserving examples in
official documentation, developers will be using them instead
of less privacy-preserving alternatives. Our results affirm that
participants who considered privacy, in contrast to the others
who did not, were inclined towards using the proposed APIL

ACKNOWLEDGMENTS

This material is based upon work supported by the National
Science Foundation under Grant Number 1223977. Any opin-
ions, findings, and conclusions or recommendations expressed
in this material are those of the authors and do not necessarily
reflect the views of the National Science Foundation.

10

(1]

(2]

(31

(4]
(31

(6]

(7]

(8]

(91
[10]

(1]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

[28]

REFERENCES

“The location privacy protection act of 2011,” http://www.franken.
senate.gov/files/documents/121011_LocationPrivacyProtection.pdf.

M. Langheinrich, “Privacy by design - principles of privacy-aware
ubiquitous systems,” in Proc. of UbiComp’01.

J. Bloch, “How to design a good api and why it matters,” in Companion
to the OOPSLA 06, 2006.

S. Clarke, “Measuring API usability,” Dr. Dobb’s Journal, 2004.

M. P. Robillard and R. Deline, “A field study of api learning obstacles,”
Empirical Softw. Engg., Dec. 2011.

M. Becher, F. C. Freiling, J. Hoffmann, T. Holz, S. Uellenbeck, and
C. Wolf, “Mobile security catching up? revealing the nuts and bolts of
the security of mobile devices,” in Proc of SP ’11.

J. Anderson, J. Bonneau, and F. Stajano, “Inglourious installers: Secu-
rity in the application marketplace,” in Proc. of WEIS 2010, 2010.

P. Gilbert, B.-G. Chun, L. P. Cox, and J. Jung, “Vision: automated
security validation of mobile apps at app markets,” in Proc. of MCS,
2011.

W. Enck, D. Octeau, P. McDaniel, and S. Chaudhuri, “A study of
android application security,” in Proc. of USENIX Security, 2011.

M. Ongtang, K. Butler, and P. McDaniel, “Porscha: policy oriented
secure content handling in android,” in Proc. of ACSAC, 2010.

W. Enck, P. Gilbert, B.-G. Chun, L. P. Cox, J. Jung, P. McDaniel,
and A. N. Sheth, “Taintdroid: an information-flow tracking system for
realtime privacy monitoring on smartphones,” in Proc. of OSDI’10.

J. Howell and S. Schechter, “What you see is what they get: Protecting
users from unwanted use of microphones, camera, and other sensors,”
in In Proc. of W2SP, 2010.

A. R. Beresford, A. Rice, N. Skehin, and R. Sohan, ‘“Mockdroid:
trading privacy for application functionality on smartphones,” in Proc.
of HotMobile, 2011.

Y. Zhou, X. Zhang, X. Jiang, and V. W. Freeh, “Taming information-
stealing smartphone applications (on android),” in Proc. of the TRUST
2011, 2011.

S. Lederer, I. Hong, K. Dey, and A. Landay, “Personal privacy
through understanding and action: five pitfalls for designers,” Personal
Ubiquitous Comput., November 2004.

S. Spiekermann and L. Cranor, “Engineering privacy,” IEEE Transac-
tions on Software Engineering, vol. 35, no. 1, January/February 2009.
A. P. Felt, S. Egelman, M. Finifter, D. Akhawe, and D. Wagner, “How
to ask for permission,” in Proc. of HotSec’12, 2012.

C. Bravo-Lillo, L. F. Cranor, J. Downs, and S. Komanduri, “Bridging
the gap in computer security warnings: A mental model approach,”
IEEE Security and Privacy, March 2011.

R. Wash, “Folk models of home computer security,” in Proc. of SOUPS
’10, 2010.

S. Guha, M. Jain, and V. N. Padmanabhan, “Koi: a location-privacy
platform for smartphone apps,” in Proc. of NSDI'12, 2012.

S. Amini, J. Lindqvist, J. I. Hong, J. Lin, E. Toch, and N. Sadeh,
“Caché: caching location-enhanced content to improve user privacy,” in
Proc. of MobiSys’11, 2011.

J. Tam, R. W. Reeder, , and S. Schechter, “I'm allowing what?
disclosing the authority applications demand of users as a condition
of installation,” Microsoft Research, MSR-TR-2010-54, May 2010.

J. Lin, N. Sadeh, S. Amini, J. Lindqvist, J. I. Hong, and J. Zhang,
“Expectation and purpose: understanding users’ mental models of
mobile app privacy through crowdsourcing,” in Proc. of UbiComp’12.
“Android developers guide - location strategies,” http://developer.
android.com/guide/topics/location/strategies.html.

H. Zang and J. Bolot, “Anonymization of location data does not work:
a large-scale measurement study,” in Proc. of MobiCom ’11, 2011.

J. 1. Hong and J. A. Landay, “An architecture for privacy-sensitive
ubiquitous computing,” in Proc. of MobiSys '04, 2004.

M. F. Mokbel, C.-Y. Chow, and W. G. Aref, “The new casper: query
processing for location services without compromising privacy,” in
Proc. of VLDB ’06.

A. M. McDonald and L. F. Cranor, “Americans’ attitudes about internet
behavioral advertising practices,” in Proc. of WPES 10, 2010.

http://www.franken.senate.gov/files/documents/121011_LocationPrivacyProtection.pdf
http://www.franken.senate.gov/files/documents/121011_LocationPrivacyProtection.pdf
http://developer.android.com/guide/topics/location/strategies.html
http://developer.android.com/guide/topics/location/strategies.html

	Introduction
	Related Work
	API Design
	Current Android Location API
	Privacy Problems with Location API
	Our Proposed APIs

	Method
	Participants
	Study Design
	Procedure
	The Non-Android Group
	The Android Group
	The Documentation
	Programming Tasks

	Data Analysis

	Results
	Evaluation of Completed Tasks
	The Non-Android Group
	The Android Group
	Evaluation

	Response to the Code Structure
	Location Privacy Concerns

	Discussion
	Limitations

	Conclusion
	References

