

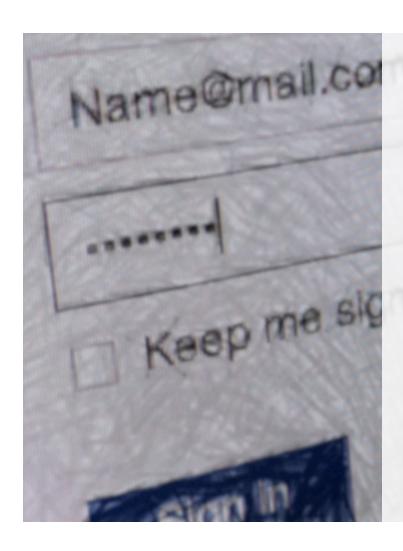
Responsibility and Tangible Security: Towards a Theory of User Acceptance

Towards a Theory of User Acceptance of Security Tokens

Payne, Jenkinson, Stajano, Sasse, & Spencer

Pico Team

Current Members:


- Frank Stajano (Principal Investigator)
- David Llewellyn-Jones (Research Associate)

Past Members:

- Chris Warrington (now with Google)
- Quentin Safford-Fraser (now on the Endeavour Project at University of Cambridge the Computer Lab)
- Max Spencer (now at the Guardian)
- Jeunese Payne (now at Africa's Voices)
- Graeme Jenkinson (now on the CADETS project at the University of Cambridge Computer Lab)

- Passwords
- Background to Pico
- Approach
- Analysis
- The Grounded Theory
- Conclusions

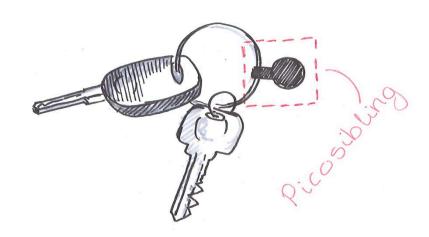
Passwords

- Coping strategies (reusing, storing, etc.)
- Alternative password types (passphrases, graphical passwords, etc.)
- Password managers
- FIDO
- Two-factor authentication
- Purely token-based schemes

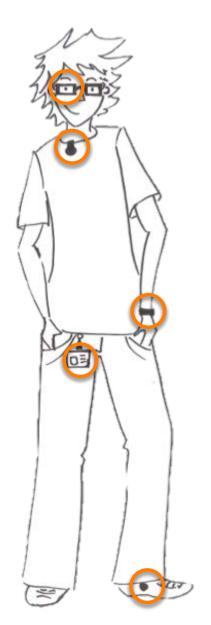
- Passwords
- Background to Pico
- Approach
- Analysis
- The Grounded Theory
- Conclusions

Pico (Stajano, 2011)

Pico = Small, dedicated device; Passwords → Scan a QR code


Usability benefits: Memory, Effort, Scalability

Security benefits: Continuous authentication; Resistant to

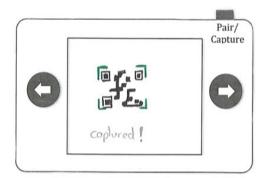

guessing, phishing, and key-logging; Theft-resistant

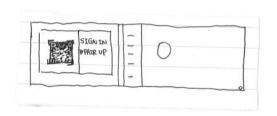
Picosiblings

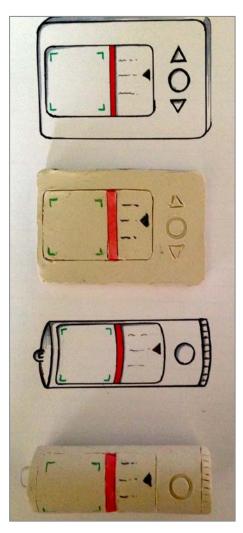
- It locks itself!
- Detects how close it to its Picosiblings
- Smaller devices you carry with you
- Collection → only need some

What explains the acceptability of a token-based authentication mechanism, such as Pico?

- Passwords
- Background to Pico
- Approach
- Analysis
- Results
- Conclusions


Approach: Overview


Data obtained from semi-structured interviews in which participants interacted with low-fidelity prototypes


Data analysed using **Grounded Theory** (Glaser & Strauss, 1967; Strauss & Corbin, 1998)


Approach: Low Fidelity Prototypes (1)

- a. Paper designs
- b. Re-design
- c. Plasticine
- d. Polymorph

Students involved:


T. Brouwer, K. Phatpanichot, R. Dorrity, G. Liang, J. Luo, E. J. Kay-Coles

Approach: Low Fidelity Prototypes (2)

Pilot Study of Picosiblings: Everyday and makeshift items

Approach: Semi-Structured Interviews

- Pilot Phase: Open and axial coding of first 6 interviews
- Main Phase: Open, axial, and selective coding of 16 interviews
- Expanding: Testing the fit of the data in the final model from an additional 4 interviews → 20 interviews

Approach: Participants

The range (count and percentages) of participant occupations

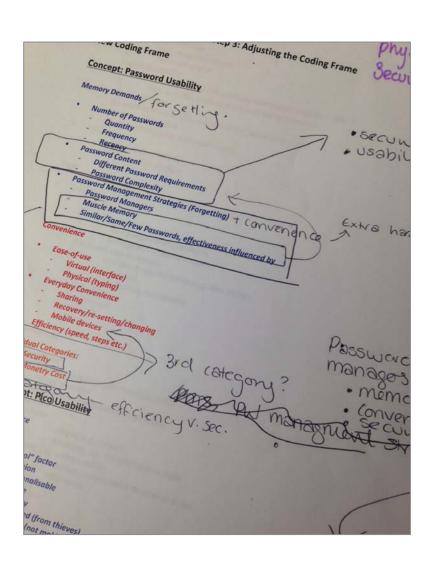
	Count
	(Percentage)
Accounting (female)	1 (5%)
Engineering (male)	1 (5%)
Military (male)	1 (5%)
Admin/Clerical (male)	1 (5%)
Publishing (female)	1 (5%)
Translating (female)	1 (5%)
Software Developer (male)	1 (5%)
Homemaker (female)	1 (5%)
Unemployed:	
Software Engineer (male)	1 (5%)
Product Designer (female)	1 (5%)
Research:	
Physics (male)	1 (5%)
Neuronal development (male)	1 (5%)
Cancer (female)	1 (5%)
No Occupation given (female)	1 (5%)
Student (undisclosed subject) (male)	1 (5%)
Education (teaching assistant) (1 male, 1 female)	2 (10%)
Post-grad student:	
Sustainable Energy (female)	1 (5%)
Computer Science (1 male; 1 female)	2 (10%)

Gender:

10 male, 10 female

Age:

20-57 years

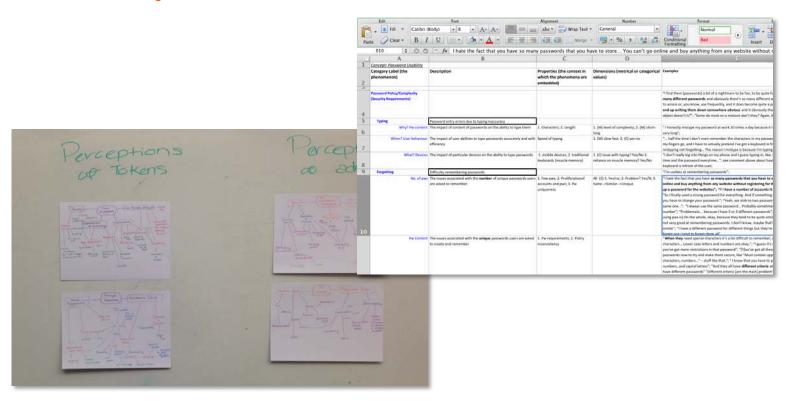

(mean = 30.5)

Occupation:

See table

- Passwords
- Background to Pico
- Approach
- Analysis
- The Grounded Theory
- Conclusions

Open Coding



Reducing the data into codes

- Trial open-coding (interviews 1-6):
 - Double-coding
 - Blind-coding)
- Open-coding proper (interviews 1-16):
 - "Memoing"
 - Developing a coding frame

Axial Coding

Grouping codes into conceptual categories that reflect relationships

Axial Coding: Pico Token

Convenience

Efficiency (effort & time)

- Deployment (widely adopted)
- Something to carry (vs. dual-purpose or app)

Prototype Preferences

- Familiarity (of concept & design)
- Easy to carry,
 hold, and use
 (shape, size, &
 button functions)

Trustworthiness

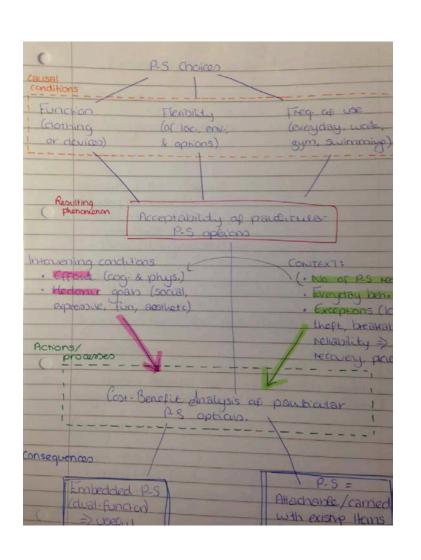
- Reliability

 (uninterrupted use)
- 2. Security (misuse, loss, & theft)

Axial Coding: Picosiblings

Hedonic Concerns

- Self-presentation (personal style)
- Personalisation (novelty, fun, & creativity)


Utilitarian Concerns

- 1. Dual-purpose (e.g. a watch)
- Practical
 Convenience
 (e.g. a key-ring)
- 3. Flexibility (e.g. a sticker)

Routine Use

- Day-to-day (fixed or frequent)
- 2. Exceptions (loss & theft)

Selective Coding

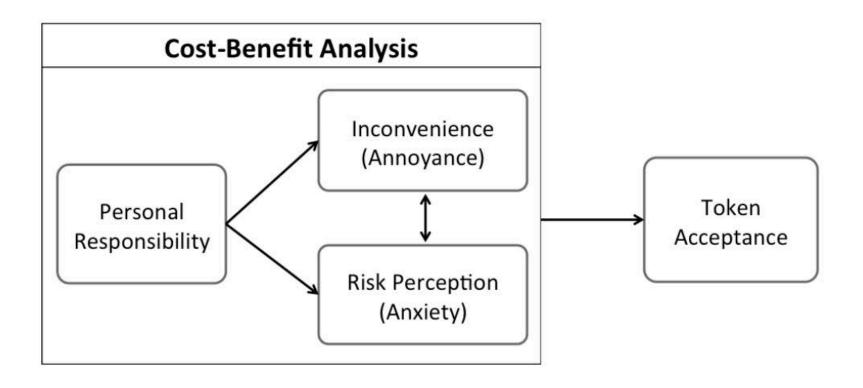
Interpretation of codes in terms of an underlying process

- Integration of axial codes
- Refining the theory
- Developing a story line to demonstrate the theory

Selective Coding: Inconvenience

"I like the card kind of idea, kind of because you can maybe put it with other secure... with your bank card"

Selective Coding: Risk Perception

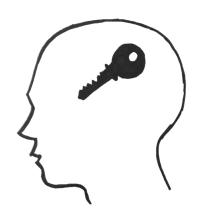

"Is there a way to do, like, a time thing on them? ... I guess it just makes it even more secure ... because it changes all the time"

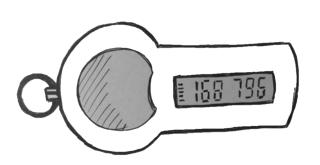
Selective Coding: Responsibility

"The worry would be obviously if you lost one and then you went to your access point and then realised that you lost one: where would you always keep the spares?... You wouldn't want to carry too many things"

- Passwords
- Background to Pico
- Approach
- Analysis
- The Grounded Theory
- Conclusions

The Grounded Theory




- Passwords
- Background to Pico
- Approach
- Analysis
- The Grounded Theory
- Conclusions

Conclusions

Passwords → Abstract

Tokens → Tangible

Tangible security increases perceived responsibility for:

- a. Mitigating security risks
- b. Managing physical item

= anxiety-provoking and inconvenient

Conclusions

Three key challenges:

- Reducing annoyance (associated with inconvenience) and anxiety (associated with risk)
- 2. Avoiding system failures (reliability issues)
- 3. Aligning mental models of Pico with how it actually works

Questions?