On the Mismanagement and Maliciousness of Networks

Jing Zhang¹, Zakir Durumeric¹, Michael Bailey¹, Mingyan Liu¹, and Manish Karir²

 Computer Science and Engineering, University of Michigan
 Department of Homeland Security, Science and Technology Directorate, Cyber Security Division

Motivation: DNS Amplification Attack

News

DDoS attack against Spamhaus was reportedly the largest in history

The attack caused problems for the global Internet

By Lucian Constantin, IDG News Service March 27, 2013 04:40 PM ET

The DDoS That Knocked Spamhaus Offline (And How We Mitigated It)

Published on March 20, 2013 06:26PM by Matthew Prince.

Internet Under Attack: World's Largest DDoS Attack Almost Broke The Internet

Motivation: DNS Amplification Attack

Motivation: DNS Amplification Attack

CNET > News > Security & Privacy > How the Spamhaus DDoS attack could have been

Internet engineers have known for at least 13 years how to stop major distributed denial of service attacks. But thanks to a combination of economics and inertia, attacks continue. Here's why.

Mismanagement & Malicious Use

- Obvious causality between misconfigured open resolvers and DDoS attacks
 - Misconfigured -> Vulnerability -> Exploited -> Malicious sources
- Mismanagement and Malicious use in general
 - Are Mismanagement symptoms related?
 - E.g. Would networks with more open resolvers also have more untrusted HTTPS certificates?
 - Are mismanagement and malicious use of networks related?
 - E.g. Would networks with more open resolvers send more Spam?

- Mismanagement of Networks
- Maliciousness of Networks
- Relationship
- Discussions & Future work

- Mismanagement of Networks
- Maliciousness of Networks
- Relationship
- Discussions & Future work

Measuring Mismanagement

What is Mismanagement?

"Managing ineffectively, incompetently, carelessly, or wrongly. Mismanagement ranges from making poor decisions to breaking rules for personal gain." ¹

- How to measure Mismanagement?
 - Internal auditing and reviews
 - External observation
- Our Approach Inferring from mismanagement symptoms
 - Well documented security practices
 - External observations
 - Broad coverage

¹The American Heritage Dictionary of Business Terms.

Summary of Selected Symptoms

Symptom	Best security Practices	Function	Data Sources
Open recursive DNS resolver	BCP 140	Naming Infrastructure	Open Resolver Project ¹
DNS source port randomization	RFC 5452	Naming Infrastructure	Inferred from Verisign .com and .net TLD queries
Consistent A and PTR records	RFC 1912	Naming Infrastructure	rDNS lookup on all .com and .net A records
BGP misconfiguration	RFC 1918, RFC 6598	Routing Infrastructure	Inferred from routing updates collected by Route Views and RIPE
Lack of Egress Filtering	BCP 38	Transit	Spoofer Project ²
Untrusted HTTPS Certificates	RFC 5246, RFC 2459	Web Application	Collected with Zmap network scanner
Open SMTP mail relays	RFC 2505	Mail Application	Collected with Zmap network scanner
Publicly Available Out-of- Band Management cards	Manufacturer's Guideline	Server	Collected with Zmap network scanner

¹Open Resolver Project. http://openresolverproject.org/

² Spoofer Project: State of IP Spoofing. http://spoofer.cmand.org/

Widespread Mismanaged Systems

Open recursive DNS resolver	27 million open recursive resolver
DNS source port randomization	226,976 (4.8%) DNS resolvers without using source port randomization
Consistent A and PTR records	27.4 million (23.4%) A records that do not have matching PTR records
BGP misconfiguration	42.4 million (7.8%) short-lived BGP routes
Lack of Egress Filtering	35.6% tested netblocks that have not implemented egress filtering
Untrusted HTTPS Certificates	10.2 million (52%) HTTPS servers using untrusted certificates
Open SMTP mail relays	22,284 (2%) SMTP servers that allow open mail relays
Publicly available IPMI cards	98,274 public accessible IPMI cards

Abstracting Networks

- Network-level mismanagement measures
 - Aggregating IP addresses into Autonomous Systems
 - Normalized mismanagement symptoms to enable fair comparison

Mismanagement of Autonomous Systems

Are Mismanagement Symptoms Related? YES!

	Open resolver	port rand.	PTR records	BGP misconfig.	Egress Filtering	HTTPS Cert.	SMTP relays
Open resolver	-						
port randomization	0.35	-					
PTR records	0.01	0.15	-				
BGP misconfig.	0.17	0.07	0.03	-			
Egress Filtering	0.09	0.04	0.01	0.04	-		
HTTPS Certificates	0.46	0.23	0.00	0.16	-0.01	-	
SMTP relays	0.14	0.16	0.10	0.02	0.14	0.06	-
IPMI cards	0.26	0.26	0.15	0.03	0.10	0.15	0.26

- Most of the symptoms are correlated
 - Statistically significant at 95% confidence level
 - Weak to moderate positive correlation

- Mismanagement of Networks
 - Symptoms of mismanagement
 - Mismanagement of networks
- Maliciousness of Networks
- Relationship
- Discussions & Future work

Measuring the Malicious Use of ASes

- Union of 12 network reputation blacklists, covering spam, malware, phishing, and active scanning ¹
- Aggregate to Autonomous Systems
- Normalize by the number of announced IP

¹J Zhang, A Chivukula, M Bailey, M Karir, M Liu. *Characterization of Blacklists and Tainted Network Traffic* (PAM'13)

- Mismanagement of Networks
 - Symptoms of mismanagement
 - Mismanagement of networks
- Maliciousness of Networks
- Relationship
- Discussions & Future work

Are mismanagement and Malicious Use Related?

Coefficient	Interpretation		
0.59	Strong Positive Correlation		
0.45	Moderate Positive Correlation		
0.20	Weak Positive Correlation		
0.19	Weak Positive Correlation		
0.44	Moderate Positive Correlation		
0.23	Weak Positive Correlation		
0.22	Weak Positive Correlation		
0.04	No Correlation		
	0.59 0.45 0.20 0.19 0.44 0.23 0.22		

Individual symptoms are positively correlated to the malicious use

Are mismanagement and Malicious Use Related? YES!

Metric	Coefficient	Interpretation
Open recursive DNS resolver	0.59	Strong Positive Correlation
DNS source port randomization	0.45	Moderate Positive Correlation
Consistent A and PTR records	0.20	Weak Positive Correlation
BGP misconfiguration	0.19	Weak Positive Correlation
Untrusted HTTPS Certificates	0.44	Moderate Positive Correlation
Open SMTP mail relays	0.23	Weak Positive Correlation
Mismanaged IPMI cards	0.22	Weak Positive Correlation
Egress Filtering	0.04	No Correlation
Overall Mismanagement	0.64	Strong Positive Correlation

- Individual symptoms are positively correlated to the malicious use
- Overall Mismanagement are correlated to the malicious use
 - A rank calculated by linearly combining all the rank of individual symptoms

Causal Inference

- Correlation ≠ Causality
 - Latent variable can cause both factors
 - Country GDP are positively correlated
 - Business relationship are positively correlated
- Formal Causal Inference
 - Fast Causal Inference algorithm
 - Control variable: country GDP, country GDP per capita, # of peers, # of customers
 - Limitation: there might be other latent variables that affect the correctness of the inference result

Mismanagement leads to maliciousness under the control of selected economic and social factors.

- Mismanagement of Networks
 - Symptoms of mismanagement
 - Mismanagement of networks
- Maliciousness of Networks
- Relationship
- Discussions & Future work

Different Mismanagement Levels

- Break down by Geographic and Topology
 - AFRINIC > LACNIC > RIPE > APINIC > ARIN
 - LTPs > STPs > CAHPs > ECs
- Why different?

top 5 percentile 5-10 percentile 5-25 percentile 5-25-50 percentile 5-25-50 percentile 50-100 percentile 5-25-25

Proactive Reputation

- Regular active scans of the Internet for mismanagement
- Can the mismanagement be used to predict/prevent future attacks?
- ~380,000 open NTP servers ¹
- Moderate correlated to overall mismanagement, reputation and other mismanagement symptoms

	Correlation
Reputation	0.35 (p <0.01)
Overall Mismanagement	0.42 (p <0.01)

DDoS Attack Hits 400 Gbit/s, Breaks Record

A distributed denial-of-service NTP reflection attack was reportedly 33% bigger than last year's attack against Spamhaus.

¹Open NTP Project. http://openntpproject.org/

Thanks!

Appendix

Level of Aggregation

Impact of Aggregation

- All the correlations are statistically significant at prefix-level
- Very slightly differences in the strength of correlations

Metric	AS-level			Prefix-level		
Wettic	Coefficient	P-value	Interpretation	Coefficient	P-value	Interpretation
Open recursive DNS resolver	0.59	<0.01	Strong	0.54	<0.01	Strong
DNS source port randomization	0.45	<0.01	Moderate	0.24	<0.01	Weak
Untrusted HTTPS Certificates	0.44	<0.01	Moderate	0.39	<0.01	Moderate
Open SMTP mail relays	0.23	<0.01	Weak	0.15	<0.01	Weak
Mismanaged IPMI cards	0.22	<0.01	Weak	0.18	<0.01	Weak