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Abstract—Named-Data Networking (NDN) is a candidate
next-generation Internet architecture designed to address some
limitations of the current IP-based Internet. NDN uses the pull
model for content distribution, whereby content is first explicitly
requested before being delivered. Efficiency is obtained via router-
based aggregation of closely spaced requests for popular content
and content caching in routers. Although it reduces latency
and increases bandwidth utilization, router caching makes the
network susceptible to new cache-centric attacks, such as content
poisoning. In this paper, we propose a ranking algorithm for
cached content that allows routers to distinguish good and
(likely) bad content. This ranking is based on statistics collected
from consumers’ actions following delivery of content objects.
Experimental results support our assertion that the proposed
ranking algorithm can effectively mitigate content poisoning
attacks.

I. INTRODUCTION

Since its early days in the 1970-s, the way the Internet
is used has changed drastically. From a few thousand people,
mainly in North America, using it to access shared computing
resources from terminals, Internet’s usage gradually shifted
to billions of people world-wide running a wide range of
applications from a variety of end-devices. This shift also
exposed limitations of the current IP-based Internet and moti-
vated exploring new architectures.

Named-Data Networking (NDN) [1] is one of several
research efforts aiming to design a next-generation Internet
architecture. NDN is an example of Information-Centric Net-
working (ICN) [2]. It is based on PARC’s Content-Centric
Networking project [3], [4]. Unlike traditional IP-based net-
working that assigns addresses to hosts and interfaces, NDN
addresses content by giving it a routable name. A consumer
issues an interest for a certain content, requesting it by name.
The network can satisfy an interest with a content from any
host or router cache, as long as content name matches that in
the interest. An NDN content follows, in reverse, the exact path
of the preceding interest, all the way back to the consumer.

To ensure authenticity, NDN stipulates that every content

must be signed by its producer and consumers are required to
verify content signatures. However, content signature verifica-
tion is optional for routers, due mainly to various associated
costs.

To facilitate efficient distribution of popular content, NDN
routers maintain so-called Content Stores, where content is
cached. This caching is a key NDN feature as it reduces
overall latency and improves bandwidth utilization for popular
content. However, despite its obvious benefits, content caching
in routers opens the door for DoS attacks [5].1 One such attack
is content poisoning whereby an adversary injects fake content
into router caches thus resulting in its subsequent (possibly,
large-scale) distribution to consumers.

Although signature verification by consumers would detect
invalid content, NDN has no means of facilitating its removal
from router caches, other than eventual natural (e.g., LRU-
based) cache aging. The only way a consumer can attempt to
avoid re-receiving fake content is via explicit exclusion filters
(containing one or more hashes of not-desired content) in NDN
interest packets.

In this paper, we propose a light-weight ranking algorithm
for cached content in NDN routers to mitigate content poison-
ing. Our approach is based on statistics collected from existing
fields of interest packets and does not require any changes to
the NDN architecture. Simulation-based experiments show that
the ranking algorithm is effective against content poisoning
attacks under several adversarial assumptions.

Although vulnerability of NDN architecture to content
poisoning attacks was noted recently [5], to the best of our
knowledge, no prior research explores this problem in any
depth or proposes any concrete counter-measures. This paper
focuses on c ontent-poisoning attacks in NDN by: (1) showing
their potential via experiments, and (2) constructing and eval-
uating a simple and light-weight content ranking technique.
Anticipated contributions are as follows:

• First study of NDN’s vulnerability to content poisoning
attacks and their impact on quality of service.

• First steps towards a concrete and comprehensive solution
against content poisoning attacks in NDN via a light-
weight statistical content-ranking algorithm for router
caches.

• Evaluation of the proposed technique under a variety of
topologies and cache contamination assumptions.

1It also facilitates attacks on consumer and producer privacy, as discussed
in [6], [7], [8].
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NDN is one of five Future Internet Architecture projects funded
by the U.S. National Science Foundations (NSF) [9]. NDN is
thus a contender for the next-generation Internet architecture.
Even if it fails to win the proverbial “race”, its design might
influence the Internet of the future, i.e., certain NDN features
– such as router caching – could be adopted. Thus, we believe
that this paper is both timely and important, since it studies
NDN’s vulnerability to a particular type of DoS attack (which
stems from router caching) and proposes a simple yet efficient
and effective counter-measure.

Organization: Section II describes the NDN architecture.
Section III presents the adversary model, definitions and the
terminology. Then, Section IV describes the content ranking
algorithm. Section V discusses our experimental environment.
Next, Section VI overviews related work and Section VII
concludes the paper.

II. NDN OVERVIEW

This section overviews NDN. Given some familiarity with
NDN, it can be skipped with no loss of continuity.

Unlike IP which focuses on end-points of communica-
tion and their names/addresses, NDN ([3], [1]) focuses on
content and makes it named, addressable and routable at
the network layer. A content name is composed of one
or more variable-length components opaque to the network.
Component boundaries are explicitly delimited by “/” in
the usual path-like representation. For example, the name
of a CNN news homepage content for May 20, 2013
might be: /ndn/cnn/news/2013may20/index.htm. Large con-
tent can be split into segments with different names where
fragment 37 of Alice’s YouTube video could be named:
/ndn/youtube/alice/video-749.avi/37.

NDN communication adheres to the pull model and content
is delivered to consumers only upon explicit request. There
are two types of packets in NDN: interest and content. A
consumer requests content by issuing an interest packet. If an
entity can “satisfy” a given interest, it returns a correspond-
ing content packet. Each content delivery in NDN must be
strictly preceded by an interest. If content C with name n is
received by a router with no pending interest for that name,
the content is considered unsolicited and is discarded. Name
matching in NDN is prefix-based. For example, an interest
for /ndn/youtube/alice/video-749.avi can be satisfied by
content named /ndn/youtube/alice/video-749.avi/37.2

REMARK: we use these three terms: content object, content
packet and content interchangeably.

NDN content packets include several fields. In this paper,
we are only interested in three:

• Name – A sequence of explicit name components fol-
lowed by an implicit digest (hash) component of the con-
tent recomputed at every hop. This effectively provides
each content with a unique name and guarantees a match
when provided in an interest. However, in most cases, the
hash component is not present in interest packets, since
NDN does not provide any secure mechanism to learn
content hashes a priori.

2However, the reverse does not hold, by design.

• Signature – a public key signature, generated by the
content producer, covering the entire object, including all
explicit components of the name. The signature field also
includes a reference (by name) to the public key needed
to verify it.

• Freshness – producer-recommended time for the con-
tent objects to be cached.

Each producer is required to have at least one public key,
represented as a bona fide named content object, signed
by its issuer, e.g., a CA. (NDN is fully agnostic as far as
trust management, allowing both peer-based and hierarchical
PKI approaches.) The name of a public key content
object must contain “key” as its last explicit component,
e.g., /ndn/russia/moscow-airport/transit/snowden/key.
Moreover, in order for content signature to be valid (not
just verifiable), the name of the public key (the private
counterpart of which is used to sign) without the last
explicit component must form a prefix of the content
name. For example, this would hold for content named
/ndn/russia/moscow-airport/transit/snowden/rant and
key named as above, but would not hold for key named:
/ndn/usa/nsa/leaker/snowden/key.

NDN interests packets include the following fields:

• Name – Name of the requested content.
• MinSuffixComponents and
MaxSuffixComponents – respectively, minimum
and maximum number of name components, beyond
those specified in the name, that are allowed to occur in
matching content. These fields facilitate longest-prefix
matching.

• Exclude – contains information about name compo-
nents that must not occur in the name of returned content.
This field can be used to exclude certain content by
referring to its hash, which, as noted above, is considered
to be an implicit, last component of each content name.

There are three types of NDN entities/roles:3

• Consumer – an entity that issues an interest for content.
• Producer – an entity that produces and publishes (as well

as signs) content.
• Router – an entity that routes interest packets and for-

wards corresponding content packets.

Each NDN entity (not just routers) maintains these three
components [10]:

• Content Store (CS) – cache used for content caching and
retrieval. From here on, we use the terms CS and cache
interchangeably. Recall that timeout of cached content is
specified in the freshness field.

• Forwarding Interest Base (FIB) – table of name prefixes
and corresponding outgoing interfaces. FIB is used to
route interests.

• Pending Interest Table (PIT) – table of outstanding (pend-
ing) interests and a set of corresponding incoming and
outgoing interfaces.

When a router receives an interest for name n, and there
are no pending interests for the same name in its PIT, it

3A physical entity (a host, in today’s parlance) can be both consumer and
producer of content.
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forwards the interest to the next hop(s), according to its FIB.
For each forwarded interest, a router stores some amount of
state information, including the name in the interest and the
interface on which it arrived. However, if an interest for n
arrives while there is already an entry for the same content
name in the PIT, the router collapses the present interest (and
any subsequent interests for n) storing only the interface on
which it was received. When content is returned, the router
forwards it out on all incoming-interest interfaces and flushes
the corresponding PIT entry. Since no additional information
is needed to deliver content, an interest does not carry any
source address.

A router’s cache size is determined by local resource
availability. Each router unilaterally determines what content
to cache and for how long. Upon receiving an interest, a router
first checks its cache to see if it can satisfy this interest locally.
Therefore, NDN lacks any notion of a destination address –
content can be served by any NDN entity. Producer-originated
content signatures allow consumers to authenticate received
content, regardless of the entity that serves this content. As
mentioned above, [11] consumers must verify content signa-
tures. However, signature verification is optional (and viewed
as unlikely) for routers, since doing so can be prohibitively
expensive at line speed.

III. CONTENT POISONING

This section describes content poisoning attack scenarios.
We begin with the terminology used in the rest of the paper.

• A fake content has one of the following features:
� An invalid signature, i.e., the signature verification

algorithm returns an error.
� A valid signature which is generated (signed) with the

wrong key, i.e., not the key of the purported producer.
� A signature field that is somehow mal-formed, e.g.,

formatted badly.
From here on, we use fake to refer to content objects
injected by the adversary.

• A content object is valid if it contains a verifiable signa-
ture produced with the correct public key. (The meaning
of correct public key is discussed in Section II above.)

• Adversary, Adv, is any NDN entity (or a collaborating
group thereof) capable of injecting content into the net-
work.

• Content poisoning is an attack whereby Adv injects fake
content into router caches.

In this paper, we consider a pro-active content poisoning attack
whereby Adv anticipates interests for content C with name n
and injects fake content with the same name into router caches.
Fake content can be injected into the network via malicious
routers or end-nodes. For example, consider an Adv (consisting
of malicious consumer Crm and a malicious producer Pm)
targeting a specific router Rv . Assuming that Crm and Pm are
connected to different interfaces of Rv , Crm sends an interest
for n. Once this interest is received by Rv and an entry is
added to the PIT, Pm sends a fake content to Rv which is
promptly cached. Consequently, Rv is pre-polluted with fake
content, ready for arrival of genuine interests. To maximize
longevity of the attack, we assume Pm sets the freshness field
of fake content to a maximum value.

IV. CONTENT RANKING

In principle, preventing content poisoning is not particu-
larly difficult. If every router verifies the signature of each
content object prior to serving and caching it [11], the problem
simply goes away. However, modern routers cannot perform
signature verification (even using the most efficient techniques)
at line speed. Also, verifying signatures requires a mechanism
to fetching, parsing and verifying public keys. However, since
trust is always application-dependent, involving (especially
backbone) routers in the specifics of trust management is
patently absurd.

Another way to mitigate content poisoning is by enforcing
the use of self-certifying content names. This is easy to
do since content can always be referred by its full name
(where the last component is the hash of the very same
content) and setting the MaxSuffixComponents field to
zero. However, this triggers the chicken-and-egg situation: how
does the consumer obtain the content hash in the first place?
One partial answer is that hashes can be distributed via so-
called catalogs. A catalog is a type of content that includes
names and corresponding hashes of other content, e.g., signed
content representing the main page of a (static) web-site
might include hashes of all sub-pages. Thus, a consumer first
obtains a catalog and uses it to construct self-certifying names
for subordinate content. Nonetheless, how a consumer can
request the catalog content, since it does not know its hash
in advance. Another problem with self-certifying names arises
in the context of dynamically-generated content, since its hash
cannot be created before the content itself.

Motivated by the above discussion, we explore lighter-
weight approaches for mitigating content-poisoning. In particu-
lar, we present a ranking algorithm for cached content objects.
Its objective is to probabilistically distinguish between valid
and fake content objects based on observed consumer behavior
and prioritize valid over fake content in response to consumer
interests. The proposed algorithm is fully compatible with the
current NDN design – it requires no architectural modifications
or coordination between routers.

Our approach is premised on the fact that consumers who
verify signatures and detect fake content subsequently issue a
new interest that excludes the previously received fake content.
Our hypothesis is that analyzing exclusion information could
allow routers to rank cached content such that valid content is
ranked higher than fake content. We achieve this by assigning
each cached content object a rank and have routers select
the highest-ranked object in response to an interest. The rank
is a numeric value between 0 and 1, where 1 is highest.
All cached content starts with the rank of 1, and, as time
elapsed, this value gradually decreases. This gives priority
to newer cached content over older. In addition, the rank of
a specific content depends on the number of times it was
excluded and when. We assign a lower rank to content with
many recent exclusions, over fewer old ones. The reasoning
is that few exclusions might always occur normally because
even valid content objects might not always satisfy a given
consumer interest. Also, a consumer might exclude certain
content since it represents a wrong (e.g., old/stale) version.
Finally, we harshly penalize content which has been excluded
by interests arriving on multiple interfaces, since that would
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indicate higher likelihood of something being wrong with the
content in question.

A. Number of Exclusions

This criterion is based on the number of times content
object C with name n has been excluded. Different versions of
C might have the same name and different data thus resulting
in different hashes. To distinguish among such identically-
named content, we denote each distinct version as n|H(C).
The exclusion rate is the ratio of the number of exclusions for
n|H(C), denoted as En|H(C) and the total number of requests
for C, Qn. It is denoted as Rn|H(C) = En|H(C)/Qn. We
consider the ratio as more meaningful than the sheer number
of exclusions. The reason is that consumers can exclude not
only fake, but also incorrect4 content objects. Our hypothesis
is that fake content objects tend to have much higher exclusion
rates.

Content objects ranking degradation pattern can be mod-
eled by Equation 1.

rn|H(C)(t) = e
�t
↵ (1)

where t is the age of n|H(C) (t 2 [0, tto]; tto is content
freshness) in the cache, and ↵ is a factor determining the
degradation speed of the content rate. Note that rn|H(C) 2
[rn|H(C)(tto), 1]. The larger the value of ↵, the faster the
content’s rank degrades.

We still need to define ↵. Let rto be the rank of cached
n|H(C) when it expires (freshness time elapsed), provided that
n|H(C) is never excluded during its lifetime. rto is a system
parameter that can be determined by the network administrator.
For a given freshness value and a desired value of rto, the
corresponding value of ↵ can be computed from Equation 1.
We denote this value as ↵to – the value of ↵ that makes the
rank of a non-excluded content object rto, when it expires.
We want to assign a higher rank to objects excluded less.
In other words, the more exclusions for n|H(C), the sharper
its degradation factor. If n|H(C) is never excluded, the rank
degradation pattern is the slowest from 1 to rto.

Based on the above discussion, ↵ is dependent on ↵to and
negatively affected by Rn|H(C), ↵ = ↵to �

�
Rn|H(C) ⇥ ↵to

�
.

Therefore, Equation 1 can be rewritten as follows:

rn|H(C)(t) = e

�t

↵to�
(

Rn|H(C)⇥↵to) (2)

B. Time Distribution of Exclusions

We now factor into the ranking algorithm the timing of
exclusions. The main idea is to give more weight to newer ex-
clusion. We define exclusion influence in|H(C) as the variable
reflecting the time that the router should wait before the effect
of the latest exclusion attempt for n|H(C) is assigned the
minimal weight when the rank is calculated. This is computed
as:

in|H(C)(te) = 1� e
�te
� (3)

where te is time elapsed since the last exclusion and � is a
factor determining the influence pattern; it reflects how fast

4An incorrect content object is an otherwise valid content object that does
not satisfy the consumer’s interest.

the effect of the latest exclusion is minimally weighted. Note
that in|H(C)(te) 2 [0, 1], where in|H(C)(te) = 1 means that
the latest exclusion has minimal effect on ranking.

The larger �, the more time should elapse before minimally
weighting the latest exclusion. This time is denoted as tmw.
Given a value of tmw, which can be set by the network
administrator, and setting in|H(C)(te) = 1, the corresponding
� can be computed from Equation 3. We denote it as �mw.

We can modify Equation 2 to include the exclusion influ-
ence factor as follows:

rn|H(C)(t) = e

�t

in|H(C)(te)⇥
[

↵to�
(

Rn|H(C)⇥↵to)] (4)

If in|H(C)(te) = 1, the rank of the n|H(C) is only affected
by exclusion rate Rn|H(C).

C. Excluding Interfaces Ratio

This criterion considers the number of interfaces on which
exclusions arrive. A higher number indicates higher dissatis-
faction with specific content. This can be used to penalize
ranking of that content. Consider the following:

• fn – total # of interfaces of a given router.
• fe 2 [0, fn] – # of interfaces on which the router received

interests excluding n|H(C).
• fs 2 [1, fn] – # of interfaces on which the router

previously served n|H(C). (Note that fs can not be zero,
since for ranking to exist, the corresponding content must
have been requested and served on at least one interface).

• en|H(C) – ratio of the number of interfaces on which the
router previously served n|H(C) but no exclusion arrived
to fs.

en|H(C) =

(
fs�fe

fs
if fs � fe

1 otherwise
(5)

en|H(C) 2 [0, 1] where 1 means that n|H(C) was not excluded
at all. However, note that fe might actually exceed fs. More
generally, it is possible for a router to receive an interest
excluding n|H(C) on an interface where this content has
not been served. This could occur for at least three benign
reasons: (1) routing changes, (2) consumer mobility, and (3)
cache replacement. The first two are self-explanatory, whereas
(3) refers to the case when content was previously requested,
served, cached, and then flushed from the cache, for any
reason, including normal aging.

Based on the previous definition we can rewrite equation 4
as follows:

rn|H(C)(t) = e

�t

en|H(C)⇥in|H(C)(te)⇥
[

↵to�
(

Rn|H(C)⇥↵to)] (6)

D. Analysis

Equation 6 reflects the rank of each content object cached
by any router. This ranking is based on three criteria: the
number of exclusions, the time distribution of the exclusion
attempts, and the excluding interfaces ratio. Next, we show
a comparison between ranking degradation patterns of five
cached content objects. Parameters of Equation 6 differ for
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TABLE I. CONTENT OBJECTS PARAMETERS

Parameter n|H(C1) n|H(C2) n|H(C3) n|H(C4) n|H(C5)

Content C1 C2 C3 C4 C5

Name n n n n n
Digest H(C1) H(C2) H(C3) H(C4) H(C5)

t [0, 400], one sample every 100 [msec]
freshness 400 400 400 400 400

rto 0.001 0.001 0.001 0.001 0.001
1 when t 2 [0, 50], and

Qn 1
2 when t 2 (50, 400]

increased by one every 10 [sec]

0 when t 2 [0, 50], and
En|H(C) 0

1 when t 2 (50, 400]
increased by one every 10 [sec]

tmw 400 400 400 400 400
1 when t 2 [0, 50], and increased [0, 10], increased by one every

te 1 by one every 1 [sec] when t > 50 1 [sec], and reset every 10 [sec]
fn 4 4 4 4 4

0 when t 2 [0, 50]
fe 0

1 when t 2 (50, 400]
1 2 3

(a) n|H(C1): never excluded, n|H(C2): excluded once when t = 50 seconds,
and n|H(C3): excluded every 10 seconds

(b) n|H(C3): excluded on 1 interface, n|H(C4): excluded on 2 interface, and
n|H(C5): excluded on 3 interface. All three objects are excluded every 10
seconds.

Fig. 1. Content object ranking comparison

each object; they are summarized in Table I. These content
objects are:

– n|H(C1): requested only once and never excluded
throughout its lifetime in the router’s cache.

– n|H(C2): requested only once, and at time t = 50

seconds, excluded once.
– n|H(C3), n|H(C4), and n|H(C5): requested once with-

out exclusion and then excluded every 10 seconds. The
difference between these three objects is their excluding
interfaces ratio.

Based on Equation 6 and the above five contents, we assume
that n|H(C1) should have higher ranking at all times, followed
by n|H(C2), then n|H(C3), n|H(C4), and n|H(C5).

Figure 1 confirms our assumptions by showing ranking
degradation patterns of five content objects. Figure 1(a) shows
that, when t <= 50 seconds, both n|H(C1) and n|H(C2)

have equal ranking values, which is higher than the other three
excluded content objects. The ranking of n|H(C2) decreases
after it is excluded at t = 50 seconds. Moreover, the repetitive
pattern of n|H(C3) is justified because this content object is

excluded every 10 seconds. Once an exclusion occurs, ranking
drops to close to 0, and starts increasing again according to
Equation 3. On the other hand, Figure 1(b) compares between
n|H(C3), n|H(C4), and n|H(C5) in a shorter time window
of 100 seconds. It demonstrates the effect of varying fe. For
instance, n|H(C5) is excluded on 3 different interfaces, while
n|H(C3) is excluded on only one. Thus, the former has a
lower ranking value.

Based on our definitions and the analysis of the content
ranking algorithm, we conclude that newer content objects
have higher ranking than old ones. This is an intentional design
feature to give newer content priority in distribution and chance
for timely dissemination. Moreover, in cases of none or few
malicious consumers, newer content objects are less likely to
be fake. This is due to the fact that a router always tries to
satisfy an interest from its cache. As long as a router’s cache
contains a valid version of content, consumers are served that
content and are unlikely to send another interest that excludes
valid content. Therefore, the only common case where a fake
content can be cached later than a valid one is when malicious
consumers downstream work against the ranking algorithm by
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TABLE II. NDNSIM TOPOLOGIES PARAMETERS

Parameter Tree-based Topology DFN Topology AT&T Topology

# of consumers 50 80 80 160 160
# of routers 6 30 30 132 132

# of producers 0 0 0 0 0
Cache replacement policy LRU LRU LRU LRU LRU

Simulation time [sec] 400 400 400 400 400
Pre-populated 80%, 90%, 99%, and 80%, 90%, 99%, and

fale content objects rate 99.9%
99%, and 99.9% 99.9% 99%, and 99.9% 99.9%

Pre-populated
content objects freshness

[sec]
400 400 400 400 400

0%, 2%, 4% 0%, 1%, 3%, 0%, 1%, 3%Malicious consumer rate
6%, and 10%

0%
5%, and 10%

0%
5%, and 10%

Interest interval
[millisecond] [100, 300] [100, 300] [100, 300] [100, 300] [100, 300]

Fig. 2. Tree-based topology - orange: consumer, blue: router, green: producer,
red: Adv

excluding valid content, or, explicitly request fake content.
More details on this case are in Section V. Our approach
remains effective even with powerful distributed attackers as
long as benign consumers are not outnumbered by malicious
ones.

V. NDNSIM EXPERIMENTS

ndnSIM [12] is a simplified implementation of NDN ar-
chitecture as a NS-3 [13] module for simulation purposes.
To verify correctness and practicality of the proposed content
ranking algorithm, we extended ndnSIM to incorporate our
method in router caches. The rest of this section describes
our simulation scenarios and experiments, followed by the
discussion of results. The following terminology is used:

• Benign consumers are not satisfied if an interest returns
a fake content object. After receiving a fake content, they
always exclude it in their subsequent interests for the
same name.5 Moreover, benign consumers stop sending
interest messages after receiving valid content.

• Malicious consumers behave in the opposite manner. If
an interest returns a valid content, they exclude it in all
subsequent interests for the same name. The objective of a
malicious consumer is to change statistics collected about
exclusions to favor fake content.

We use simulations to measure how many benign consumers
can retrieve a satisfactory (genuine) content and how fast

5In our implementation, the maximum number of hashes that can be
included in an interest is 100. When that number is reached, a new hash
added to the exclusion list replaces the oldest one.

they can do so when the router caches are poisoned. The
simulation starts with router caches pre-populated with various
fake versions of the target content. We vary the rate of fake
pre-populated content, as discussed below. Table II shows the
parameters for our experiments.

Fig. 3. Tree-based topology with various malicious consumer rates (b-NDN:
basic NDN with LRU cache replacement, m-NDN: modified NDN with routers
implementing our ranking algorithm, MCP: percentage of malicious nodes in
the consumer population)

A. Tree-based Topology

Tree-based topology is illustrated in Figure 2. It consists of
5 consumer-facing routers (each connected to 10 consumers)
connected to a single backbone router. The topology also
contains one producer and one adversary6, both connected to
the backbone router. Such a topology is commonly formed in
distributing content from a single producer in ICNs.

In our experiments, we first pre-populate the network
routers with 1000 different versions of the same content, only
one of them is valid, i.e. the pre-populated fake content objects
rate is 99.9%. In addition, different rates of the 50 consumers

6The adversary connected to the same backbone router with the producer
is to demonstrate how a strategically located adversary can easily distribute
fake content into caches. However, we skip the initial phase of the attack and
start with caches that are pre-populated with fake content.
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Consumer
Edge Router
Core Router

Fig. 4. DFN topology - each edge router above is connected to 5 NDN
consumers

are configured as malicious, 0%, 2%, 4%, 6%, and 10%.
Figure 3 shows the results of this experiment. We can notice
that in the cases where ranking is not applied the network was
not able to reach a state where all benign consumers receive
valid content. When this event occurs, we say that the network
is converged to a state in which all benign consumers have
stopped. We call this state a full convergence. The reason
why the network is not able to fully converge is because
consumers can only exclude up to certain number of fake
content objects, which is 100 in our configuration, in interest
messages. However, for all different malicious consumer rates
simulated, applying ranking always leads the network to full
convergence, even though it takes longer for higher malicious
consumers rates.

B. DFN Topology

After verifying the correct behavior of our ranking al-
gorithm using the tree-based topology, we consider a more
complex network topology. The DFN network, Deutsches
ForschungsNetz (German Research Network) [14], [15], is
a German network developed for research and education
purposes. It consists of several connected routers positioned
in different areas of the country, as shown in Figure 4. The
network consists of a total of 30 routers and 80 consumers.

We ran two sets of experiments using the DFN topology.

1) All routers in the network are pre-populated with different
rates of fake content objects, 80% (1 valid and 4 fake
content objects), 90% (1 valid 9 fake objects), 99% (1
valid 99 fake objects), and 99.9% (1 valid 999 fake
objects). Figure 5 shows the results of this experiment.
We can notice that the network reaches full convergence
in all the cases except when ranking is not applied for pre-
populated fake content objects rate of 99.9%. The reason
is similar to what explained before regarding the size of
exclusion filters.

2) In this experiment, we vary the malicious consumers
rate (0%, 1%, 3%, 5%, and 10%) for two rates of pre-

Fig. 5. DFN topology results with different rates of pre-populated fake content
objects (b-NDN: basic NDN with LRU cache replacement, m-NDN: modified
NDN with routers implementing our ranking algorithm, FCP: percentage of
pre-populated fake content objects)

Fig. 6. DFN topology results with different rates of malicious consumers and
99% pre-populated fake content objects (b-NDN: basic NDN with LRU cache
replacement, m-NDN: modified NDN with routers implementing our ranking
algorithm, MCP: percentage of malicious nodes in the consumer population)

populated fake content objects, 99% and 99.9%. Figures 6
and 7 show the obtained results respectively. In Figure 6,
we can notice that the ranking algorithm allows faster full
convergence, while in Figure 7, the network is not able to
fully converge without applying our ranking algorithm.

C. AT&T Topology

In this section, we evaluate the performance of our ranking
algorithm in a much bigger topology, the AT&T backbone
network [16] shown in Figure 8. This network consists of more
than 130 routers and a total of 160 consumers.

We evaluate the performance of our ranking algorithm
using the following two sets of experiments. The analysis of
the obtained results is similar to that in Section V-B.
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Fig. 7. DFN topology results with different rates of malicious consumers
and 99.9% pre-populated fake content objects (b-NDN: basic NDN with
LRU cache replacement, m-NDN: modified NDN with routers implementing
our ranking algorithm, MCP: percentage of malicious nodes in the consumer
population)

Fig. 8. AT&T topology - each edge router above is connected to 10 NDN
consumers

1) We pre-populate the network routers with different ratios
of valid to fake content objects, 80%, 90%, 99%, and
99.9%, and we run the experiments with and without
ranking. Figure 9 shows the obtained results.

2) All network routers are pre-populated with either 99%

or 99.9% fake content object rates. Figures 10 and 11
show the results of running this experiment for various
malicious consumer rates (0%, 1%, 3%, 5%, and 10%).

Results from simulations on the AT&T network topology
show that the proposed content ranking algorithm improves
the quality of service and the resilience of the network against
content-poisoning attacks, even if caches of all routers in a
relatively large topology are poisoned.

D. Performance Analysis

As mentioned before, we implemented a proof of con-
cept model for our proposed content ranking algorithm using
ndnSIM. To facilitate content lookup, cache can be imple-
mented as a hash table with content name, except the last name

Fig. 9. AT&T topology results with different rates of pre-populated fake
content objects (b-NDN: basic NDN with LRU cache replacement, m-
NDN: modified NDN with routers implementing our ranking algorithm, FCP:
percentage of pre-populated fake content objects)

Fig. 10. AT&T topology results with different rates of malicious consumers
and 99% pre-populated content objects (b-NDN: basic NDN with LRU cache
replacement, m-NDN: modified NDN with routers implementing our ranking
algorithm, MCP: percentage of malicious nodes in the consumer population)

component (the digest), serving as the key. Each key points
to a priority queue [17] where the first element contains the
content object with the highest rank. In the case when interest
does not include exclusion filter, content lookup requires O(1)

operations. However, when an exclusion filter is provided,
lookup takes up to O(k log n) operations (if implemented
using maximum heap [18]), for n is the number of content
objects in the priority queue and k is the number of excluded
content in the interest message. The reason is because the
rank of each excluded content objects needs to be recalculated
and the priority queue needs to be rearranged. In terms of
storage consumption, less than 50 extra bytes per cache entry
is required to store all the parameters needed to calculate the
rank.
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Fig. 11. AT&T topology results with different rates of malicious consumers
and 99.9% pre-populated content objects (b-NDN: basic NDN with LRU
cache replacement, m-NDN: modified NDN with routers implementing our
ranking algorithm, MCP: percentage of malicious nodes in the consumer
population)

VI. RELATED WORK

Although several research works in the literature addressed
DoS attacks in NDN, i.e. [16], [19], to the best of our
knowledge, this is the first study on content poisoning attacks.

Several countermeasures have been proposed in the liter-
ature as a solution for ARP poisoning. arpwatch [20] is a
network tool that observes ARP protocol messages and keeps
track of “potentially” valid MAC/IP mappings. Whenever an
anomaly is detected, arpwatch notifies the network admin-
istrator for further actions. In addition, Snort [21], an Intrusion
Detection System (IDS), follows similar procedure in detecting
ARP poisoning. However, administrator incapabilities and high
false positives might raise performance inefficiencies.

In [22], Nam et. al proposed a voting-based resolution for
mitigating ARP poisoning attack against the network gateway.
When a new node is turned on in a LAN environment, all other
nodes transmit to it their MAC/IP mapping of the gateway.
This allows the new node to detect any malicious mapping
advertisements for the gateway. In addition, Trabelsi et. al
proposed in [23] using a stateful cache and apply a fuzzy
logic approach to detect MAC/IP mappings anomalies. In their
model, network nodes share trust information about all other
nodes. Unlike the current design of ARP, when an ARP request
is sent, the sender waits to receive all replies and selects (based
on the trust information) the one that presumably is the most
trustworthy.

Another type of cache poisoning attacks is DNS spoofing.
It is the first step in mounting a MITM attack. The adversary
maliciously changes valid entries in DNS servers by exploit-
ing found vulnerabilities in their DNS daemon, as described
in [24]. As a results, legitimate users will be redirected to false
destinations.

DNSSEC [25] solves the DNS cache poisoning attack
(spoofing) by ensuring the authenticity of DNS responses with

a digital signature. These responses are trusted if and only
if the signature is successfully verified. The way how DNS
works [26] provides a built-in mechanism for lower layers
DNS servers public keys distribution. End users only need to
trust the root servers which provides the key of the next DNS
server in the chain.

Many research efforts built solutions based on DNSSEC
trying to improve its performance. In [27], Sun et. al pro-
posed deploying a new DNS client that queries multiple DNS
resolvers instead of trusting only one. Bassil et. al presents
in [28], S-DNS, a secure and backward compatible protocol
that provides lower computation and communication overhead,
compared to DNSSEC, by replacing the traditional public-
key infrastructure with an efficient identity-based encryption.
Perdisci et. al [29] proposed WSEC DNS that exploits the
definition of wildcard domain names and the fact that all DNS
responses must copy the information in the corresponding re-
quests. Using widecards increases the entropy of DNS requests
and renders guessing the response a hard task. WSEC DNS is
easily deployable because of its fully backward compatibility,
unlike DNSSEC.

VII. CONCLUSIONS

NDN is one of several candidates for the next-generation
Internet architecture. Despite many built-in security features, it
still susceptible to some new threats, such as content poisoning,
whereby the adversary injects fake content into router caches.
Such objects are later served to consumers in response to
interest packets.

In this paper, we proposed a content ranking algorithm for
detecting and mitigating content poisoning attacks in NDN. It
is based on consumer actions upon receiving fake content. All
NDN nodes collect statistics about excluded content objects
and assign to each cached item a numerical value – a rank.
Then, the highest ranked cached object is selected as a candi-
date for satisfying all subsequent consumers interests. Experi-
mental results support our assertion that the proposed ranking
algorithm detects and mitigates content poisoning attacks. To
the best of our knowledge, this is the first research effort that
addresses content poisoning in NDN. In the future, we would
like to assess the performance of our ranking algorithm in the
presence of an active adversaries continuously replying with
fake content objects for received interest messages.
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