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Abstract—Software Defined Networks (SDN) gained a lot of
attention both in industry and academia by providing flexibility
in network management. With decoupled control and data planes,
operators find it more convenient to configure and update their
networks. However, transitional states of SDN during updates
may be a combination of the old and new network configurations.
This may lead to incorrectness in forwarding behaviors and
security vulnerabilities – this is particularly important in certain
safety-critical applications.

In this paper, we argue for a novel abstraction for network
update consistency, inter-flow consistency, that accounts for rela-
tionships and constraints among different flows during network
updates. For two basic inter-flow consistency relationships, spatial
isolation and version isolation, we propose an update schedul-
ing algorithm based on dependency graphs, a data structure
revealing dependency among different update operations and
network elements. We also implement a prototype system with a
Mininet OpenFlow network for spatial isolation and undertake
a preliminary performance evaluation of our solution.

I. INTRODUCTION

Network infrastructure and flows evolve constantly. Net-
work operators need to reconfigure their networks frequently
to support dynamic access control, traffic engineering, security
updates, and infrastructure maintenance and updates among
other things. These updates need to be carefully planned
and scheduled to minimize disruptions. However, it is hard
to guarantee that such updates will not result in problems.
Even though there exist verification tools to check the state of
the network [2], [10], [16], transitional states caused during
network updates are still problematic.

Software-Defined Networking (SDN) [18] changed the way
we view networking, especially network management and
maintenance, mainly by decoupling the control plane from
the data plane. SDN provides lot of flexibility and powerful
capabilities to many network applications, e.g., virtual machine
migrations [3], traffic engineering [21], access control [20],
server load balancing [13]. SDN also increases the conve-
nience for network operators – both for setup, management

and later maintenance and updates. But even with SDN in
place, there is no guarantee regarding the correctness of traffic
flows and network state during the update process [15], [22]
even when the initial configuration and final configuration are
verifiably correct. This is because even though SDN provides
a centralized place, namely, the network controller to manage
and update the network, the controller itself has to distribute
the configuration to switches and routers that are distributed.
As such without additional mechanisms configuration changes
are not synchronous across the network infrastructure. Lack
of consistency during network update process can not only
adversely impact the stability and availability of the network
(by causing transient black holes and loops) but also its
security. For example, incorrect routing of packets during
network transition may cause packets to go around a security
middlebox such as a firewall or a network intrusion detection
system and create a security hole.

Early work addressing this problem [22] proposed two
correctness abstractions for network updates in SDNs: per-
packet and per-flow consistency. Per-packet consistency means
that each packet in the network will be processed either by the
old configuration or the new one but never a mixture of the
two. Per-flow consistency generalizes per-packet consistency
and guarantees that each flow in the network will be processed
by the old configuration or the new one, but not the mixture
of the two. This work also proposed mechanisms to imple-
ment these update abstractions based on the OpenFlow [18]
protocol. Since then a lot of research effort has gone into
network systems that can guarantee update correctness for
different application scenarios building on these two update
abstractions.

In this work we argue that per-packet and per-flow con-
sistency alone are not sufficient for meeting requirements im-
posed by security and reliability. Most networks have multiple
flows and there are often cases where we would like to preserve
some relationships between the flows during network updates
to maintain security and reliability. Per-packet and per-flow
consistency abstractions do not account for the relationship
between flows and are thus not sufficient to meet such security
and reliability requirements. For instance, in control networks
of power systems, it is desirable to separate certain critical
real-time control flows from engineering flows, i.e., ensure that
they never share a link, for reliability of real-time operations.
Similarly, it is desirable to isolate two flows from each other
if one is a back-up flow for the other. As another example, in
data centers it may be necessary to separate flows belonging
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to tenants from competing organizations to provide security
isolation required by SLAs.

Another common scenario is where a (distributed) appli-
cation imposes a relationship among network flows that needs
to be preserved during the update process. Stateful firewalls
are one example of application where their correct operation
can depend on relationship between flows. In such cases, pro-
cessing flow updates using per-packet or per-flow consistency
may lead to a state of the network that is a combination of old
configuration for some flows and new configuration for others
leading to unexpected results, i.e., forwarding loops, packet
loss and incorrect application execution [5].

In this paper, we argue for a novel update abstraction,
namely, inter-flow consistency that accounts for relationships
and constraints among different flows is needed to address
this problem. We present two special cases of inter-flow con-
sistency, namely spatial consistency and version consistency,
and design algorithms based on dependency graphs of [7] to
achieve inter-flow consistency during SDN updates. While we
primarily motivate the need for such an abstraction through
security and reliability requirements the abstraction and the
proposed mechanisms are generally applicable.

II. INTER-FLOW CONSISTENCY

Inter-flow consistency for updates is a guarantee that spec-
ified inter-flow are preserved during network updates1. While
there can be many kinds of inter-flow constraints that are
needed, we discuss two specific types in this work that are
motivated by security and reliability requirements: (a) spatial
isolation and (b) version isolation.

A. Spatial Isolation

Spatial isolation represents the requirement that certain
flows are not allowed to share a link or a switch before, during
and after an update for security and/or reliability reasons. For
instance, if a flow has certain criticality requirements (it carries
control messages in a power grid substation) then sharing
links on its path with another flow that carries, say debugging
or engineering traffic, may result in problems for the former
flow. For instance, if there is a surge in information being
sent over the engineering flow because of say some firmware
upgrades then we don’t want critical control messages suf-
fering delays and/or dropped packets. Other examples could
include situations where hackers could try to use information
about their own flows (e.g., round-trip times or packet loss
rates) to infer details about the critical flows. In our work, we
assume that the original flow configurations were consistent
with these requirements and the new, updates flows will also
satisfy them. The problem arises during the transitional states.
Hence, we need mechanisms to ensure that the spatial isolation
requirements are satisfied at all points during the update phase.

Consider the simple example in Figure 1. Figure 1(a)
shows a network with 4 switches and two flows, f1 and f2.
Lets assume that flows f1 and f2 are not allowed to share
a same link; in order words, f1 and f2 should demonstrate
spatial isolation properties. In this example, each the flow

1It is assumed that these constraints are satisfied by both the initial
configuration and the target configuration

(a) original state (b) target state

Figure 1. An example for spatial relationship of flows

consumes 5 units of bandwidth while the bandwidth of each
link is 10 units. Originally, f1 passes through the link, S1S4,
and f2 passes through S1S2 and S2S4. Now if we are to
update the network to a new state (shown in Figure 1(b))
so that f2 passes through S1S4 and f1 passes through links
S1S3 and S3S4. It is clear that the old as well as the new
configurations of this network can guarantee spatial isolation.
However, due to the asynchronous nature of flow updates we
might have a transitional state where f2 is updated before f1.
In that case, both the two flows pass through the same link,
S1S4, for some finite time violating the inter-flow consistency
requirements. Thus, update mechanism must guarantee that
the spatial relationships (if any) between any two flows is
preserved during the update process.

B. Version Isolation

Version isolation means that packets from different related
flows cannot be processed by two different versions of flow
rules during its passage through the network. This can happen
because the network updates for certain flows have not been
completed before they start routing packets. Imagine a scenario
with 2 flows, A and B; let the states of Flow A before and after
an update be RA1 and RA2, respectively. Let the states of Flow
B before and after an update as RB1 and RB2, respectively.
The network can have RA1RB1 or RA2RB2, but not RA1RB2

or RA2RB1 at any point in time. We refer to this as version
isolation.

An example is shown in Figure 2, which is a revised
version of a case in [5]. H1 and H2 represent two hosts each
of which sends out a flow (f1 and f2, respectively). Each flow
consumes 5 units of bandwidth while the bandwidth of each
link is 10 units. There are two ingress switches, I1 and I2,
with a controller, C. Both of the switches are connected to a
server running a packet-inspection application. At first, both of
the two hosts send some verification packets to the inspector
(shown in Figure 2(a)). After inspection, the application can
ask the controller to modify the rules in the 2 switches so that
the two hosts can communicate with each other through I1 and
I2 (shown in Figure 2(b)). However, the forwarding rules in
the two switches may be not updated at the same time. Imagine
that if the rules of f2 have been updated and f2 is forwarded to
H1; but the updates of the rules for f1 have not been finished
yet. Receiving packets from H2, H1 might think that the packet
inspection is completed and then transmits normal application
packets other than verification packets to H2. However, since
the rules of f1 have not been updated yet, these packets will be
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Figure 3. Dependency Graph from Figure 1

Table I. UPDATE OPERATIONS FOR FIGURE 1

ID Entity Update Operation

a S3 Add: forward f1 to S4

b S1 Modify: forward f1 to S3

c S1 Modify: forward f2 to S4

d S2 Delete rules of f2

associated with this first flow; during this time, all the other
flows that are version isolated with this flow are forwarded
to the controller. Third, pick another flow among the version
isolated set and update its rules in the network. Then the
controller transmits the cached packets of the recently updated
flow into the network. Repeat these steps until all the flows
with version isolation requirement are updated. During this
process, flows that did not have version isolation or other inter-
flow consistency requirements could be updated in parallel.
This approach is shown in Algorithm 1.

The intuition behind Algorithm 1 is that we update one flow
at first and forward all the other flows in the version isolation
set to the controller so that the flows with new rules will not
be mixed with those with old rules in the network. Actually,
at the time when some flows are being updated while others
are cached in the controller, new versions coexist with “old
version of rules” – they are just forwarding packets to the
controller. However, since the packets with this old version
of rules are away from the network data plane but at the
control plane, we achieve version isolation to some extent.
It is clear that Algorithm 1 costs overhead in the controller
and introduces delays and availability concerns. Therefore, this
approach is viable only in those cases where (a) the number
of flows with version isolation requirements are reasonably
small2 and that (b) the amount of traffic forwarded to the
controller is acceptable because the time of updates is relatively
short. Another alternate method for version isolation is simply

2Small enough so that the update process for all flows can be completed
without adverse impact on the flows.

dropping all the relevant traffic during update [6] rather than
to forward them to the controller. Again this can only work if
the update process takes a very short time and in cases where
flows can automatically recover.

Algorithm 1 Two-phase Update
Require: F : a set of flows for version isolation

1: f0 ← one of the flows
2: F ← F − f0
3: Forward all the traffic of F to the controller
4: Update the rules for f0
5: for each flow, f , in F do
6: Update the rules for f
7: Stop forwarding f to the controller
8: Controller injects cached traffic of f into the network
9: end for

As an example, we can use the updates in Figure 2 to
generate a dependency graph shown in Figure 4 with version
isolation. First, we need to calculate the update operations
shown in Table II by comparing the old network state and
the new one. Then we can generate the dependency graph in
Figure 4(a). The two arrows between p3 and p4 means that
the corresponding two flows are required to be updated with
version isolation. It is clear that we fail to find the topological
order of the operations in 4(a) because of the existence of a
loop. Based on Algorithm 1, we can first transmit the packets
of f2 to the controller and then update the rules of f1. After
that, we update the rules of f2 and then the controller transmits
the traffic of f2 back to I2. During this process, even though
f1 gets updated before f2, there is no f2 packet processed
by the old rules while f1 has been updated. The operations
e and f represent the action of sending f2 to controller and
transmitting it back to the network, respectively.

A revised dependency graph is shown in Figure 4(b). A
new operation, e, is added with many edges from e to the
other operations related to the two paths. It means that the
protocol should first forward f2 to the controller before the
rules are updated. This can prevent any packet loss due to
updates. The other new operations, f and g, are added. The
directions are from p3 and p4 to f , which means that only
after new rules are installed can we inject the packets of f2
back to our network. A valid order of the update operations is
e→ a→ b→ c→ d→ f → g.

Table II. UPDATE OPERATIONS FOR FIGURE 2

ID Entity Update Operation

a I2 Add: forward f1 to H2

b I1 Modify: forward f1 to I2

c I1 Add: forward f2 to H1

d I2 Modify: forward f2 to I1

e I2 Modify: forward f2 to C

f I2 Delete the rule of forwarding f2 to C

g C forward all the cached traffic of f2 to I1

3) Scheduling Algorithm: We revise the previous schedul-
ing algorithm [7] with considerations for inter-flow relation-
ships. Because the dependency graphs represent the depen-
dency relationships between update operations, the simple idea
behind the scheduling algorithm is that the operations cannot
be scheduled until they satisfy two conditions: 1) they have
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(a) original dependency graph

(b) revised dependency graph

Figure 4. Dependency Graph from Figure 2

no ancestor nodes for operation nodes, and 2) the necessary
resource are available. With the scheduling algorithm, we can
divide the updates schedule into different rounds. In each
rounds, we can schedule several update operations.

Another more fine-grained question is about the update
order of the operations in each round. We adopt the same
critical-path method as in [7]. In a classical DAG using
nodes to represent several jobs in a project, a node’s critical-
path length (CPL) is the maximal value among the distances
from this node to other nodes. In order to minimize the total
completion time, we tend to schedule the job with the largest
CPL first. In our dependency graph, we assign weights to the
nodes: the weight w of an operation node is 1 while weights
of resource, mutex and path nodes are 0. With this, we can
calculate the CPL for each node i [7] recursively:

CPLi = wi + max
j∈children(i)

CPLj (1)

After sorting the nodes with their CPL in decreasing
order, in each round of scheduling, we greedily schedule the
operation nodes based this order. The scheduling algorithm is
shown in Algorithm 2. At first, we generate and revise the
dependency graph based on the input old and new network
state (A network state can tell the path links and traffic load
in each link of flows in a network). Then we leverage the
dependency graph to divide the updates into several rounds;
in each round we schedule the available operations in CPL
decreasing order. Available operations are operations that have
no ancestor operation nodes and can gain enough resources
for updates. The correctness of Algorithm 2 is based on the
assumption in Subsection II-C that there is a correct scheduling
order of updates. In other words, there is no deadlock in
the dependency graph. Thus, in each round, we can always

schedule some operations and reduce the number of nodes in
the graph. The algorithm will not result in infinite loops.

Algorithm 2 ScheduleUpdates(F , N0, N1, C)
Require: F : the flows whose forwarding rules to be updated
Require: N0: the original network states of F
Require: N1: the new network states of F
Require: C: update constraints(spatial or version isolation)

1: G← GenerateGraph(F,N0, N1)
2: G← ReviseGraph(G,C)
3: Calculate CPL for every node in G
4: Sort the operation nodes in the decreasing order of CPL

and get a sorted order L
5: while G 6= ∅ do
6: for each operation node Oi ∈ L do
7: if Oi has no ancestor operation nodes and can get the

necessary resource for updates then
8: Schedule Oi

9: end if
10: end for
11: Delete scheduled operation nodes and corresponding

path nodes as well as their edges
12: Delete resource nodes and mutex nodes without edges
13: Update the available amount in resource nodes
14: Wait for a time threshold for all scheduled operations

to finish
15: end while

Algorithm 3 shows the algorithm of dependency graph
generation. First, we create resource nodes in the graph.
Second, by comparing the old and new paths of each flow,
we can calculate the necessary update operations. Then
edges are added between two nodes to represent the path-
resource relationship or operation-resource relationship. Func-
tion CreateEdges((s1, d1), (s2, d2), ..., (sn, dn)) means cre-
ating an edge from each element in si to each element in di,
respectively. A floodgate operation is the first update operation
which will forward the packets from the old path to the new
path.

Algorithm 3 GenerateGraph(F , N0, N1)
Require: F : the flows whose forwarding rules to be updated
Require: N0: the original network states of F
Require: N1: the new network states of F

1: G← ∅
2: for each link, l, in N0 and N1 do
3: Create a resource node, v, representing l and its remain-

ing capacity
4: end for
5: for each f in F do
6: p0 ← the old path of f in N0

7: Create edges from p0 to each related resource node
8: p1 ← the new path of f in N1

9: Create edges from each related resource node to p1
10: of ← the floodgate operation of p0 and p1
11: O0 ← the operations for removing p0
12: O1 ← the operations for creating p1
13: CreateEdges((of , p0), (p1, of ), (p0, O0), (O1, p1))
14: end for
15: return G

5



Since we would like to guarantee the inter-flow consistency
during updates, we need to add the representation of spatial
and version constraints into the dependency graph. For flows’
spatial isolation, it is clear that we should create mutex nodes
between two isolated paths which might occupy the same
resource. On the other hand, it is much more tricky to guar-
antee flows’ version isolation. We design a graph version of
Algorithm 1 in Algorithm 4. First, we add an operation node,
om, which forwards all the relevant flows to the controller.
Edges are created from om to other operations of the relevant
flows. After all the new forwarding rules are installed, we
delete the rules of om and then inject the cached traffic into
the network.

Algorithm 4 ReviseGraph(G, C)
Require: G: the original dependency graph
Require: C: update constraints(spatial or version isolation)

1: for each constraint c in C do
2: if c is spatial isolation then
3: for each common resource, r, shared by the flows

specified by c do
4: Create one mutex node, rm
5: Create edges between rm and responding path

nodes
6: end for
7: else if c is version isolation then
8: F ← the flows involved in c
9: f0 ← one flow in F

10: F ← F − f0
11: Create an operation node, om, representing forward-

ing F to the controller
12: Create edges from m to all the parent operation nodes

of the flows in F
13: for each f in F do
14: p1 ← the new path of f
15: Reverse the direction of the edge between p1 and

the floodgate operation of f
16: Create an operation node od, representing stopping

forwarding f to the controller
17: Create an operation node oi, representing the con-

troller injects the cached traffic of f into the
network

18: CreateEdges((p1, od), (f0, od), (od, oe))
19: end for
20: end if
21: end for
22: return G

IV. EVALUATION

A. Implementation Setup

We used Mininet [12] as our evaluation framework and
created a traditional 3-level tree topology. There is only 1
core switch and 5 aggregation switches are linked to it.
Each aggregation switch is linked to 5 ToR switches. In the
experiments, we change the number of hosts linked to each
ToR switches from 2 to 20. The bandwidth of each link is set
as 1 Gbps. For each setup of hosts, we run our experiment 10
times.

For the control plane, we implemented a prototype system

as an update scheduler between a shortest-path routing appli-
cation and the Ryu controller [1]. We use Ryu’s well-defined
APIs to construct our control program in a little more than
1000 lines of Python code and run it on a PC with Intel i5-
2400 3.1 GHz CPU and 16 G memory.

B. Flow and Constraint Generation

In our experiment, we define a sequence of packets with
the same sender IP as one flow and each experiment has two
phases. In the first phase, we generate a network state. A
network state consists of randomly generated host-to-host pairs
which have a flow between them. Each host in the network is
only involved in one pair. In such a host-to-host pair, one host
continuously sends out a sequence of UDP packets to the other.
Then the shortest-path routing application will calculate and
install the forwarding rules for each flow. At the same time,
a module in our system records the path information for each
flow. The flow rate is set as 1 Mbps.

Then we move on to the second phase where we generate
a new network state. Then we carry out a brute force search:
for a flow A and another flow B – if they are spatially isolated
both in the old and new states, but not during the transitions
(i.e., A’s path in the old state overlaps with B’s path in the new
state) then we assign a spatial isolation condition to A and B.

After we have the two network states and a list of spatial
isolation situations, we run our update scheduler to carry
out the necessary update operations (add, modify or remove
flow rules in Mininet) while still maintaining the isolation
requirements.

C. Experiment Results

Figure 5 shows the number of spatial isolation pairs (two
flows are not allowed to pass the same link) and the total
number of update operations as the number of hosts in the
network increases. Standard deviations are also shown. Since
we generated flows with host-to-host pairs, there is no surprise
that the number of spatial isolation conditions and the total
amount of update operations have a linear relationship with
the number of hosts. Figure 6 shows the total running time Tt

of our update algorithm, the time Tg for generating dependency
graph and the time Ts for scheduling updates round by round.
It is clear that Tt = Tg + Ts. All of the three time lengths
increase linearly as the number of hosts increases. The total
running time of our update algorithm is just 56 ms when there
are 500 hosts, about 61 pairs of flows with spatial isolation and
1134 update operations. We also notice that on average 33%
of the algorithm’s running time is spent on the generation of
dependency graphs while 67% is spent on the round by round
scheduling.

V. RELATED WORK AND BACKGROUND

SDN opens a new era of networking by decoupling the
control plane and data plane [18]. With the advent of SDN,
many works provide solutions for network verification. Net-
Plumber in [9] presents an efficient verification tool based
on Header Space Analysis (HSA) for incremental compliance
checking. Veriflow in [11] also provides fast network-wide
invariants checking based on a concept of equivalence class.
However,they focus on verification in the configured network
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system. While spatial and version isolation provide enough
flexibility to cover a wide-range of inter-flow constraints, their
coverage and limitations need to be further studied and other
kinds of inter-flow update consistency abstractions need to be
explored.
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