Exploring the Usability of CAPTCHAS on Smartphones: Comparisons and Recommendations

Gerardo Reynaga, Sonia Chiasson and
Paul C. van Oorschot
School of Computer Science
Carleton University
Ottawa, Canada

Introduction

- Mobile devices have become a primary means of accessing online resources
- Limited usability work has been carried out to evaluate captchas for mobile device usage
- Captchas are primarily evaluated on their security¹

Evaluated Captcha Schemes

 Character Recognition (CR), Image Recognition (IR), Moving Image Object Recognition (MIOR) reCaptcha

NuCaptcha

Picatcha

Evaluated Captcha Schemes

Gesture Emerging

Gesture reCaptcha

Asirra Slide

Emerging

User Study

Data Collection:

- Logs (performance)
- Questionnaires (perception & demographics)
- Observations
- Controlled environment
- 28 Participants
- Mixed experimental design
- Implementation: PHP, HTML5, CCS3 and JS
- Wizard of Oz gesture

User Study Results

 No inferential statistics, misleading given the WoZ and mixed design

- Outcomes
 - Success: NuCaptcha & Emergent at 98%; CR schemes > 90%
 - Most Errors: Asirra and Asirra Slides; Picatcha
 - Skips: few number of skips

User Study – Times

Scheme	Mean Time (SD) in Sec
reCaptcha	25.2 (17.50)
NuCaptcha	8.5 (2.92)
Asirra	29.2 (9.83)
Picatcha	12.3 (4.97)
Emerging	22.4 (6.46)
Gesture reCaptcha	55.3 (12.49)
Gesture Emerging	44.5 (12.65)
Asirra Slides	30.6 (12.98)

User Study- Participant Opinion

Most Negative 10 Most Positive

Accurate solving Accurate solving Inderstandability Meriorability Carleton University. Gerardo Reynaga Mput Mecahnism^{*}
Feb. 8, 2015. USEC 2015 Pleasant Solvability

User Study - Observations

Phone handling

Placing the phone on the table when typing;

holding when gesturing

From portrait to landscape

Challenges and schemes

Image quality

User Study - Observations

- Distraction from main task
 - Game-like schemes were considered as distracting
 - Picatcha's success message; Asirra "Adopt me"
- Gesture input
 - Unsure on how to gestures characters

Summary of Results

- Best outcome: NuCaptcha
- Best preferred: NuCaptcha
- Good overall outcomes: Emerging
- Most disliked: gesture schemes
- Virtual keyboard familiarity
- Participant preferred: CR schemes

Recommendations

- Design challenges
 - Design with one-task only focus
 - Use input mechanisms that are cross-platform

- Screen layout
 - Consider isolating the captcha
 - Minimize bandwidth usage

Future Work

Limitations

- Not a MTurk sample size, but we were able to observe and discuss
- Using WoZ impacted the performance and perception
- Emerging animated implementation was slow

Future Work

- A full gesture recognition implementation
- Explore alternative input methods: sensors and multi-finger gestures

Conclusion

- The aim of this work was
 - to explore whether alternative input mechanisms help improve the usability of captchas on smartphones
 - evaluate the usability of the schemes
- Gesture input in web forms requires robust and reliable implementation of recognizers
- The disconnect between users' preferences and their ability to correctly solve challenges
- The security is central to any scheme

Thank you

Questions?

Gerardo Reynaga

gerardor@scs.carleton.ca

Carleton University
Ottawa, Canada

CHORUS Lab

http://chorus.scs.carleton.ca/wp/

Carleton Computer Security Lab

https://www.ccsl.carleton.ca/about/