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Abstract

The widespread usage of smartphones gives rise to new
security and privacy concerns. Smartphones are becoming
a personal entrance to networks, and may store private in-
formation. Due to its small size, a smartphone could be
easily taken away and used by an attacker. Using a victim’s
smartphone, the attacker can launch an impersonation at-
tack, which threatens the security of current networks, espe-
cially online social networks. Therefore, it is necessary to
design a mechanism for smartphones to re-authenticate the
current user’s identity and alert the owner when necessary.
Such a mechanism can help to inhibit smartphone theft and
safeguard the information stored in smartphones. In this pa-
per, we propose a novel biometric-based system to achieve
continuous and unobservable re-authentication for smart-
phones. The system uses a classifier to learn the owner’s fin-
ger movement patterns and checks the current user’s finger
movement patterns against the owner’s. The system contin-
uously re-authenticates the current user without interrupt-
ing user-smartphone interactions. Experiments show that
our system is efficient on smartphones and achieves high
accuracy.

1 Introduction

The past few years have witnessed an exponential growth
of smartphones, in both technology and market shares. Ac-
cording to a research done by canalys [5], smartphones were
sold about 73 million more than personal computers (PCs)
in 2011. Compared with PCs, smartphones are more pri-
vately owned. People may share a desktop, but few are
willing to share their smartphones.

At the same time, smartphones are becoming an impor-
tant personal entrance to various networks, such as the In-
ternet or online social networks. Many apps and websites
now allow people to store their accounts, profiles, pass-
words, etc., in smartphones for automatic re-access. Be-
sides, people also use smartphones to keep contact with

friends and families, take pictures of special moments, and
arrange schedules. No one would like to disclose such in-
formation to an untrusted person. However, due to its small
size, a smartphone could be easily taken away by an at-
tacker. The attacker can acquire a good profit from reselling
stolen smartphones. It is reported by lookout.com that $2.5
billion worth of devices were lost or stolen in 2011 [19]. Be-
sides, having a victim’s private information, an attacker can
steal the victim’s identity and launch impersonation attacks
in networks. Such attacks substantially threaten the security
of the networks, especially online social networks. Imper-
sonation attacks also threaten most current trust and repu-
tation systems for networks. Therefore, protecting smart-
phones against unauthorized usage has significant mean-
ing to safeguarding users’ privacy and network security. A
smartphone can alert the owner and lock itself when unau-
thorized usage is detected, which will inhibit most smart-
phone thefts.

To prevent unauthorized usage of smartphones, a re-
authentication system is more suitable than an authenti-
cation system. An authentication system authenticates a
user for one time when he logs in, such as inputting a
password to unlock a smartphone. The purpose of a re-
authentication system is to continuously authenticate the
current user during the whole system execution. In the ab-
sence of re-authentication, it is easy for an attacker to ac-
cess a smartphone if the owner forgets to lock it and leaves
it in a public place. Even if the smartphone is locked, an
attacker can use operating system (OS) flaws to bypass the
lock screen, which is reported to exist in Android [17] and
iOS [16] systems. The continuous protection provided by
re-authentication is necessary for smartphones.

A straightforward re-authentication approach is to peri-
odically invoke an authentication system, such as asking the
user to enter a password. This approach interrupts user-
smartphone interactions and leads to bad user experiences.
For smartphones, it is preferable that the re-authentication
takes place in a way that users do not “observe” its exis-
tence.

Current short unlock passwords, such as 6-digit num-



bers, cannot protect smartphones against a powerful at-
tacker. However, long and complicated passwords are diffi-
cult to memorize. Hence, a re-authentication system should
rely on certain “password” that is easy to memorize but
difficult to forge. A good candidate for such passwords
is the owner’s biological data. Many works have studied
biometric-based authentication, such as fingerprint recog-
nition [8], face recognition [12], and iris recognition [27].
However, these methods are not suitable for smartphone
re-authentication because they either rely on special equip-
ments, which are not available for smartphones, or need the
users to stop interactions to assist the re-authentication. In
addition, continuous face recognition requires keeping the
camera on all the time, which dramatically reduces a smart-
phone’s battery life.

In this paper, we propose a re-authentication system for
smartphones using users’ finger movements. The system
first learns the owner’s finger movement patterns, keeps run-
ning in the background, continuously monitors the current
user’s finger movement, and compares the current user’s
movement patterns against the owner’s patterns. Our sys-
tem does not need user assistance in re-authentication and
users are not aware of its execution.

The main contributions of our work are as follows:

• We propose and study the unobservable smartphone
re-authentication problem. We design a novel system
architecture especially for smartphones to reduce the
computational overhead on smartphones.

• We propose to use the finger movement as a biomet-
ric characteristic to authenticate a user. When users
use smartphones, the smartphones sense the users’ fin-
ger movements and interpret the sensed data as dif-
ferent gestures. Since users have to use gestures
to interact with smartphones in most cases, our pro-
posed approach can enforce re-authentication to every
user. In addition, our approach can continuously re-
authenticate the current user without being noticed by
the user.

• We propose an efficient biometric-based re-
authentication system for smartphones using the
classification method. We design the biometric
features for the classification algorithm and discuss
their performance. We implemented our system on
a Motorola Droid smartphone to demonstrate its
efficiency. Extensive experiments were performed
to evaluate the effectiveness of the features and the
performance of our system.

The rest of this paper is organized as follows. We in-
troduce the background and related work in Section 2. The
attack model is introduced in Section 3. We discuss the de-
sign goals for a smartphone re-authentication system in Sec-

tion 4. We present our re-authentication system in Section
5. We discuss the feature design and selection in Section 6.
We evaluate our re-authentication system in Section 7, and
conclude our work in Section 8.

2 Background and Related Work

Compared with traditional authentications, biometric-
based authentications are easy to carry out, natural to use,
and invulnerable to forgery. Traditional approaches are
based on possessions of secret information, such as pass-
words. Biometric based approaches make use of distinct
personal features, such as fingerprint or iris.

A biometric-based re-authentication system involves an
enrollment phase and a re-authentication phase. A user
is enrolled by providing his biological data. The system
learns patterns from the provided data and stores the learned
patterns for future reference. During the re-authentication
phase, the system compares the observed biological data
against the stored data to re-authenticate a user.

Previous studies on biometric-based re-authentication
concentrated on either physiological or behavioral features
[29]. Physiological biometrics study static physical fea-
tures of humans. Currently, there are many different phys-
iological biometrics for re-authentication, such as finger-
print [8], face patterns [12], and iris [27]. However, physi-
ological biometric-based re-authentication approaches usu-
ally rely on specific devices, which are unavailable on most
smartphones. In addition, most approaches need human as-
sistance in the re-authentication. For example, most face
recognition systems need the users to stay still at a specific
angle to the camera during re-authentication. Hence, these
physiological biometric-based approaches cannot achieve
continuous unobservable re-authentication.

Behavioral biometrics assume that people have distinct
stable patterns on a certain behavior, such as keystrokes on
a keyboard. Behavioral biometric-based re-authentication
uses the behavior patterns to authenticate a user’s iden-
tity. For personal computers, most previous studies concen-
trated on two operations: keystrokes [3, 22, 23] and mouse
movements[18, 31]. Typing actions happen much less fre-
quently on smartphones than on personal computers, be-
cause people hardly use smartphones to do heavy text in-
put. Therefore, it is difficult to collect a sufficient number
of keystrokes on smartphones for re-authentication.

Although smartphones do not have mouse input devices,
previous studies [2, 24] on mouse movements help us to un-
derstand finger movements on smartphones. Hence, we give
more detailed review of prior works on mouse movements.



2.1 Mouse Movements

When a mouse moves, the hardware captures the move-
ment and sends the mouse events to the OS, including raw
movement coordinates, button up, and button down events.
The OS interprets these mouse events to a series of point
data, which form a mouse movement. In the approach pro-
posed by Ahmed and Traore, point data are aggregated as
point-and-click or drag-and-drop actions [1, 2]. A point-
and-click action contains a click event and a mouse move-
ment following the click. A drag-and-drop action is a mouse
movement with one button pressed down. The reason to
study the two actions is that they are both performed in-
tentionally by users. Ahmed and Traore characterized each
action using action type, moving distance, duration, and di-
rection [2]. They computed 39 dynamics related features
and used a neural network to classify new observed actions.

Recently, Zheng et al. [31] proposed to use only the
point-and-click action and three features: direction, angle
of curvature, and curvature distance, to authenticate a user.
The classifier they used is SVM. They aggregated the fea-
tures of 20 point-and-click actions as a feature vector. Their
work required 20 mouse movements, compared with 2000
mouse movements required in Ahmed and Traore’s work
[2]. This reduction decreases the data collection time and
hence increases the re-authentication frequency. In their
work, they collected 81218 point-and-click actions from 30
users in a controllable environment and one hour raw mouse
events from 1074 anonymous users from an online forum.
The average false rejection rate and the average false accep-
tance rate were both 1.3% in their tests.

In another approach, Pusara and Brodley utilized the
connections between each pair of points within a window
of a configurable size [26]. The features, such as angle, dis-
tance, and speed, were extracted from the points rather than
the actions. They used C5.0 decision tree as the classifier
in their system, which achieved an average false acceptance
rate of 0.43% and an average false rejection rate of 1.75%
in the experiments on an eleven-user data set. Gamboa and
Fred [13] aggregated the points between two clicks. Each
click is represented by 63 features. For each user, they pro-
posed a greedy approach to reduce the feature set to a best
fit subset.

2.2 Smartphone Features

One of the biggest differences between personal com-
puters and smartphones is that smartphones are equipped
with many sensors, such as multi-touch screen, accelerom-
eter, and gyroscope. Although different smartphones may
have different sensors, multi-touch screen, accelerometer,
and compass are provided by most smartphones.

Multi-touch screen is a basic equipment on a smartphone.

A multi-touch screen is able to respond to more than
one finger touch. The number of supported touch
points varies from device to device. Some basic
screens can only support two touch points while some
advanced ones are able to support up to ten touch
points. The multi-touch screen records the touch po-
sition, touch area, and touch pressure, packs them as a
single touch event, and sends it to the OS. A series of
touch events are connected together and recognized as
different gestures, such as sliding, tap, double tap, or
spread.

Accelerometer measures the phone’s acceleration on three
axis, x, y, and z [15]. This captures a smartphone po-
sition in a three-dimensional space.

Orientation indicates whether a smartphone is held in por-
trait mode or landscape mode.

Compass measures the position of magnetic north in rela-
tion to the X, Y, and Z axies of the phone.

Various sensors in smartphones provide a lot of biologi-
cal data of a user, which can be used in biometric-based
authentication. Some previous works have studied using
smartphone sensors for security purpose. Some works used
accelerometer to sense a person’s shake motion data to se-
curely pair two devices [6, 21]. Mäntyjärvi et al. first con-
sidered using sensors to record users’ behavioral patterns
and to continuously re-authenticate a user [20]. They sug-
gested to use accelerometer and orientation sensors to mon-
itor a user’s walking patterns. Their approach can success-
fully recognize a user at rates between 60% and 85%. Oku-
mura et al. proposed to authenticate a user using the ac-
celerometer data sensed when the user is swinging his arm
[25]. Instead of using the false acceptance rate or the false
rejection rate, they claimed their system’s equal error rate –
the error rate when the false acceptance rate is equal to the
false rejection rate – was able to achieve as low as 5%. Re-
cently, Conti et al. proposed to re-authenticate a user using
the arm movement patterns, sensed by the accelerometer
and orientation sensors, while the user is making a phone
call [9]. They achieved a false acceptance rate of 4.44%
and a false rejection rate of 9.33% in their tests.

Recently, Biometric Signature ID company has proposed
to use gesture based signature to re-authenticate a user in the
log-in phase [4]. This approach records a user’s signature
during the enrollment phase and compares an input signa-
ture against the recorded one during re-authentication. Luca
et al. [11] proposed to use gesture information, such as
touching area or duration, as an additional re-authentication
approach on top of the current password pattern approach.
The two methods are both one time re-authentication and
will interrupt user-smartphone interactions if they want to
achieve continuous re-authentication. Different from these



works, our system aims to provide a continuous unobserv-
able re-authentication.

Existing continuous re-authentication approaches have
paid extensive attention to the accelerometer and orienta-
tion sensors and used behaviors that may not happen dur-
ing an attack in our scenario. For example, an impostor
may not swing arms when he uses a victim’s smartphone.
Therefore, we need an approach that can continuously re-
authenticate a user as long as he is using the smartphone.
We propose to use and monitor the gesture on smartphone
touch screen, which is the most important and necessary in-
terface between users and the smartphone OS.

2.3 Smartphone Gesture Patterns

Here we first give several observations on smartphone
gestures, which differentiate the finger movement on smart-
phones from the mouse movement on computers.

Usage Intermittence: people may not always use smart-
phones for a long time. Typical usages are to wake up a
smartphone, click an email app, check if there is any new
email, and then turn off the screen. The collected gestures
are thus not temporarily continuous.

Spacial Disconnection: In the study on mouse move-
ment patterns, each movement can be captured by hard-
wares and used to formulate patterns, such as the point-and-
click patterns. On smartphones, not every finger movement
can be captured by a touch screen. For example, a user lifts
up his finger, moves in the air, and clicks a link on a web-
page. In these cases, the screen cannot capture the finger
movement in the air, which corresponds to the point action
in mouse movements.

Orientation Dependent: Users may use smartphones
in either portrait or landscape orientations. Users’ gestures
have different patterns in different orientations. For exam-
ple, a sliding up distance becomes shorter in the landscape
mode.

3 Attack Model

We consider an attacker who has physical access to the
smartphone and wants to use the resources in it, such as ap-
plications or music. For example, an attacker may steal a
victim’s smartphone and enjoy the music in it without pay-
ing any money. The attacker may also steal the network
account information and the personal information stored
in the smartphone. For example, the attacker can post a
fake message in a social network using the victim’s ac-
count. The purpose of our work is to design a continuous re-
authentication system running in the background. The sys-
tem keeps authenticating the current user in an unobservable
way, i.e., it does not interrupt the user’s interactions with

the smartphone. In this paper, we only consider the authen-
tication of a user against the smartphone owner, because a
smartphone is usually privately owned and not shared by
multiple users. If the user is found to be a stranger, the
re-authentication system alerts the OS, which performs cor-
responding actions.

4 Design Goals

We summarize the goals that a smartphone re-
authentication system should achieve in the following.

• Continuity: A smartphone re-authentication system
should keep authenticating the current user as long as
the smartphone is being used.

• Unobservability: A smartphone re-authentication
system should neither interrupt user-smartphone in-
teractions nor need human assistance during re-
authentication.

• Light-weight: A smartphone re-authentication sys-
tem should not need intensive computations on smart-
phones.

5 Approach

We are ready to present our smartphone re-
authentication system, which achieves the design goals
discussed in the above section.

Our idea stems from the observation that users’ finger
movements on smartphone screens are different from per-
son to person when they use smartphones. For example,
some people like to use the index finger to slide up the con-
tent displayed on the screen while some people prefer to use
the thumb. Following customs in smartphone development,
we call a continuous finger movement on the screen a ges-
ture. We assume that a user’s gestures contain his distinct
behavioral characteristics.

Our work uses such characteristics to re-authenticate
users. We illustrate our system architecture in Figure 1.
Considering the limited computational and storage re-
sources in a smartphone, our system is divided into two
modules, the re-authentication module and the training
module. The re-authentication module is deployed in a
smartphone and the training module is executed on a PC.
To provide a better security and performance guarantee, we
suggest to implement the re-authentication module as part
of the smartphone OS services in practice.

The re-authentication module keeps running in the back-
ground of smartphones. It monitors a user’s raw touch event
data and sends it to the preprocessing component, which
assembles every single raw data into different gestures and
then sends them to the feature extraction component. The
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Figure 1. System architecture

latter component extracts features from the gesture data,
forms a feature vector, and feeds it into the predictor compo-
nent. Finally, the predictor component makes a prediction.
If the feature vector is predicted to be from the smartphone
owner, this re-authentication is passed. Otherwise, an alert
message will be sent to the OS. Different OSs may take dif-
ferent actions in response to the alert. One possible action
is to lock the system and ask the user to input an administra-
tor password. Another possible action is to send a message,
with the current GPS information in it, to the owner’s e-mail
box.

The predictor component consists of a classifier and mul-
tiple classification modules, as shown in Figure2. A classi-
fier is a classification algorithm that uses an object’s feature
vector to identify which class the object belongs to. The
classification algorithm used in our work is the support vec-
tor machine (SVM) algorithm. Each classification module
is in charge of a main gesture type or a combination of a
main gesture type and an auxiliary type. A classification
module is a file containing parameters for the classifica-
tion algorithm and determines the classifier’s functionality.
The basic classification algorithm is embedded in the clas-
sifier. Using different classification modules, the classifier
can make predictions on feature vectors of different gesture
types. When a feature vector is fed in, the classifier chooses
a corresponding classification module and makes a predic-
tion.

classifierfeature 
vector prediction

Module 1 Module 2 Module 3 Module n

Figure 2. Predictor component

The training module is executed on the owner’s PC, be-
cause it requires significant computations. When a smart-
phone owner first enrolls in the system, the system collects

the owner’s gesture features by using the touch monitoring,
preprocessing, and feature extraction components of the re-
authentication module. Our system deploys a trusted data
server to collect feature data from smartphone owners and
downloads them to the training modules when necessary.
To protect an owner’s privacy, the data collection is done
anonymously. This can be achieved by using anonymous
group messaging [10, 30]. A fixed number of a user’s fea-
ture data and a time stamp form a ready-to-submit feature
message. Every user in our system is a group member and
the server is the data collector in the anonymous group mes-
saging system. The users collaboratively shuffle their mes-
sages before the messages are handed in to the server. Even-
tually, the server does not know the connection between a
message and its owner. In this way, a user’s training module
can use other users’ feature data but has no way to know the
user identities. We note that a user only wants to download
other users’ feature data. Therefore, a user compares every
downloaded feature message against his own submissions
and drops the one that is the same with one of his submis-
sions. The comparison can be based on the hash value of
the messages to reduce the time and storage overhead.

The training module uses the owner’s features and other
people’s features in the training algorithm to obtain classi-
fication modules. After training, the classification modules
are downloaded onto the smartphone. The training mod-
ule anonymously uploads the owner’s data to the trusted
server and obtains anonymous features from it. We note
that this trusted data server does not participate in the re-
authentication and is only needed when an owner wants to
re-train his classification modules, which is done offline and
on-demand. Therefore, our system does not pose a high
requirement on the communication delay between smart-
phones and the server.

An owner’s usage pattern usually stays stable. But some-
times, the owner may change his usage pattern over weeks
or months, which may cause more false alarms. When this
happens, the classification modules need to be re-trained.
To keep the modules up to date, our system also allows
an on-demand re-training. When the owner requests a re-
training, the re-authentication module captures the owner’s
gestures, calculates and uploads the owner’s feature vectors
to the training module. The training module then downloads
anonymous feature messages from the server, filters out his
own submissions, and runs the classifier training algorithm
again to obtain new classification modules.

We note that the access to the system enrollment and
re-training process should be restricted to the smartphone
owner only. This can be achieved, for example, by using
traditional password based protection.



6 Characterizing Gestures

Our system monitors five types of gestures: sliding up,
sliding down, sliding left, sliding right, and tap, as shown
in Figure 3. Usually, slidings are used to move contents

sliding 
right

sliding 
left

sliding 
down

sliding 
up

tap

Figure 3. Five essential gestures

displayed on the screen and tap is used to click a link or a
button within the contents. Although there are some other
gestures, such as double tap, spread, and pinch, the five ges-
ture types are the most often used types when users interact
with smartphones. We collected 75 users’ gestures when
they used smartphones. We show the proportions of differ-
ent gesture types in a pie chart in Figure 4. It shows that the
above five types of gestures take a dominant part of all the
gestures. In other words, most users inevitably used at least
one of the above gesture types when they used smartphones.
As shown in Figure 4, slidings and taps occupy 88.8% of all

sliding up sliding down sliding lefts sliding right tap others pinch double tap others spread
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Figure 4. Pie chart for collected gestures

the gestures. We remark that we do not consider virtual key-
board strokes here, because they are not suitable for smart-
phone re-authentications. Keystroke based authentications
usually need a number of continuous keystrokes, but most
users do not continuously input many texts on smartphones.
In addition, an attacker can use a victim’s smartphone with-
out many continuous keystrokes.

Users can hold smartphones in either portrait mode or
landscape mode. As pointed out in Section 2.3, the orien-
tation mode affects a user’s gesture patterns. Hence, our
system has two classification modules for every gesture to
deal with each orientation mode.

6.1 Data Collection

The open-source Android system is selected as our im-
plementation platform. Specifically, all of our experiments

and data collections were carried out on Android 2.2.2. The
first thing we need is a program that can monitor a user’s
finger movements in the background. However, for secu-
rity reasons, Android requires that only the topmost apps
can obtain touch events, dispatched from the Android sys-
tem management service. In other words, we cannot enjoy
the convenience that Android API provides to developers
and have to work around this problem. We found that An-
droid relies on Linux kernel for core system services, in-
cluding the maintenance of hardware drivers [14]. When
some touch event happens, a screen reads in raw data and
sends it to the Linux kernel. The kernel then packages the
raw data and sends it to the upper layer Android library.
Since we cannot get input data from Android API, our idea
is to read input data directly from lower layer Linux kernel.

Linux kernel uses device files to manage devices, lo-
cated under the directory /dev/. Same as other devices,
a multi-touch screen also has a corresponding device file,
say /dev/event3. When the multi-touch screen reads
inputs, the data are put in the device file by the kernel. The
data orgnization follows the Linux multi-touch event proto-
col [28]. In the protocol, touch details, such as position,
touch area, pressure, etc., are sent sequentially as Linux
ABS event packets [28]. Each packet contains an ABS
event indicating a specific touch data. Packets are separated
by a SYN_MT_REPORT event (type 0002). When all touch
packets in a multi-touch action arrive, a SYN_REPORT
event (type 0000) is generated. A typical multi-touch ABS
packet is as follows:

0003 0030 00000005
0003 0032 00000018
0003 0035 000002b6
0003 0036 00000296
0000 0002 00000000
0003 0030 00000003
0003 0032 00000012
0003 0035 0000024d
0003 0036 000001e4
0000 0002 00000000
0000 0000 00000000

The first byte indicates the event type: 0003 is an ABS
event and 0000 is an SYN event. The second byte indicates
the data type: 0030 is ABS_MT_TOUCH_MAJOR major
axis of touch ellipse; 0032 is ABS_MT_WIDTH_MAJOR
major axis of approaching ellipse; 0035 and 0036 are
ABS_MT_POSITION_X and ABS_MT_POSITION_Y,
respectively, giving the central position of an el-
lipse. These four basic data types are supported by
all Android smartphones. Other data types include
ABS_MT_TOUCH_MINOR, ABS_MT_WIDTH_MINOR,
ABS_MT_ORIENTATION, ABS_MT_TOOL_TYPE,
ABS_MT_BLOB_ID, and ABS_MT_TRACKING_ID.



The multi-touch protocol recognizes a finger touch area
as an ellipse and describes it using its major and minor
axises. Some low-end devices, such as the Motorola Droid
smartphone we used, recognize a touch area as a circle and
omit the minor axis value. TOUCH type data describes the
area that a finger directly contacts the screen and WIDTH
type data describes the shape of a finger itself. The ration
of ABS_MT_TOUCH_MAJOR/ABS_MT_WIDTH_MAJOR
gives the touch pressure. The last two bytes in each line
represent the data value. The above packet contains two
finger data details, separated by 0000 0002 00000000.

Our monitoring program needs the root privilege to hack
into the lower layer of an Android system. Such a re-
authentication system is usually integrated into the OS and
can be granted the root privilege by the OS.

We carried out our data collection and all the experi-
ments on two Motorola Droid phones, with 550MHz A8
processor, 256MB memory, 16GB sdcard, and Android
2.2.2 OS. In order to collect gesture data, 75 users were
invited to take away our smartphones for days and use them
freely. We did not specify any requirement on the usage
and let the users use the smartphone in any way they feel
comfortable. The users can browse web pages, including
news, online forums, social network websites, etc., or use
the installed apps, such as twitter, facebook, google reader,
etc.. Users were not required to continuously use the smart-
phone. They could lock the smartphone and resume using
it later. In summary, we want the participants to use smart-
phones in the same way that they use their personal smart-
phones in their daily life.

6.2 Metric Design

Good features are critical to a supervised machine learn-
ing approach, which is used in our system. In this section,
we design the metrics to characterize the five types of ges-
tures. In Section 6.3, we test whether a metric is good and
drop the bad ones. A feature is the average metric value
over a block of gesture data.

6.2.1 Metrics of Sliding

First, we inspect what happens during a sliding gesture. Fig-
ure 5 shows the sensed data of a sliding gesture, a sliding up,
recorded by our touch monitoring component. We note that
the coordinate on the smartphone platform puts the origin at
the top left corner of a screen. Each circle represents a finger
touch, because Motorola Droid phone views a finger touch
as a circle. The size of a circle shows the size of the touch
area and the brightness of a circle shows the strength of the
touch pressure. The movement starts at point F and ends at
point C. The time between every pair of circles is the same.
Apparently, the finger moves slowly at first, then faster, be-
cause the circles become sparser as the finger moves.
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Figure 5. A sliding up gesture

Our first interesting observation – which is different from
our intuition – is that the maximum touch area may not hap-
pen at the first touch and the minimum pressure may not
happen at the last touch. As can be seen from the figure, the
touch point P has the largest touch area and point Q has the
smallest touch pressure, both of which are neither the first
touch nor the last touch. Another observation is that strong
pressures happen at the beginning of a sliding. Despite the
first 5 points, the variations of touch pressures are not as big
as that of touch areas.

We propose the following metrics for a sliding gesture:

• First touch position: the coordinates, x and y, of the
starting point in a sliding.

• First touch pressure: the pressure of the first touch.

• First touch area: the touch area of the first touch.

• First moving direction: the moving direction of a
touch point is the angle between the horizontal line and
the line crossing the point and its succeeding point.
The angle α in Figure 5 is the moving direction of
point A. First moving direction is the moving direc-
tion of the starting point.

• Moving distance: the total distance of the sliding ges-
ture. Particularly, it is the summation of the distances
between every two continuous touch points.

• Duration: the time duration of the whole sliding ges-
ture.

• Average moving direction: the average value of all
the point’s moving directions. We note that the last
point is not counted, because it does not have a moving
direction.

• Average moving curvature: given any three tempo-
rally continuous touch points, such as A, B, and C in
Figure 5, the corresponding moving curvature is angle
∠ABC. The average value of the moving curvatures
in the sliding gesture is selected as a metric.



• Average curvature distance: given any three consec-
utive points, such asA,B, andC in Figure 5, the corre-
sponding curvature distance is the distance from point
B to line AC. We take the average of all the curvature
distances as a metric.

• Average Pressure: the average of all the touch pres-
sures in the sliding gesture.

• Average touch area: average of all the touch areas.

• Max-area portion: we index all the points according
to the time order, starting from 1. The max-area pro-
portion of the sliding gesture is the index of the max
area touch point divided by the total number of the
points in the sliding. This metric reflects which por-
tion of the sliding contains the maximum touch point.

• Min-pressure portion: Similar to max-area portion,
the min-pressure portion is the index of the minimum
pressure touch point divided by the total number of the
points.

The final feature vector is calculated over a block of sliding
gestures. The block size is denoted by ns. Each feature
value in the feature vector corresponds to an average metric
value over the block of sliding gestures.

6.2.2 Metrics of Tap

Tap is a simple gesture and does not provide much infor-
mation about a user’s finger movement patterns. In contrast
to our intuition, many tap gestures contain more than one
touch points. It is due to the screen’s high sample frequency
and the slight tremble of a user’s fingertip when he is touch-
ing above the screen. The metrics for a given tap gesture
are as follows:

• Average touch area: the average of all the touch areas.

• Duration: time duration of the tap gesture.

• Average pressure: the average of all the touch pres-
sures.

Similar to the calculation of a sliding feature vector, a tap
feature vector is also the average metric values over a block
of tap gestures. The block size is denoted by nt.

6.3 Metric Selection

According to our observations about users’ behaviors of
using smartphones, we proposed different metrics in Sec-
tion 6.2, trying to characterize a user’s gestures. Selecting
good metrics is essential for a supervised machine learning
method, such as SVM used in this work. In this section, we
test the performance of each metric and drop the bad met-
rics. If a metric can be used to easily distinguish two users,
we say the metric is a good metric. We view a metric value

calculated from a person’s gesture as a data sampled from
an underlying distribution of the metric. For a metric to dis-
tinguish two different persons, it is necessary to require the
two underlying distributions to be different. Therefore, for
a metric, we construct a metric data set for each invited user
in the data collection by calculating the metric value from
each of his sliding gestures. Then, we tested whether two
metric data sets are from the same distribution. If most pairs
of the data sets are from the same distribution, the metric is
bad in distinguishing two persons and we need to drop it.

We use two-sample Kolmogorov-Smirnov test (K-S test)
to test if two metric data sets are significantly different.
Two-sample K-S test is a nonparametric statistical hypothe-
sis testing based on maximum distance between the empir-
ical cumulative distribution functions of the two data sets.
The two hypotheses of K-S test are:

H0 : the two data sets are from the same distribution;

H1 : the two data sets are from different distributions.

A K-S test reports a p-value, i.e. the probability that obtain-
ing the maximum distance is at least as large as the observed
one whenH0 is assumed to be true. If this p-value is smaller
than a significant level α, usually set to 0.05, we will reject
H0 hypothesis because events with small probabilities hap-
pen rarely. For each metric, we calculated the p-value for
each pair of the metric data sets and drop the metric if most
of its p-values are smaller than α.

6.3.1 Sliding Gesture

Figure 6 shows the testing results for the metrics of the
four sliding gestures in both portrait and landscape modes.
Due to space limitation, we abbreviate some metric names
in the figures. firstPress is “first touch pressure”, firstArea
“first touch area”, firstDirect “first moving direction”, dis-
tance “moving distance”, avgCurv “average moving curva-
ture”, avrgCurvDist “average curvature distance”, avrgDi-
rect “average moving direction”, avrgPress “average pres-
sure”, pressMin “min-pressure portion”, avrgArea “average
touch area”, and areaMax “max-area portion”. For each
metric, the resulting p-values are drawn in a box plot. The
bottom and the top of the box denote the lower quartile Q1
and the upper quartile Q2, defined as the 25th and the 75th
percentiles of the p-values. The middle bar denotes the me-
dian of the p-values. The lowest and the highest bars out-
side the box denote the lower and the upper outer fences,
defined as 4Q1 − 3Q2 and 4Q2 − 3Q1, respectively. The
results from portrait orientation are represented by yellow
boxes and those from landscape orientation are represented
by green boxes. The y-axes in Figure 6 are drawn in loga-
rithmic scale. The red dashed line in each subfigure repre-
sents the significance level α. Hence, the better a metric is,
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(b) Sliding down gestures
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(c) Sliding left gestures
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(d) Sliding right gestures

Figure 6. K-S test on sliding metrics

the more portion of its box plot is below the red line. It de-
notes that more pairs are significantly different. We initially
thought touch pressures should be a good metric to distin-
guish different people. However, from Figure 6, we can see
that none of the three pressure related metrics, first touch
pressure, average pressure, and min pressure portion, is a
good metric because at least half of their p-values are above
the red line in all of the four subfigures. This means that the
pressure data is bad in distinguishing two different persons.
Besides, Figure 6 also shows that average curvature distance
is a bad metric. The remaining metrics have most of their p-
values below the red line, indicating that most data sets are
significantly different to one another in the statistical sense.
Therefore, we finally select first touch position, first touch
area, first moving direction, moving distance, duration, av-
erage moving direction, average moving curvature, average
touch area, and max-area portion as the metrics for sliding

features.
Next, we tested the correlation between each pair of met-

rics. A strong correlation between a pair of metrics indi-
cates that they are similar in describing a person’s gesture
pattern. In other words, a weak correlation implies that the
selected metrics reflect the different characters of the de-
sired gestures. For each user’s gesture data set in one ori-
entation, we calculated Pearson’s correlation coefficient be-
tween each two metrics. Then, for each two metrics, we
took the average of all resulting correlation coefficients be-
tween the two metrics. The average is taken over different
users and different orientations. Figure 7 shows the result-
ing average coefficients. Each subfigure can be viewed as a
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Figure 7. Correlations between each pair of
metrics of sliding gestures

10 by 10 matrix and shows two sliding types using an upper
triangle and a lower triangle, respectively. A pie chart in a
triangle denotes the average correlation coefficient between
the two metrics. The names of the metrics are listed on the
top and the left sides. For a pie chart, blue represents a posi-
tive correlation and red represents a negative correlation. A
larger shaded area in a pie chart indicates a stronger corre-
lation. From the figure, we can see that most correlations
are weak correlations and there are more positive correla-
tions than negative correlations. We note that the correla-
tion between the average touch area and the first touch area
is remarkably positive in sliding up and sliding right. This
is because people’s first touch usually affects the remain-
ing touches in a sliding gesture. If a person touches hard at
first, it is quite possible that he will continue touching hard
the rest of the sliding. However, we are not going to delete
any of the two metrics because the correlation is not strong
enough in sliding down and sliding left.

6.3.2 Tap Gesture

Tap gesture is a simple gesture. Hence, we do not design
many metrics for it. Figure 8(a) shows the K-S test results
on each tap metric. It is obvious that the average touch area
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Figure 8. K-S test on tap metrics and the cor-
relations between the metrics

metric and the average touch pressure metric are not good
in distinguishing users, because their medians are above the
significance level. The median of p-values of the duration
metric is just a little below the significance level. In sum-
mary, the tap metrics are not as good as the sliding metrics.
The reason is that a tap gesture is usually so quick and sim-
ple that it provides few distinct features. The average cor-
relation coefficients between every two metrics are shown
in Figure 8(b). We can see that the correlations between
each pair of metrics are not strong, i.e. every coefficient
is smaller than 0.5. Therefore, using tap gesture as a sin-
gle gesture to re-authenticate a user is not reliable and may
cause high error rates. Therefore, we propose to use tap as
an auxiliary gesture. If the desired number of taps are cap-
tured, our system combines the tap feature vector together
with a sliding feature vector to enhance the authentication
accuracy.

6.4 Designing Modules

As illustrated in Figure 2, the predictor component con-
tains several classification modules, each of which can inde-
pendently re-authenticate a user. In Table 1, we list the ges-
ture or gestures used in each module. In total, we have 16
classification modules in the predictor component – 8 mod-
ules for portrait mode and 8 modules for landscape mode.
In each orientation mode, we use 4 modules to classify 4
sliding types. Another 4 modules are used to classify the
combination of a sliding gesture and a tap gesture. Each
module sends an alert to the OS if it finds the feature vector
to be abnormal.

As pointed out in Section 6.2, a feature vector consists
of the average metric values taken over a block of gestures.
The block sizes are different for slidings and taps, denoted
by ns and nt, respectively. For example, when a sliding up
gesture is captured in portrait mode by the gesture monitor
component, 10 metric values will be extracted and stored as

Table 1. Classification modules and the cor-
responding gesture types

PORTRAIT LANDSCAPE

No. gestures No. gestures
1. sliding up 2. sliding up
3. sliding down 4. sliding down
5. sliding left 6. sliding left
7. sliding right 8. sliding right
9. sliding up + tap 10. sliding up + tap
11. sliding down + tap 12. sliding down + tap
13. sliding left + tap 14. sliding left + tap
15. sliding right + tap 16. sliding right + tap

a group. If there are already ns such groups, average values
are calculated by metric and fed into the classifier as a fea-
ture vector. The classifier uses module 1 to classify the fea-
ture vector. If it is an abnormal vector, an alert message will
be sent out to the OS. If there is a new portrait tap feature
vector ready as well, it will be combined with the sliding
feature vector and the classifier will use module 9 instead.
We emphasize that our system does not require the block
of gestures to be temporally close to each other. In other
words, any ns sliding up gestures can be used to calculate
a feature vector. This property of our system is important
to smartphone usage because most people use smartphones
intermittently. For example, a user may turn on his smart-
phone, check emails, and turn it off. There may be only a
few sliding gestures in this operation cycle. Therefore, ges-
tures are usually collected group by group and there may be
a long time interval between two groups.

7 Evaluation

7.1 Setup

We used the SVM algorithm as the classification algo-
rithm in the system and selected LIBSVM [7] as our imple-
mentation. For two-class classification tasks, the SVM finds
a hyperplane in training inputs to separate two different data
point sets such that the margins are maximized. A margin is
the distance from the hyperplane to a boundary data point.
The boundary point is called a support vector and there may
be many support vectors. Sometimes, we need to map the
original data points to a higher dimensional space by using
a kernel function so as to make training inputs easier to sep-
arate. The kernel function used in our SVM is the Gaussian
radial basis function K(xa, xb) = e−γ||xa−xb||2 , where γ
is equal to the reciprocal of the feature number. In our clas-
sification modules, we label the owner’s data as a positive
class and all other users’ data as a negative class.



As described in Section 6.1, 75 people participated in our
data collection. The participants are either students in or
visitors to our lab building. We recorded the demorgraphics
— education, gender, and age range — of the participants
and show them in Figure 9. All our participants are older
than 20 years old. Here, education is the highest degree that
a participant has or is pursuing. The numbers in the pie
chart are the numbers of the participants in the correspond-
ing category.
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Figure 9. Demographics of the 75 participants

Among them, 28 people are target users who were asked
to use the smartphones till at least 150 sliding up gestures,
150 sliding down gestures, 150 sliding right gestures, 150
sliding left gestures, and 300 tap gestures were collected.
Other people, called non-target users, were asked to use the
phone till the total using time hit 15 minutes. The target
users are CSE graduate students at Arizona State University.
The demographics of the target users are listed in Table. 2.

Table 2. Demorgraphics of the target users
Category # of users

Education Master students 2
Ph. D. students 26

Gender Female 9
Male 19

Age
20-25 10
25-30 15
30-35 3

In our experiments, we generated training and testing
data sets for each target user. For a specific gesture type
and a target user, the user’s corresponding gesture data set
was divided into two halves. In each half, we randomly
selected a block of gesture data of necessary size, such as
ns for sliding up gestures, and calculated the feature vector.
The vector was labeled as a positive feature vector. We gen-
erated training positive feature vectors using the first half
gesture data set and testing positive feature vectors using
the other half gesture data set. In order to generate negative
feature vectors, we divided the remaining target users and

the non-target users into two halves, respectively. The first
half of the target users and the first half of the non-target
users consisted of the training user pool. The remaining
users consisted of the testing user pool. To generate a train-
ing (testing) negative class feature vector, we first randomly
chose a user from the training (testing) user pool, then ran-
domly selected a block of gestures from the user’s gesture
set, and finally calculated a feature vector, labeled as neg-
ative. We dropped a feature vector if the selected gesture
block was previously used. Training feature vectors, in-
cluding positive and negative ones, were put together in a
training data set and testing feature vectors were in a testing
data set. We remark that positive training and testing feature
vectors were generated from two disjoint sets of gestures.
For negative feature vectors, the users used to generate test-
ing vectors are totally different from those used to generate
training vectors. Hence, in our experiments, the feature vec-
tors used to test a classification module are never met by the
module in its training phase.

7.2 Experiment Results

In this section, we test the classification performance
of our system under different system parameters. We also
implemented the re-authentication module on a Motorola
Droid smartphone to test its computation overhead.

During data collection, we did not put any usage restric-
tions on the participants. Users were free to walk, sit, travel
by vehicle, or perform other common activities, while they
were using our smartphones.

7.2.1 Gesture Block Size

A feature vector is calculated over a block of gestures. The
block size is thus an important system parameter, which de-
termines the number of gestures that our system needs to
collect to perform a re-authentication. Hence, the size de-
termines our system’s re-authentication frequency. For each
gesture type, we changed the necessary block size from 2 to
20. Given a block size and a gesture, for each target user,
we generated 400 positive feature vectors and 400 negative
ones in the training data set and the testing data set, respec-
tively. We trained the classifier using a training data set, ob-
tained a classification module, tested it using the testing set,
and recorded false acceptance rates and false rejection rates.
A false acceptance rate is the fraction of the testing data that
is negative but classified as positive. A false rejection rate
is the fraction of the testing data that is positive but classi-
fied as negative. In the sense of protecting smartphones, a
false acceptance is more harmful than a false rejection. For
each gesture type, we take the average false acceptance rates
and the average false rejection rates over all target users’ re-
sults. The results are shown in Figure 7.2.1, which contains



the two smartphones orientation modes, portrait mode and
landscape mode. We note that, in this experiment, we took
tap gesture as a single re-authentication gesture type and
used its feature vectors to obtain a classification module in
order to show its classifying accuracy. For each mode, we
show the change of the average false acceptance rates and
the average false rejection rates of each gesture type with in-
crement of the block size. From the figure, we can see that,
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(b) Landscape mode

Figure 10. False acceptance rate/ false rejec-
tion rate vs. gesture block size

for a sliding gesture, its false acceptance and false rejection
rates get stable when the block size is greater than 14. In
both modes, the two rates of tap gesture are approaching sta-
ble when block size is getting close to 20 although they are
not as stable as sliding gestures. Among the five types, tap
has the worst performance, having the highest false accep-
tance rates and false rejection rates in both modes. This also
confirms our previous analysis of the tap metrics in Section
6.3.2.

7.2.2 Training Size

The size of a training data set affects a module’s classifi-
cation accuracy, because a larger training data set gives the
classification algorithm more information. We tested the
performance of each classification module under different
training set sizes, from 100 to 700 at intervals of 100. In
the feature generation, we selected block size ns = 14 and
nt = 20 to generate feature vectors. Our system monitors
both portrait mode and landscape mode in the background,

using 8 classification modules for each mode (Section 6.4).
Given a training set size and a classification module, for
each target user, we used the approach introduced in Sec-
tion 7.1 to generate a training data set and a testing data set.
Each testing data set was of the same size as its correspond-
ing training data set. For each training set size, we obtained
16 classification modules for each user. We tested each clas-
sification module and recorded the classification accuracy.
Then for each module and each training set size, we took
the average of all user’s classification accuracies. The re-
sults are shown in Figure 7.2.2. From Figure 11(a), we can

100 200 300 400 500 600 700

0.
80

0.
85

0.
90

0.
95

1.
00

Training Set Size

A
cc
ur
ac
y

up
down
right
left

100 200 300 400 500 600 700

0.
75

0.
80

0.
85

0.
90

0.
95

Training Set Size

A
cc
ur
ac
y

up+tap
down+tap
right+tap
left+tap

(a) Portrait mode

100 200 300 400 500 600 700

0.
7

0.
8

0.
9

1.
0

Training Set Size

A
cc
ur
ac
y

up
down
right
left

100 200 300 400 500 600 700

0.
5

0.
6

0.
7

0.
8

0.
9

Training Set Size
A
cc
ur
ac
y

up+tap
down+tap
right+tap
left+tap

(b) Landscape mode

Figure 11. Training set size vs. classification
accuracy

see that when the training set size increases, the accuracy of
a classification module first increases, approaches to a max-
imum point, and then decreases. We observe that the max-
imum point is around 500 for single gesture type modules
and around 300 for combinatory gesture type modules. The
same trend is observed on the results under landscape mode
in Figure 11(b). The observations indicate that tap gestures
provided extra useful information to a combinatory gesture
type module and the module thus did not need more training
data to learn a user’s patterns. The accuracy decreases af-
ter the training set size passes the maximum point because
a large training data set makes the module specific to the
training data so that it makes more errors in prediction.

Besides, we list the average classification accuracy for
each classification module in Table 3 when the training size
is 500 for single gesture type modules and 300 for combi-
national gesture type modules.



Table 3. Classification accuracy
PORTRAIT LANDSCAPE

gestures Accuracy gestures Accuracy
sliding up 95.78% sliding up 83.60%
sliding down 95.30% sliding down 94.20%
sliding left 93.06% sliding left 93.97%
sliding right 92.56% sliding right 91.27%
up + tap 93.02% up + tap 92.05%
down + tap 89.25% down + tap 86.25%
left + tap 88.28% left + tap 79.74%
right + tap 89.66% right + tap 91.50%

7.2.3 Using Tap

In the study of classification, the receiver operating char-
acteristic (ROC) curve is a good way to graphically reflect
the performance of a binary classifier. It is a plot of true
positive rate TP/(TP + FN) versus false positive rate
FP/(FP + TN). Here, TP, FN,FP , and TN are the
number of true positive predictions, false negative predic-
tions, false positive predictions, and true negative predic-
tions, respectively. A true positive prediction is a correct
prediction on a positive class. False positive, true nega-
tive, and false negative predictions are defined in the similar
fashion. Generally, if a ROC curve is close to the top-left
corner, it indicates the corresponding classifier can obtain a
high true positive rate with a low false positive rate. There-
fore, such a classifier is considered to be a good classifier.

We fixed a target person and drew 16 ROC curves for his
16 classification modules. We set ns = 14 and nt = 20.
The training data set size and the testing data set size were
both 400 for all the 16 modules. The results are shown in
Figure 7.2.3. The purpose is to test the improvement of us-
ing tap gesture as an auxiliary as well as the performance of
each classification module. In all the plots, we can see that
most modules having tap as an auxiliary gesture perform
better than the ones having only sliding gesture types. For
example, in Figure 12(a), two modules having tap gestures
(red and yellow lines) are closer to the top-left corner than
the other two lines. At the same time, we notice that slid-
ing left performs better than “left+tap” combination in the
landscape mode. Our single sliding gesture type modules
also perform well in the two modes, since most of them
are close to the top-left corner. Among the 16 modules,
the classification modules for portrait and landscape sliding
down gestures have the worst performance while the mod-
ules for sliding left gestures have the best performance. A
possible explanation to this result is that people usually slide
left for more contents while they are reading and they usu-
ally hold the contents, sliding slowly. In most cases, people
slide down to get back to the top without reading. So they
slide quick and slight. For a slow and “holding” sliding,
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Figure 12. ROC curves for 16 classification
modules

the screen can sense more personally specific information,
which leads to a better classification performance.

7.2.4 System Overhead

As shown previously, our system needs as less as 14 same
type slidings to construct a feature vector. The following
table (Tab. 4) shows the average time interval for each ges-
ture type according to our collected user data. For example,
on average, a sliding up gesture happens every 8.24 seconds
in portrait mode. Therefore, our system can collect 14 por-
trait sliding up gestures in 115.6 seconds, which means the
system can usually re-authenticate a user in 2 minutes using
sliding up gestures.

Table 4. Average time interval for gesture
types (second)

up down left right tap
portrait 8.24 14.25 37.13 22.47 14.12

landscape 12.14 19.23 50.74 34.27 18.73

Learning an owner’s patterns is deployed on a PC in our
architecture and performed offline. Feature extraction and
classification is performed online by a smartphone, which
directly affects the user experience of our system. Given a
feature vector, the classification can be done in a short time
because our feature vector is of small dimension. Particu-



larly, given a combinatory feature with 13 feature values in
it, our implementation only needed 17 milliseconds to give
a prediction. The implementation used LIBSVM [7] on a
Motorola Droid phone.

Feature extraction contains filtering necessary gestures
and calculating each feature values, and thus takes more
time. We tested our feature extraction scheme on a Mo-
torola Droid smartphone with a single 550MHz A8 CPU,
256MB memory, 16GB sdcard, and Android 2.2 OS. We fed
386, 701, 902, 1207, 1377, 1427, 1454, 1701, 2313, 3716,
and 3943 gestures to the preprocessing and the feature ex-
traction modules on the smartphone. The running time and
the number of filtered features are shown in Figure 13.

500 1000 1500 2000 2500 3000 3500 4000

0
40
00

80
00

12
00
0

number of gestures

R
un

ni
ng

 T
im

e 
(m

s)

(a) Running time vs. total gesture number

500 1000 1500 2000 2500 3000 3500 4000

50
0

15
00

25
00

number of gestures

# 
of

 n
ee

de
d 

ge
st

ur
es

(b) Filtered gesture number vs. total gesture number

Figure 13. Running time of feature extraction

In practice, gestures will be fed to our monitoring com-
ponent immediately after they are captured by the screen.
In some cases, the OS may buffer the gestures and suspend
our system for a while to run another high priority process.
Since security is important in many cases, we assume that
our system is not suspended for a long time so that the num-
ber of gestures it deals with at one time is within several
hundreds. Looking at the second point in Figure 13, we
can see that filtering 427 needed gestures from 902 gestures
and extracting features from them takes only 648 millisec-
onds. We note that this process was carried out on a low-end
smartphone and we can expect a dramatic performance en-
hancement on current main-stream smartphones.

7.2.5 Discussion

We carried out all our data collections and experiments on
Motorola Droid phones, which are equipped with low-end
touch screens. Therefore, some metrics may be dropped due
to the smartphone’s hardware limitations. For example, we
left out the pressure related metrics because the touch screen
did not provide accurate pressure measurements. The met-
rics may need to be carefully tested or even re-designed be-
fore deploying our system on another smartphone platform.
For example, pressure may become useful and provide more
user information on some smartphone platforms. However,
our work provides a guideline for the metric design on other
platforms and our methodology can still be adopted. Our
work shows that using gestures to construct an unobserv-
able continuous re-authentication on smartphones is practi-
cal and promising.

8 Conclusions

In order to prevent unauthorized usage, we have
proposed a re-authentication system using user fin-
ger movement. The system performs continuous re-
authentication and does not need human assistance during
re-authentication. We have discussed biometric feature de-
sign and selection for finger movement. We have demon-
strated the effectiveness and efficiency of our system in ex-
tensive experiments.
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