Don't Forget to Lock the Back Door! A Characterization of IPv6 Network Security Policy

Jakub (Jake) Czyz, University of Michigan & QuadMetrics, Inc. Matthew Luckie, University of Waikato Mark Allman, International Computer Science Institute Michael Bailey, University of Illinois at Urbana-Champaign

Network and Distributed System Security Symposium

2016-02-22

San Diego, CA, USA

IPv6?? Yawn... amiright?

- Actually, IPv6 adoption is now very robust. E.g.:
 - Google : 8-10%; (U.S.: 23%)
 - Facebook : 10%; (U.S.: 23%)
 - Comcast 39%. ATT 52%. Deutsch Telekom 28%
- BUT: Lack of maturity in stacks, processes, tools, operator competency
- Plus, some big misconceptions about IPv6 abound :(
 - Myth #1: IPv6 is "More Secure."

Recent operator training service This expanded workshop also includes additional sections in Pv6 wireless, new information on Pv6 Security and address management, and new hands on lab exercises. **Why IPv6?**Improved Security Improved Security</t

Motivation

"In new IPv6 deployments it has been common to see IPv6 traffic enabled but none of the typical access control mechanisms enabled for IPv6 device access. "

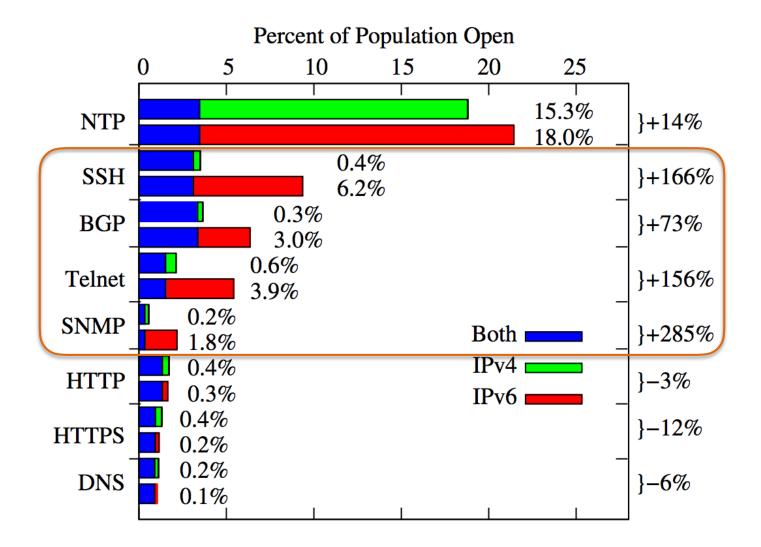
 IETF Draft: Operational Security Considerations for IPv6 Networks; Chittimaneni, et al., 2015; <u>http://tools.ietf.org/html/draft-ietf-opsec-v6-07</u>

Talk Roadmap

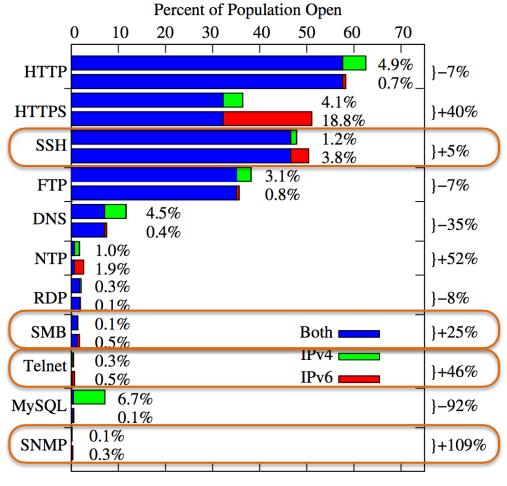
- Motivation
- Methodology
- Results
- Validation
- Scanning Feasibility
- Implications & Summary

Methodology: Target Lists

- **Population** of interest: global dual-stacked routers and servers
 - **Routers**: IPs from CAIDA Ark trace route dataset
 - **Servers**: from DNS ANY record queries against IPs and names discovered by Rapid7 service scanning
- **Grouping** to find all dual-stack hosts:
 - Extract hostnames with A, AAAA, and PTR records
 - Closed-set merge all dual-stack hosts linked by the same address or hostname record; finally: validate app-layer fingerprints
- End up with, ping-responsive: 25K routers; 520K servers
 - 58% of globally-routed dual-stacked ASes; 133 countries


Methodology: Probing

- We use **Scamper** a parallelized network probing tool [Luckie 2010]
- Probed application ports:
 - Routers: ICMP echo, SSH, Telnet, HTTP, <u>BGP</u>, HTTPS, DNS, NTP, SNMPv2
 - Servers: ICMP echo, <u>FTP</u>, SSH, Telnet, HTTP, HTTPS, <u>SMB</u>, <u>MySQL</u>, <u>RDP</u>, DNS, NTP, SNMPv2
- Probe types (for each IP of each host against each application port):
 - **Basic** (ICMP Echo, TCP SYN, UDP request)
 - **Traceroute**-style (iterative with limited TTL/Hop Limit)
- Interpretation: probe success = ICMP echo reply, TCP SYN+ACK, UDP Data

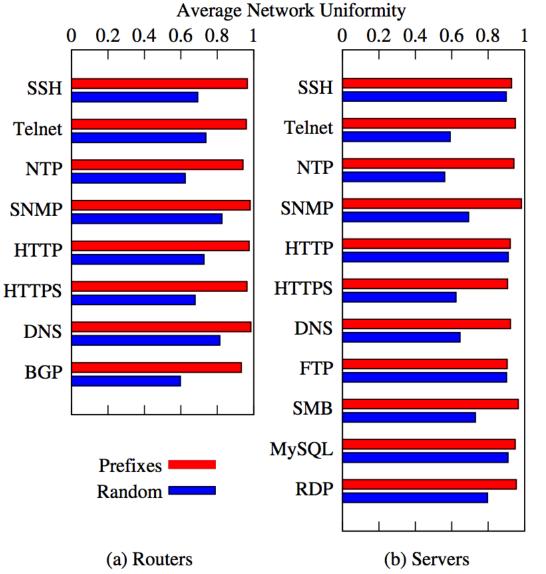

Methodology: Ethics and Best Practices

- probed at very low rate
- used standards-compliant simple packets (no fuzzing of fragment handling code :))
- signaled benign intention of traffic, e.g. via DNS name and project info website on probe IP
- respected opt-out requests + seeded opt-out list

Results: Router Openness

Results: Server Openness

(a) Servers (S_B)


Results: Intra-Network Uniformity

Q: Are discrepancies one-offs or generally systematic security posture within network boundaries?

Uniformity metric:

For each network (routed prefix): Across all hosts with v4 or v6 open, find count of most common result (4,6,both) and divide by total hosts in that network.

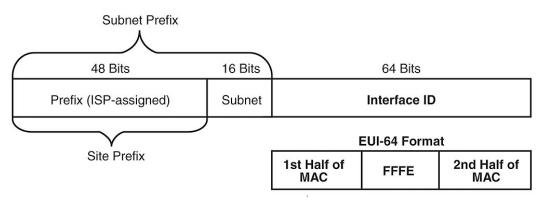
A: misconfigurations generally systematic within network boundaries: consistency >90%

Blocking Mechanism

Does the *manner* in which blocking happens differ for v6?

	Router (\mathcal{R}_T)		Server (S_T)		
Mode	Mean IPv4	Mean IPv6	Mean IPv4	Mean IPv6	
Open	4.17	6.04	18.57	18.89	
Passive:Target	43.50	27.15	36.06	31.17	
Passive:Other	10.12	15.82	16.31	14.20	
Active:Target	30.93	36.14	22.82	27.61	
Active:Other	3.55	6.94	2.09	2.79	

Yes, there appear to be fewer policy devices (firewalls or ACLs) passively dropping requests in IPv6


Notifications & Validation

 Directly contacted 12 	Operator	Host-App Pairs w/Only IPv6 Open	Response
network operators including	Global CDN 1 Tier1 ISP 1	3 498	\checkmark
several with largest	Global Transit Pro. 1 Large Hosting Pro. 1	201 ≈800	\checkmark
discrepancy	Large University 1	5	~
	Large University 2 Large University 3	6 989	~
 Asked each if (1) findings 	National ISP 1 National ISP 2	4757 89	\checkmark
were correct and (2) policy discrepancy was intentional	Research/Ed. ISP 1 Research/Ed. ISP 2	1 523	~
uiscrepancy was intertional	Research/Ed. ISP 3 Research/Ed. ISP 4	77 17	<u> </u>
 All confirmed 	Small Hosting Pro. 1 Small ISP 1	17 17 12	~
	Small Transit Pro. 1	2	\checkmark
 Post-paper full notification 			

Scanning Feasibility

- Could brute attackers/worms discover these open IPv6 ports sans DNS?
- 128 bit address space makes global exhaustive scanning prohibitive. O(10²² years)
- Site prefixes easily found in BGP
- Subnet IDs: Low 8 + upper 4 bits = 0.4% of space: 55-64% of subnets
- Thus, scanning individual networks (given BGP prefix lists) may be fruitful depending on interface ID assignment

128-bit Address Layout

(source: http://www.elec-intro.com/EX/05-15-08/17fig07.jpg)

Scanning Feasibility: IIDs

		Router		Server	
IID Bits Used	IID Value Range	%	Cum. %	%	Cum. %
1	<= 0x0001	23.74	23.74	5.83	5.83
4	<= 0x000F	37.89	61.63	5.94	11.77
8	$\leq = 0 \times 00 FF$	6.87	68.49	4.76	16.53
16	$\langle = 0 x FFFF$	11.00	79.50	5.50	22.03
32	<= 0xFFFF FFFF	9.81	89.31	14.50	36.53
EUI-64	Middle == 0xFFFE	0.92	90.23	4.92	41.45
Other	Not in Above	9.77	100.00	58.55	100.00

- Majority of routers and > 1/3 of servers could be found in just lower half of IID bits (1 four billionth of the bit space!)
- Targeting one subnet using a modern scanner (zmap) at 1.4 Mpps (**1 Gbps**):
 - Instead of **418K years** for naive brute-force scan of all 64 bits ...
 - Scanning low 32 bits + top 8 EUI-64 vendors finds: 90% of routers and 40% of servers in just 53 minutes (or just low 16 bits: 80% & 26% in 1sec.!)

Summary and Implications

- Large discrepancies between v4 and v6 service reachability:
 - 43% of hosts differ on at least one application
 - 26% of hosts more open on v6 for at least one app port
- IPv6 more open than IPv4 for high-value application ports on large Internet samples routers and servers
 - Includes **sensitive apps**: SSH, Telnet, BGP, and SNMP
- Results consistent within network boundaries: **systematic**
- Multiple evidence that **firewalls less common** on IPv6

Summary and Implications

- IPv6 is here, but basic IPv6 security has not fully arrived. This has left thousands of routers and servers lacking basic port security.
- Since NAT is expected to be less common with IPv6, host security is even more critical
- What to do if you run IPv6?:
 - **Check yourself**! (We've made a scamper module available for probing your network)
 - **Protect yourself:** Is your firewall configured for IPv6? (And effective?)
 - **Hide yourself:** Your host addressing scheme may determine IPv6 scanning feasibility. Randomly-assigned IIDs strongly suggested.

Questions?

Thank You!