
Systems and Internet Infrastructure Security Laboratory (SIIS) Page

A Trusted Safety Verifier for
Process Controller Code

Stephen McLaughlin, Devin Pohly, Patrick McDaniel and
Saman Zonouz	

February 24, 2014

�1

Systems and Internet Infrastructure Security Laboratory (SIIS) Page

Control Systems Under Threat

�2

Programmable Controllers are
Insecure By Design

Systems and Internet Infrastructure Security Laboratory (SIIS) Page

Control Systems Under Threat

�3

Programmable Controllers are
Insecure By Design

Control systems not robust enough for security patches

Systems and Internet Infrastructure Security Laboratory (SIIS) Page

Control Systems Under Threat

�4

Programmable Controllers are
Insecure By Design

Control systems not robust enough for security patches

Systems and Internet Infrastructure Security Laboratory (SIIS) Page

A new perspective on SCADA

�5

Supervisory Control and Data Acquisition

Systems and Internet Infrastructure Security Laboratory (SIIS) Page

A new perspective on SCADA

�6

Tens of Millions of Files

Hundreds of Millions of LoC

Anything cloud

Systems and Internet Infrastructure Security Laboratory (SIIS) Page

A new perspective on SCADA

�7

Tens of Millions of Files

Hundreds of Millions of LoC

Anything cloud

Hundreds of Devices

Far smaller codebase

Systems and Internet Infrastructure Security Laboratory (SIIS) Page �8

We would like to directly protect the
physical process, regardless of the

integrity of the IT perimeter.

Systems and Internet Infrastructure Security Laboratory (SIIS) Page

A PLC’s life

�9

Systems and Internet Infrastructure Security Laboratory (SIIS) Page

A PLC’s life

�10

Turn left 2º

Systems and Internet Infrastructure Security Laboratory (SIIS) Page

A PLC’s life

�11

Turn left 2º

Turn left!

Systems and Internet Infrastructure Security Laboratory (SIIS) Page

A PLC’s life

�12

Turn left 2º

Turn left!

Systems and Internet Infrastructure Security Laboratory (SIIS) Page

A PLC’s life

�13

???

Turn left!

Systems and Internet Infrastructure Security Laboratory (SIIS) Page

A PLC’s life

�14

Turn left 2º

Turn left!

Systems and Internet Infrastructure Security Laboratory (SIIS) Page

A PLC’s life

�15

Turn left!

1º

Turn left 2º

Systems and Internet Infrastructure Security Laboratory (SIIS) Page

A PLC’s life

�16

Not quite …

Turn left!

1º

Systems and Internet Infrastructure Security Laboratory (SIIS) Page

A PLC’s life

�17

Turn left!

2º

Not quite …

Systems and Internet Infrastructure Security Laboratory (SIIS) Page

A PLC’s life

�18

BINGO!

Stop!

2º

Systems and Internet Infrastructure Security Laboratory (SIIS) Page

A PLC’s life

�19

Systems and Internet Infrastructure Security Laboratory (SIIS) Page

A PLC’s life

�20

Control
Logic

L DW2 ;; Degrees	
< ID255	
ST Q 3.2

Systems and Internet Infrastructure Security Laboratory (SIIS) Page

A PLC’s life

�21

Control
Logic

Control Signal

L DW2 ;; Degrees	
< ID255	
ST Q 3.2

Systems and Internet Infrastructure Security Laboratory (SIIS) Page

A PLC’s life

�22

Control
Logic

L DW2 ;; Degrees	
< ID255	
ST Q 3.2

Control Signal

Sensor
Measurements

Systems and Internet Infrastructure Security Laboratory (SIIS) Page

A PLC’s life

�23

Control
Logic

L DW2 ;; Degrees	
< ID255	
ST Q 3.2

Control Signal

Sensor
Measurements

🔄
Scan Cycle

Systems and Internet Infrastructure Security Laboratory (SIIS) Page

A PLC’s life

�24

L DW2 ;; Degrees	
< ID255	
ST Q 3.2Applications

• Chemical processing	

• Railroad safety	

• Manufacturing	

• Traffic Control	

• PID Control

Systems and Internet Infrastructure Security Laboratory (SIIS) Page

A PLC’s life

�25

L DW2 ;; Degrees	
< ID255	
ST Q 3.2

;; Spin out	
;; of control!	
!
S Q 3.2

Systems and Internet Infrastructure Security Laboratory (SIIS) Page

A PLC’s life

�26

L DW2 ;; Degrees	
< ID255	
ST Q 3.2

;; Spin out	
;; of control!	
!
S Q 3.2

⨉

Systems and Internet Infrastructure Security Laboratory (SIIS) Page

A PLC’s life

�27

L DW2 ;; Degrees	
< ID255	
ST Q 3.2

;; Spin out	
;; of control!	
!
S Q 3.2

TSV

“The Arm must remain within	
a quarter hemisphere at all times”

Systems and Internet Infrastructure Security Laboratory (SIIS) Page

Trusted Safety Verifier

• Goal: Only allow code to be run on a PLC if it satisfies

a set of engineer-supplied safety properties.	

• Challenges:	

‣ Existing tools not up to the task.	

‣ Control systems are stateful, requiring temporal properties.	

‣ State space explosion with existing analysis techniques.

�28

Systems and Internet Infrastructure Security Laboratory (SIIS) Page

Consider some PLC code

�29

A I 0.5 ;; And input bit 5	
= Q 0.1 ;; Store at output bit 1	
. . .

Systems and Internet Infrastructure Security Laboratory (SIIS) Page

Consider some PLC code

�30

A I 0.5 ;; And input bit 5	
= Q 0.1 ;; Store at output bit 1	
. . .

• Side effects
!

Systems and Internet Infrastructure Security Laboratory (SIIS) Page

Consider some PLC code

�31

A I 0.5 ;; And input bit 5	
= Q 0.1 ;; Store at output bit 1	
. . .

• Side effects
• PLC special features

Systems and Internet Infrastructure Security Laboratory (SIIS) Page

Consider some PLC code

�32

A I 0.5 ;; And input bit 5	
= Q 0.1 ;; Store at output bit 1	
. . .

• Side effects
• PLC special features
• Architecture dependent

Systems and Internet Infrastructure Security Laboratory (SIIS) Page

Consider some PLC code

�33

A I 0.5 ;; And input bit 5	
= Q 0.1 ;; Store at output bit 1	
. . .

• Side effects
• PLC special features
• Architecture dependent

// A I 0.5	
STA := load(mem, [I::0::0::0::5]);	
cjmp FC == 0 : reg1_t,L1,L2;	
label L1;	
RLO := STA;	
label L2;  
RLO := RLO && STA;  
FC :=1 : reg1_t;	
 
// = Q 0.1  
STA := RLO;  
mem := store(mem, [Q::0::0::0::1], RLO);	
FC := 0 : reg1_t;

Instruction List
Intermediate Language

Systems and Internet Infrastructure Security Laboratory (SIIS) Page

ILIL

�34

Based on the Vine IL

Systems and Internet Infrastructure Security Laboratory (SIIS) Page

ILIL Analysis

�35

// A I 0.5	
STA := load(mem, [I::0::0::0::5]);	
cjmp FC == 0 : reg1_t,L1,L2;	
label L1;	
RLO := STA;	
label L2;  
RLO := RLO && STA;  
FC :=1 : reg1_t;	
 
// = Q 0.1  
STA := RLO;  
mem := store(mem, [Q::0::0::0::1], RLO);	
FC := 0 : reg1_t;

(assert ((and (not (and X_3 X_2))	
 (not X_5)))) : 	
 [X_5] -> (X_2)	
 [X_7] -> (and (and X_1 true)	
 (not X_3))	
 [X_0] -> (X_2)

Systems and Internet Infrastructure Security Laboratory (SIIS) Page

ILIL Analysis

�36

// A I 0.5	
STA := load(mem, [I::0::0::0::5]);	
cjmp FC == 0 : reg1_t,L1,L2;	
label L1;	
RLO := STA;	
label L2;  
RLO := RLO && STA;  
FC :=1 : reg1_t;	
 
// = Q 0.1  
STA := RLO;  
mem := store(mem, [Q::0::0::0::1], RLO);	
FC := 0 : reg1_t;

(assert ((and (not (and X_3 X_2))	
 (not X_5)))) : 	
 [X_5] -> (X_2)	
 [X_7] -> (and (and X_1 true)	
 (not X_3))	
 [X_0] -> (X_2)

Symbolic Sensor Values

Systems and Internet Infrastructure Security Laboratory (SIIS) Page

ILIL Analysis

�37

// A I 0.5	
STA := load(mem, [I::0::0::0::5]);	
cjmp FC == 0 : reg1_t,L1,L2;	
label L1;	
RLO := STA;	
label L2;  
RLO := RLO && STA;  
FC :=1 : reg1_t;	
 
// = Q 0.1  
STA := RLO;  
mem := store(mem, [Q::0::0::0::1], RLO);	
FC := 0 : reg1_t; Symbolic Control Signal

(assert ((and (not (and X_3 X_2))	
 (not X_5)))) : 	
 [X_5] -> (X_2)	
 [X_7] -> (and (and X_1 true)	
 (not X_3))	
 [X_0] -> (X_2)

Systems and Internet Infrastructure Security Laboratory (SIIS) Page

Checking Temporal Properties

�38

G (!a)	
a: (and X_0 X_5)

(assert ((and (not (and X_3 X_2))	
 (not X_5)))) : 	
 [X_5] -> (X_2)	
 [X_7] -> (and (and X_1 true)	
 (not X_3))	
 [X_0] -> (X_2)

Systems and Internet Infrastructure Security Laboratory (SIIS) Page

Checking Temporal Properties

�39

G (!a)	
a: (and X_0 X_5)

(assert ((and (not (and X_3 X_2))	
 (not X_5)))) : 	
 [X_5] -> (X_2)	
 [X_7] -> (and (and X_1 true)	
 (not X_3))	
 [X_0] -> (X_2)

minor limitation that if both a real-valued and non-real-valued
instruction are executed on the same symbol, the symbolic
machine gets stuck. This is however, not common. A symbol’s
type can be changed only by a cast instruction in the original
IL code.

Mixed Execution. PLC programs make heavy use of constants
as process parameters. Thus, many instructions can be executed
on concrete operands instead of symbolically. Like previous
tools, such as Rudder [30], TSV performs a mixed symbolic
and concrete execution. An expression produces a concrete re-
sult iff all its variables are concrete. This requires dynamically
tracking whether each register and memory word is concrete
or symbolic. There is a complication here for multi-indexed
memories, which can be accessed at the word-, byte-, or bit-
level. To handle this, TSV tracks each bit of memory as either
symbolic or concrete. Initially, all memory is concrete, and
typical taint propagation rules are used to track symbolic bits.
We add an additional rule to allows a bit to become concrete
again. If a sequential string of symbolic bits are overwritten
by a equal or longer string of concrete bits, then the whole
string becomes concrete.

V. MODEL CHECKING

Because PLCs use stateful variables, that retain their val-
ues across the scan cycles, analysis of a single scan cycle
is not sufficient to check all temporal safety properties. In
this section, we describe our technique of model checking a
temporal execution graph for paths on which safety properties
are violated. The results of symbolic execution are used to
first construct the TEG to model the state transitions occurring
over a scan cycle. Each node of the TEG is then productized
with valuations of the atomic proposition in the linear temporal
logic (LTL) safety property. Finally, the symbolic variables are
removed from each state to produce an abstract graph, which is
fed to the model checker. Before exploring this process in more
detail, we briefly review LTL as used for safety specifications.

A. Linear Temporal Logic

To formulate control system security requirements, TSV
makes use of the linear temporal logic formalism [2], [25].
Let us define A to be a finite set of atomic logical propositions
about the system {b1,b2, · · · ,b|A|}, e.g., relay R1 is open.

and S = 2A a finite alphabet composed of the abovementioned
propositions. Every element of the alphabet is a possibly empty
set of propositions from A, and is denoted by ai, e.g., ai =
b1,b4,b9.

The set of linear temporal logic-based safety requirements
is inductively defined by the grammar

j ::= true | b | ¬j | j_j | j U j | X j, (1)

where ¬ and _ denote negation and logical OR operators.
ji U j j denotes “the LTL expression ji remains true until j j
becomes true,” and X j j reads “j j must be true in the next
step (execution state)”. TSV also makes use of the following
redundant notations: j^y instead of ¬(¬j_¬y), j ! y
instead of ¬j_y, F j (Eventually) instead of true U j, and
G j (Globally) instead of ¬(true U ¬j). For example, consider
a traffic light system with Boolean variables g1 and g2 that

activate green lights for intersecting streets when true. The
property that both lights are never green at the same time has
two atomic propositions: a⌘ g1 = true, and b⌘ g2 = true. The
global LTL property is then stated G ¬a _ ¬b.

B. Temporal Execution Graph

Each state in the execution graph stores the symbolic
value of each stateful PLC variable. It is noteworthy that
TSV performs intermediate variable elimination during the
temporal execution graph generation to make sure that values
of the symbolic variables are terms over only constants and
time-indexed input variables corresponding to PLC input wires
scanned during some PLC input-output scan in the past, i.e.,
there is no intermediate variable involved in the symbolic val-
ues of the variables. To clarify, consider a symbolic execution
output entity with the assignment statements O := X + 2 and
X := I + X where O and I are output and input variables,
respectively. All variables are initialized to 0 before the first
scan cycle. After the first scan cycle the variables will have
values: O I0 + 2 and X I0, where I0 denotes the input
variable scanned before the first PLC execution iteration.
Similarly, the second scan will result in O I0 + I1 + 4 and
X I0 + I1. The final expression for O no longer contains X .

The state transitions of the temporal execution graph indi-
cate the feasible paths between scan cycles. Each transition is
labeled by the path predicate from one entry in the symbolic
scan cycle. A transition is added from a source to destination
state iff the path predicate can be satisfied given the symbolic
values of PLC variables in the source state. For instance, if the
source state has PLC variables2 O I0 + I1 +4, X1 I0 + I2,
and X2 I0 + I1, given the path predicate X1 � X2, then a
transition is added because the path predicate is satisfiable
under the symbolic values at the source state and the input
values, i.e., I2 � I1.

C. Specification-Based Model Refinement

To check temporal properties, a model checker needs
to know the truth value of each atomic proposition of the
given LTL requirement in each state. The addition of these
truth values to the TEG is called model refinement that is
described separately here for presentation clarity; however,
the model refinement occurs concurrently during the TEG
generation (Section V-D). The motivation for this step is that
it is impossible to pick a single truth value for an atomic
proposition containing symbolically valued PLC variables. In
such cases, each state in the TEG is replicated to a set of
states for all feasible truth values of the atomic propositions
in those states. TSV accordingly updates each replica’s path
predicate, which captures the input variable conditions for the
execution to get to that state, based on the assigned concrete
Boolean atomic proposition values. In particular, TSV labels
each replica with a conjunctive predicate composed of the
state’s original predicate P and the predicate representing the
concrete atomic proposition values assigned to the replica.
For instance, in the case of a single atomic proposition a,
the two state replicas will be assigned P&a and P&!a as
their predicates. Figure 4 shows a more illustrative example

2Note that sub-indices and super-indices represent different variables and
scan cycle numbers, respectively.

6

Linear Temporal Logic

Systems and Internet Infrastructure Security Laboratory (SIIS) Page

Checking Temporal Properties

�40

G (!a)	
a: (and X_0 X_5)

(assert ((and (not (and X_3 X_2))	
 (not X_5)))) : 	
 [X_5] -> (X_2)	
 [X_7] -> (and (and X_1 true)	
 (not X_3))	
 [X_0] -> (X_2)

Systems and Internet Infrastructure Security Laboratory (SIIS) Page

Checking Temporal Properties

�41

• Input Variables
• State Variables

(assert ((and (not (and X_3 X_2))	
 (not X_5)))) : 	
 [X_5] -> (X_2)	
 . . .

(assert ((and (not (and X_3 X_2))	
 (X_5)))) : 	
 [X_5] -> (X_2)	
 . . .

???

???

(assert ((and (not (and X_3 X_2))	
 (not X_5)))) : 	
 [X_5] -> (X_2)	
 [X_7] -> (and (and X_1 true)	
 (not X_3))	
 [X_0] -> (X_2)

G (!a)	
a: (and X_0 X_5)

Systems and Internet Infrastructure Security Laboratory (SIIS) Page

Checking Temporal Properties

�42

• Input Variables
• State Variables

???

???

Reachability determined
by SMT solver

(assert ((and (not (and X_3 X_2))	
 (not X_5)))) : 	
 [X_5] -> (X_2)	
 [X_7] -> (and (and X_1 true)	
 (not X_3))	
 [X_0] -> (X_2)

(assert ((and (not (and X_3 X_2))	
 (not X_5)))) : 	
 [X_5] -> (X_2)	
 . . .

(assert ((and (not (and X_3 X_2))	
 (X_5)))) : 	
 [X_5] -> (X_2)	
 . . .

G (!a)	
a: (and X_0 X_5)

Systems and Internet Infrastructure Security Laboratory (SIIS) Page

Temporal Execution Graph (TEG)

�43

A(
O T 6 ;; Check red light timer.
O M 0.0 ;; Check already green.
ON M 0.6 ;; Check not first run.
)
AN T 1 ;; Check green light timer.
= L 20.0 ;; Bookkeeping.
A L 20.0 ;; Bookkeeping.
BLD 102 ;; Bookkeeping.
= M 0.0 ;; Set green light state.
A L 20.0 ;; Bookkeeping.
L S5T#10S ;; 10 second timer.
SD T 1 ;; Start green light timer.

The green light itself is then activated by the statement:

A M 0.0 ;; Check for green state.
= Q 0.2 ;; Activate green light.

The lifted version of above two lines of code is as follows.

// (9) AND M 0.0
STA := cast(low, reg1_t, load(mem, [M::0::0::0::0]));
RLO := RLO && STA;
FC := 1 : reg1_t;
OR := 0 : reg1_t;

// (10) ST Q 0.2
OR := 0 : reg1_t;
STA := RLO;
FC := 0 : reg1_t;
mem := store(mem, [Q::0::0::0::2], RLO);

The resulting symbolic scan cycle constraint for the green light
is as follows.

// The green output variable.
(declare-const Q_0_0_0_2 Bool)

// The state variable.
(declare-const M_0_0_0_0 Bool)

[M_0_0_0_0] -> (and (or (or T_6 M_0_0_0_0)
(not M_0_0_0_6)) (not T_1))

[Q_0_0_0_2] -> (M_0_0_0_0)

Consequently, TSV made use of the produced symbolic
scan cycle to generate its corresponding temporal execution
graph with 24 states that is partially shown in Figure 10. Here,
we also show how the usage of symbolic state matching to
avoid creation of equivalent states helps TSV to save the TEG
memory requirement and consequently improve the overall
TSV performance. Figure 11 illustrates the generated TEG
graph with 12 states partially for the same controller program
while the symbolic state matching engine was on. As shown,
several states in Figure 10 have been lumped together in
Figure 11 as the result of being equivalent. Because of such
state lumpings, there are several states with more than one
incoming transitions. The generated TEG graphs with larger
model generation bounds resulted in the same growth pattern
of 4 states per depth11, i.e., the graph size grows linearly for
this particular case with the model generation bound because
of condition-free controller program.

Finally, TSV employed the generated TEG graph (Fig-
ure 11) to verify whether the safety requirement holds if

11For presentation clarity, we did not include the generated TEG graph with
larger model generation bounds here.

Fig. 10. Partial TEG without Symbolic State Matching

... S3
<a:0 b:0>

S4
<a:0 b:0>

S9
<a:1 b:0>

S10
<a:0 b:1>

S11
<a:1 b:1>

S5
<a:0 b:0>

S6
<a:1 b:0>

S7
<a:0 b:1>

S8
<a:1 b:1>

Fig. 11. Partial TEG with Symbolic State Matching

the abovementioned controller program runs on a PLC. The
following shows the model checking results to check whether
both of the green lights can be on at the same time, i.e.,
G ¬ (¬a & ¬b) where a := (Q 0 0 0 2 = 0) and b :=
(Q 0 0 0 5 = 0).

-- specification G !(a & b) is false
-- as demonstrated by the following execution sequence
Trace Description: LTL Counterexample
-> State = S0 <-

b = TRUE
a = TRUE

-> State: S1 <-

14

(assert ((and (not (and X_3 X_2))	
 (not X_5)))) : 	
 [X_5] -> (X_2)	
 [X_7] -> (and (and X_1 true)	
 (not X_3))	
 [X_0] -> (X_2)

(assert ((and (not (and X_3 X_2))	
 (not X_5)))) : 	
 [X_5] -> (X_2)	
 . . .

(assert ((and (not (and X_3 X_2))	
 (X_5)))) : 	
 [X_5] -> (X_2)	
 . . .

Systems and Internet Infrastructure Security Laboratory (SIIS) Page

Performance

�44

0.001$

0.01$

0.1$

1$

10$

100$

IL'to'ILIL$Transla0on$ Symbolic$Execu0on$ Ini0al$Model$Crea0on$ Temporal$Execu0on$
Graph$Genera0on$

Model$Transla0on$ Symbolic$Model$Checking$

Ti
m
e%
(s
ec
on

ds
)%

PLC%Program%Analysis%and%Formal%Verifica9on%Steps%

Traffic$Light$

AssemblyWay

Stacker$

Sorter$

Train$

PID$

Fig. 7. Time Requirements for All Case Studies on Raspberry Pi.

The reported numbers, only 4K states for a full 14 horizon
analysis, proves the effectiveness of the usage of symbolic
execution at reducing the state space size.

Figure 6 shows a sample generated execution graph for
the Assembly Way case study with a model checking bound
of 4. The safety requirement included two atomic propositions
a and b. Thus, each state is assigned with a pair of concrete
atomic propositions, and the state transitions are labeled with
the path predicates as Boolean expressions in infix order. For
readability purposes, we did not include the symbolic variables
and their values in each state. The atomic propositions are
both true regardless of the input values in states S0, S1,
S2, and S3. However, the input values affect the atomic
propositions starting in state S3. Out of S3’s four possible
children, |{a,b}|2 = 4, three have been created. Only the path
condition for ha : 0 b : 0i was not satisfiable.

TSV runs the symbolic model checking engine on the re-
fined and atomic proposition-level abstract temporal execution
graph. Figure 5(d) shows the run times to translate the abstract
TEG into the model checker’s syntax, which is not a significant
source of overhead. Figure 5(e) shows the time requirement
results for the symbolic model verification that takes no more
than 10 and 90 seconds, on the desktop and Raspberry Pi
respectively. In summation, the total average overheads of less
than three minutes for checking with bound 10 are within
reason for an analysis that is only executed once when new
code is uploaded. Of course, in the case of malicious code
uploading, this bound does not affect productivity, as safety
checks are done independently of plant execution under the
previous, legitimate code.

We ran the same experiments for all of our case studies.
Figure 7 shows how much each analysis step contributes to
verification for each case study on the Raspberry Pi with
bound 6. Requirements for each step vary due to different
factors. The costliest test case for symbolic execution was the
AssemblyWay, which explored the most feasible paths. The
single costliest operation was construction of the TEG for the
train interlocking. This was caused by checking the feasibility
of very large path predicates in the symbolic scan cycle.
Despite the variance between use cases, it is clear that the
net overhead is within reasonable bounds for all case studies.
Figure 8 shows the state space cardinality for the generated
temporal execution graphs for the case studies. It is noteworthy
that there is not a direct correlation between the state space
size and the overall analysis time requirement, e.g., the Train
case study results in the smallest state space and yet requires

1"

10"

100"

1000"

State"Space"Size"

N
um

be
r'o

f'S
ta
te
s'

PLC'Program'Analysis'and'Formal'Verifica<on'Steps'

Traffic"Light"

Assembly"Way"

Stacker"

Sorter"

Train"

PID"

Fig. 8. State Space Size for All Case Studies on Raspberry Pi.

the largest amount of time to finish the overall analysis.

E. Scalability

To make sure that TSV can be used for real-world PLC
code verifications, it is crucial that it can handle safety
properties of realistic sizes, i.e., number of atomic propo-
sitions, efficiently. To that end, we investigated typical and
frequently-used linear temporal logic-based software specifi-
cation formula10 [10], where the largest predicate includes
5 atomic propositions. Figure 9 shows the results of our
experiments with TSV that can handle requirement predicates
with 9 atomic propositions within approximately 2 minutes
on average. It is noteworthy that handling additional safety
properties only requires rerunning the atomic proposition value
concretization on the temporal execution graph. Consequently,
the time requirement to process every new security predicate is
often negligible because the execution graph generation is the
dominant factor in TSV’s overall performance overhead (see
Section VI-D).

VII. RELATED WORK

We now review several previous approaches to safety
verification of PLC software. The set of approaches reviewed
here represent the most applicable in terms of ability to run
directly on PLC code without requiring engineers to author an
additional high-level system model. As shown in Table I, our
approach can check more features than any previous approach
to PLC analysis. Existing tools for binary analysis of general
purpose programs are omitted as they do not handle PLC
architectural traits like multi-indexed memories.

10http://patterns.projects.cis.ksu.edu/documentation/patterns/ltl.shtml.

11

Lifting SymEx TEG1 TEG2,3 Trans NuSMV2

T
im

e
(s

)

TEG Depth bounded at 14

Systems and Internet Infrastructure Security Laboratory (SIIS) Page

Performance

�45

0.001$

0.01$

0.1$

1$

10$

100$

IL'to'ILIL$Transla0on$ Symbolic$Execu0on$ Ini0al$Model$Crea0on$ Temporal$Execu0on$
Graph$Genera0on$

Model$Transla0on$ Symbolic$Model$Checking$

Ti
m
e%
(s
ec
on

ds
)%

PLC%Program%Analysis%and%Formal%Verifica9on%Steps%

Traffic$Light$

AssemblyWay

Stacker$

Sorter$

Train$

PID$

Fig. 7. Time Requirements for All Case Studies on Raspberry Pi.

The reported numbers, only 4K states for a full 14 horizon
analysis, proves the effectiveness of the usage of symbolic
execution at reducing the state space size.

Figure 6 shows a sample generated execution graph for
the Assembly Way case study with a model checking bound
of 4. The safety requirement included two atomic propositions
a and b. Thus, each state is assigned with a pair of concrete
atomic propositions, and the state transitions are labeled with
the path predicates as Boolean expressions in infix order. For
readability purposes, we did not include the symbolic variables
and their values in each state. The atomic propositions are
both true regardless of the input values in states S0, S1,
S2, and S3. However, the input values affect the atomic
propositions starting in state S3. Out of S3’s four possible
children, |{a,b}|2 = 4, three have been created. Only the path
condition for ha : 0 b : 0i was not satisfiable.

TSV runs the symbolic model checking engine on the re-
fined and atomic proposition-level abstract temporal execution
graph. Figure 5(d) shows the run times to translate the abstract
TEG into the model checker’s syntax, which is not a significant
source of overhead. Figure 5(e) shows the time requirement
results for the symbolic model verification that takes no more
than 10 and 90 seconds, on the desktop and Raspberry Pi
respectively. In summation, the total average overheads of less
than three minutes for checking with bound 10 are within
reason for an analysis that is only executed once when new
code is uploaded. Of course, in the case of malicious code
uploading, this bound does not affect productivity, as safety
checks are done independently of plant execution under the
previous, legitimate code.

We ran the same experiments for all of our case studies.
Figure 7 shows how much each analysis step contributes to
verification for each case study on the Raspberry Pi with
bound 6. Requirements for each step vary due to different
factors. The costliest test case for symbolic execution was the
AssemblyWay, which explored the most feasible paths. The
single costliest operation was construction of the TEG for the
train interlocking. This was caused by checking the feasibility
of very large path predicates in the symbolic scan cycle.
Despite the variance between use cases, it is clear that the
net overhead is within reasonable bounds for all case studies.
Figure 8 shows the state space cardinality for the generated
temporal execution graphs for the case studies. It is noteworthy
that there is not a direct correlation between the state space
size and the overall analysis time requirement, e.g., the Train
case study results in the smallest state space and yet requires

1"

10"

100"

1000"

State"Space"Size"

N
um

be
r'o

f'S
ta
te
s'

PLC'Program'Analysis'and'Formal'Verifica<on'Steps'

Traffic"Light"

Assembly"Way"

Stacker"

Sorter"

Train"

PID"

Fig. 8. State Space Size for All Case Studies on Raspberry Pi.

the largest amount of time to finish the overall analysis.

E. Scalability

To make sure that TSV can be used for real-world PLC
code verifications, it is crucial that it can handle safety
properties of realistic sizes, i.e., number of atomic propo-
sitions, efficiently. To that end, we investigated typical and
frequently-used linear temporal logic-based software specifi-
cation formula10 [10], where the largest predicate includes
5 atomic propositions. Figure 9 shows the results of our
experiments with TSV that can handle requirement predicates
with 9 atomic propositions within approximately 2 minutes
on average. It is noteworthy that handling additional safety
properties only requires rerunning the atomic proposition value
concretization on the temporal execution graph. Consequently,
the time requirement to process every new security predicate is
often negligible because the execution graph generation is the
dominant factor in TSV’s overall performance overhead (see
Section VI-D).

VII. RELATED WORK

We now review several previous approaches to safety
verification of PLC software. The set of approaches reviewed
here represent the most applicable in terms of ability to run
directly on PLC code without requiring engineers to author an
additional high-level system model. As shown in Table I, our
approach can check more features than any previous approach
to PLC analysis. Existing tools for binary analysis of general
purpose programs are omitted as they do not handle PLC
architectural traits like multi-indexed memories.

10http://patterns.projects.cis.ksu.edu/documentation/patterns/ltl.shtml.

11

Lifting SymEx TEG1 TEG2,3 Trans NuSMV2

T
im

e
(s

)

Traffic Light

Systems and Internet Infrastructure Security Laboratory (SIIS) Page

Performance

�46

0.001$

0.01$

0.1$

1$

10$

100$

IL'to'ILIL$Transla0on$ Symbolic$Execu0on$ Ini0al$Model$Crea0on$ Temporal$Execu0on$
Graph$Genera0on$

Model$Transla0on$ Symbolic$Model$Checking$

Ti
m
e%
(s
ec
on

ds
)%

PLC%Program%Analysis%and%Formal%Verifica9on%Steps%

Traffic$Light$

AssemblyWay

Stacker$

Sorter$

Train$

PID$

Fig. 7. Time Requirements for All Case Studies on Raspberry Pi.

The reported numbers, only 4K states for a full 14 horizon
analysis, proves the effectiveness of the usage of symbolic
execution at reducing the state space size.

Figure 6 shows a sample generated execution graph for
the Assembly Way case study with a model checking bound
of 4. The safety requirement included two atomic propositions
a and b. Thus, each state is assigned with a pair of concrete
atomic propositions, and the state transitions are labeled with
the path predicates as Boolean expressions in infix order. For
readability purposes, we did not include the symbolic variables
and their values in each state. The atomic propositions are
both true regardless of the input values in states S0, S1,
S2, and S3. However, the input values affect the atomic
propositions starting in state S3. Out of S3’s four possible
children, |{a,b}|2 = 4, three have been created. Only the path
condition for ha : 0 b : 0i was not satisfiable.

TSV runs the symbolic model checking engine on the re-
fined and atomic proposition-level abstract temporal execution
graph. Figure 5(d) shows the run times to translate the abstract
TEG into the model checker’s syntax, which is not a significant
source of overhead. Figure 5(e) shows the time requirement
results for the symbolic model verification that takes no more
than 10 and 90 seconds, on the desktop and Raspberry Pi
respectively. In summation, the total average overheads of less
than three minutes for checking with bound 10 are within
reason for an analysis that is only executed once when new
code is uploaded. Of course, in the case of malicious code
uploading, this bound does not affect productivity, as safety
checks are done independently of plant execution under the
previous, legitimate code.

We ran the same experiments for all of our case studies.
Figure 7 shows how much each analysis step contributes to
verification for each case study on the Raspberry Pi with
bound 6. Requirements for each step vary due to different
factors. The costliest test case for symbolic execution was the
AssemblyWay, which explored the most feasible paths. The
single costliest operation was construction of the TEG for the
train interlocking. This was caused by checking the feasibility
of very large path predicates in the symbolic scan cycle.
Despite the variance between use cases, it is clear that the
net overhead is within reasonable bounds for all case studies.
Figure 8 shows the state space cardinality for the generated
temporal execution graphs for the case studies. It is noteworthy
that there is not a direct correlation between the state space
size and the overall analysis time requirement, e.g., the Train
case study results in the smallest state space and yet requires

1"

10"

100"

1000"

State"Space"Size"

N
um

be
r'o

f'S
ta
te
s'

PLC'Program'Analysis'and'Formal'Verifica<on'Steps'

Traffic"Light"

Assembly"Way"

Stacker"

Sorter"

Train"

PID"

Fig. 8. State Space Size for All Case Studies on Raspberry Pi.

the largest amount of time to finish the overall analysis.

E. Scalability

To make sure that TSV can be used for real-world PLC
code verifications, it is crucial that it can handle safety
properties of realistic sizes, i.e., number of atomic propo-
sitions, efficiently. To that end, we investigated typical and
frequently-used linear temporal logic-based software specifi-
cation formula10 [10], where the largest predicate includes
5 atomic propositions. Figure 9 shows the results of our
experiments with TSV that can handle requirement predicates
with 9 atomic propositions within approximately 2 minutes
on average. It is noteworthy that handling additional safety
properties only requires rerunning the atomic proposition value
concretization on the temporal execution graph. Consequently,
the time requirement to process every new security predicate is
often negligible because the execution graph generation is the
dominant factor in TSV’s overall performance overhead (see
Section VI-D).

VII. RELATED WORK

We now review several previous approaches to safety
verification of PLC software. The set of approaches reviewed
here represent the most applicable in terms of ability to run
directly on PLC code without requiring engineers to author an
additional high-level system model. As shown in Table I, our
approach can check more features than any previous approach
to PLC analysis. Existing tools for binary analysis of general
purpose programs are omitted as they do not handle PLC
architectural traits like multi-indexed memories.

10http://patterns.projects.cis.ksu.edu/documentation/patterns/ltl.shtml.

11

Lifting SymEx TEG1 TEG2,3 Trans NuSMV2

T
im

e
(s

)

Assembly Way

Large Symbolic Scan Cycle

Systems and Internet Infrastructure Security Laboratory (SIIS) Page

Performance

�47

0.001$

0.01$

0.1$

1$

10$

100$

IL'to'ILIL$Transla0on$ Symbolic$Execu0on$ Ini0al$Model$Crea0on$ Temporal$Execu0on$
Graph$Genera0on$

Model$Transla0on$ Symbolic$Model$Checking$

Ti
m
e%
(s
ec
on

ds
)%

PLC%Program%Analysis%and%Formal%Verifica9on%Steps%

Traffic$Light$

AssemblyWay

Stacker$

Sorter$

Train$

PID$

Fig. 7. Time Requirements for All Case Studies on Raspberry Pi.

The reported numbers, only 4K states for a full 14 horizon
analysis, proves the effectiveness of the usage of symbolic
execution at reducing the state space size.

Figure 6 shows a sample generated execution graph for
the Assembly Way case study with a model checking bound
of 4. The safety requirement included two atomic propositions
a and b. Thus, each state is assigned with a pair of concrete
atomic propositions, and the state transitions are labeled with
the path predicates as Boolean expressions in infix order. For
readability purposes, we did not include the symbolic variables
and their values in each state. The atomic propositions are
both true regardless of the input values in states S0, S1,
S2, and S3. However, the input values affect the atomic
propositions starting in state S3. Out of S3’s four possible
children, |{a,b}|2 = 4, three have been created. Only the path
condition for ha : 0 b : 0i was not satisfiable.

TSV runs the symbolic model checking engine on the re-
fined and atomic proposition-level abstract temporal execution
graph. Figure 5(d) shows the run times to translate the abstract
TEG into the model checker’s syntax, which is not a significant
source of overhead. Figure 5(e) shows the time requirement
results for the symbolic model verification that takes no more
than 10 and 90 seconds, on the desktop and Raspberry Pi
respectively. In summation, the total average overheads of less
than three minutes for checking with bound 10 are within
reason for an analysis that is only executed once when new
code is uploaded. Of course, in the case of malicious code
uploading, this bound does not affect productivity, as safety
checks are done independently of plant execution under the
previous, legitimate code.

We ran the same experiments for all of our case studies.
Figure 7 shows how much each analysis step contributes to
verification for each case study on the Raspberry Pi with
bound 6. Requirements for each step vary due to different
factors. The costliest test case for symbolic execution was the
AssemblyWay, which explored the most feasible paths. The
single costliest operation was construction of the TEG for the
train interlocking. This was caused by checking the feasibility
of very large path predicates in the symbolic scan cycle.
Despite the variance between use cases, it is clear that the
net overhead is within reasonable bounds for all case studies.
Figure 8 shows the state space cardinality for the generated
temporal execution graphs for the case studies. It is noteworthy
that there is not a direct correlation between the state space
size and the overall analysis time requirement, e.g., the Train
case study results in the smallest state space and yet requires

1"

10"

100"

1000"

State"Space"Size"

N
um

be
r'o

f'S
ta
te
s'

PLC'Program'Analysis'and'Formal'Verifica<on'Steps'

Traffic"Light"

Assembly"Way"

Stacker"

Sorter"

Train"

PID"

Fig. 8. State Space Size for All Case Studies on Raspberry Pi.

the largest amount of time to finish the overall analysis.

E. Scalability

To make sure that TSV can be used for real-world PLC
code verifications, it is crucial that it can handle safety
properties of realistic sizes, i.e., number of atomic propo-
sitions, efficiently. To that end, we investigated typical and
frequently-used linear temporal logic-based software specifi-
cation formula10 [10], where the largest predicate includes
5 atomic propositions. Figure 9 shows the results of our
experiments with TSV that can handle requirement predicates
with 9 atomic propositions within approximately 2 minutes
on average. It is noteworthy that handling additional safety
properties only requires rerunning the atomic proposition value
concretization on the temporal execution graph. Consequently,
the time requirement to process every new security predicate is
often negligible because the execution graph generation is the
dominant factor in TSV’s overall performance overhead (see
Section VI-D).

VII. RELATED WORK

We now review several previous approaches to safety
verification of PLC software. The set of approaches reviewed
here represent the most applicable in terms of ability to run
directly on PLC code without requiring engineers to author an
additional high-level system model. As shown in Table I, our
approach can check more features than any previous approach
to PLC analysis. Existing tools for binary analysis of general
purpose programs are omitted as they do not handle PLC
architectural traits like multi-indexed memories.

10http://patterns.projects.cis.ksu.edu/documentation/patterns/ltl.shtml.

11

Lifting SymEx TEG1 TEG2,3 Trans NuSMV2

T
im

e
(s

)

Stacker Large State Space

Systems and Internet Infrastructure Security Laboratory (SIIS) Page

Performance

�48

0.001$

0.01$

0.1$

1$

10$

100$

IL'to'ILIL$Transla0on$ Symbolic$Execu0on$ Ini0al$Model$Crea0on$ Temporal$Execu0on$
Graph$Genera0on$

Model$Transla0on$ Symbolic$Model$Checking$

Ti
m
e%
(s
ec
on

ds
)%

PLC%Program%Analysis%and%Formal%Verifica9on%Steps%

Traffic$Light$

AssemblyWay

Stacker$

Sorter$

Train$

PID$

Fig. 7. Time Requirements for All Case Studies on Raspberry Pi.

The reported numbers, only 4K states for a full 14 horizon
analysis, proves the effectiveness of the usage of symbolic
execution at reducing the state space size.

Figure 6 shows a sample generated execution graph for
the Assembly Way case study with a model checking bound
of 4. The safety requirement included two atomic propositions
a and b. Thus, each state is assigned with a pair of concrete
atomic propositions, and the state transitions are labeled with
the path predicates as Boolean expressions in infix order. For
readability purposes, we did not include the symbolic variables
and their values in each state. The atomic propositions are
both true regardless of the input values in states S0, S1,
S2, and S3. However, the input values affect the atomic
propositions starting in state S3. Out of S3’s four possible
children, |{a,b}|2 = 4, three have been created. Only the path
condition for ha : 0 b : 0i was not satisfiable.

TSV runs the symbolic model checking engine on the re-
fined and atomic proposition-level abstract temporal execution
graph. Figure 5(d) shows the run times to translate the abstract
TEG into the model checker’s syntax, which is not a significant
source of overhead. Figure 5(e) shows the time requirement
results for the symbolic model verification that takes no more
than 10 and 90 seconds, on the desktop and Raspberry Pi
respectively. In summation, the total average overheads of less
than three minutes for checking with bound 10 are within
reason for an analysis that is only executed once when new
code is uploaded. Of course, in the case of malicious code
uploading, this bound does not affect productivity, as safety
checks are done independently of plant execution under the
previous, legitimate code.

We ran the same experiments for all of our case studies.
Figure 7 shows how much each analysis step contributes to
verification for each case study on the Raspberry Pi with
bound 6. Requirements for each step vary due to different
factors. The costliest test case for symbolic execution was the
AssemblyWay, which explored the most feasible paths. The
single costliest operation was construction of the TEG for the
train interlocking. This was caused by checking the feasibility
of very large path predicates in the symbolic scan cycle.
Despite the variance between use cases, it is clear that the
net overhead is within reasonable bounds for all case studies.
Figure 8 shows the state space cardinality for the generated
temporal execution graphs for the case studies. It is noteworthy
that there is not a direct correlation between the state space
size and the overall analysis time requirement, e.g., the Train
case study results in the smallest state space and yet requires

1"

10"

100"

1000"

State"Space"Size"

N
um

be
r'o

f'S
ta
te
s'

PLC'Program'Analysis'and'Formal'Verifica<on'Steps'

Traffic"Light"

Assembly"Way"

Stacker"

Sorter"

Train"

PID"

Fig. 8. State Space Size for All Case Studies on Raspberry Pi.

the largest amount of time to finish the overall analysis.

E. Scalability

To make sure that TSV can be used for real-world PLC
code verifications, it is crucial that it can handle safety
properties of realistic sizes, i.e., number of atomic propo-
sitions, efficiently. To that end, we investigated typical and
frequently-used linear temporal logic-based software specifi-
cation formula10 [10], where the largest predicate includes
5 atomic propositions. Figure 9 shows the results of our
experiments with TSV that can handle requirement predicates
with 9 atomic propositions within approximately 2 minutes
on average. It is noteworthy that handling additional safety
properties only requires rerunning the atomic proposition value
concretization on the temporal execution graph. Consequently,
the time requirement to process every new security predicate is
often negligible because the execution graph generation is the
dominant factor in TSV’s overall performance overhead (see
Section VI-D).

VII. RELATED WORK

We now review several previous approaches to safety
verification of PLC software. The set of approaches reviewed
here represent the most applicable in terms of ability to run
directly on PLC code without requiring engineers to author an
additional high-level system model. As shown in Table I, our
approach can check more features than any previous approach
to PLC analysis. Existing tools for binary analysis of general
purpose programs are omitted as they do not handle PLC
architectural traits like multi-indexed memories.

10http://patterns.projects.cis.ksu.edu/documentation/patterns/ltl.shtml.

11

Lifting SymEx TEG1 TEG2,3 Trans NuSMV2

T
im

e
(s

)

Sorter

Complex path predicates

Systems and Internet Infrastructure Security Laboratory (SIIS) Page

Performance

�49

0.001$

0.01$

0.1$

1$

10$

100$

IL'to'ILIL$Transla0on$ Symbolic$Execu0on$ Ini0al$Model$Crea0on$ Temporal$Execu0on$
Graph$Genera0on$

Model$Transla0on$ Symbolic$Model$Checking$

Ti
m
e%
(s
ec
on

ds
)%

PLC%Program%Analysis%and%Formal%Verifica9on%Steps%

Traffic$Light$

AssemblyWay

Stacker$

Sorter$

Train$

PID$

Fig. 7. Time Requirements for All Case Studies on Raspberry Pi.

The reported numbers, only 4K states for a full 14 horizon
analysis, proves the effectiveness of the usage of symbolic
execution at reducing the state space size.

Figure 6 shows a sample generated execution graph for
the Assembly Way case study with a model checking bound
of 4. The safety requirement included two atomic propositions
a and b. Thus, each state is assigned with a pair of concrete
atomic propositions, and the state transitions are labeled with
the path predicates as Boolean expressions in infix order. For
readability purposes, we did not include the symbolic variables
and their values in each state. The atomic propositions are
both true regardless of the input values in states S0, S1,
S2, and S3. However, the input values affect the atomic
propositions starting in state S3. Out of S3’s four possible
children, |{a,b}|2 = 4, three have been created. Only the path
condition for ha : 0 b : 0i was not satisfiable.

TSV runs the symbolic model checking engine on the re-
fined and atomic proposition-level abstract temporal execution
graph. Figure 5(d) shows the run times to translate the abstract
TEG into the model checker’s syntax, which is not a significant
source of overhead. Figure 5(e) shows the time requirement
results for the symbolic model verification that takes no more
than 10 and 90 seconds, on the desktop and Raspberry Pi
respectively. In summation, the total average overheads of less
than three minutes for checking with bound 10 are within
reason for an analysis that is only executed once when new
code is uploaded. Of course, in the case of malicious code
uploading, this bound does not affect productivity, as safety
checks are done independently of plant execution under the
previous, legitimate code.

We ran the same experiments for all of our case studies.
Figure 7 shows how much each analysis step contributes to
verification for each case study on the Raspberry Pi with
bound 6. Requirements for each step vary due to different
factors. The costliest test case for symbolic execution was the
AssemblyWay, which explored the most feasible paths. The
single costliest operation was construction of the TEG for the
train interlocking. This was caused by checking the feasibility
of very large path predicates in the symbolic scan cycle.
Despite the variance between use cases, it is clear that the
net overhead is within reasonable bounds for all case studies.
Figure 8 shows the state space cardinality for the generated
temporal execution graphs for the case studies. It is noteworthy
that there is not a direct correlation between the state space
size and the overall analysis time requirement, e.g., the Train
case study results in the smallest state space and yet requires

1"

10"

100"

1000"

State"Space"Size"

N
um

be
r'o

f'S
ta
te
s'

PLC'Program'Analysis'and'Formal'Verifica<on'Steps'

Traffic"Light"

Assembly"Way"

Stacker"

Sorter"

Train"

PID"

Fig. 8. State Space Size for All Case Studies on Raspberry Pi.

the largest amount of time to finish the overall analysis.

E. Scalability

To make sure that TSV can be used for real-world PLC
code verifications, it is crucial that it can handle safety
properties of realistic sizes, i.e., number of atomic propo-
sitions, efficiently. To that end, we investigated typical and
frequently-used linear temporal logic-based software specifi-
cation formula10 [10], where the largest predicate includes
5 atomic propositions. Figure 9 shows the results of our
experiments with TSV that can handle requirement predicates
with 9 atomic propositions within approximately 2 minutes
on average. It is noteworthy that handling additional safety
properties only requires rerunning the atomic proposition value
concretization on the temporal execution graph. Consequently,
the time requirement to process every new security predicate is
often negligible because the execution graph generation is the
dominant factor in TSV’s overall performance overhead (see
Section VI-D).

VII. RELATED WORK

We now review several previous approaches to safety
verification of PLC software. The set of approaches reviewed
here represent the most applicable in terms of ability to run
directly on PLC code without requiring engineers to author an
additional high-level system model. As shown in Table I, our
approach can check more features than any previous approach
to PLC analysis. Existing tools for binary analysis of general
purpose programs are omitted as they do not handle PLC
architectural traits like multi-indexed memories.

10http://patterns.projects.cis.ksu.edu/documentation/patterns/ltl.shtml.

11

Lifting SymEx TEG1 TEG2,3 Trans NuSMV2

T
im

e
(s

)

Train

Systems and Internet Infrastructure Security Laboratory (SIIS) Page

Performance

�50

0.001$

0.01$

0.1$

1$

10$

100$

IL'to'ILIL$Transla0on$ Symbolic$Execu0on$ Ini0al$Model$Crea0on$ Temporal$Execu0on$
Graph$Genera0on$

Model$Transla0on$ Symbolic$Model$Checking$

Ti
m
e%
(s
ec
on

ds
)%

PLC%Program%Analysis%and%Formal%Verifica9on%Steps%

Traffic$Light$

AssemblyWay

Stacker$

Sorter$

Train$

PID$

Fig. 7. Time Requirements for All Case Studies on Raspberry Pi.

The reported numbers, only 4K states for a full 14 horizon
analysis, proves the effectiveness of the usage of symbolic
execution at reducing the state space size.

Figure 6 shows a sample generated execution graph for
the Assembly Way case study with a model checking bound
of 4. The safety requirement included two atomic propositions
a and b. Thus, each state is assigned with a pair of concrete
atomic propositions, and the state transitions are labeled with
the path predicates as Boolean expressions in infix order. For
readability purposes, we did not include the symbolic variables
and their values in each state. The atomic propositions are
both true regardless of the input values in states S0, S1,
S2, and S3. However, the input values affect the atomic
propositions starting in state S3. Out of S3’s four possible
children, |{a,b}|2 = 4, three have been created. Only the path
condition for ha : 0 b : 0i was not satisfiable.

TSV runs the symbolic model checking engine on the re-
fined and atomic proposition-level abstract temporal execution
graph. Figure 5(d) shows the run times to translate the abstract
TEG into the model checker’s syntax, which is not a significant
source of overhead. Figure 5(e) shows the time requirement
results for the symbolic model verification that takes no more
than 10 and 90 seconds, on the desktop and Raspberry Pi
respectively. In summation, the total average overheads of less
than three minutes for checking with bound 10 are within
reason for an analysis that is only executed once when new
code is uploaded. Of course, in the case of malicious code
uploading, this bound does not affect productivity, as safety
checks are done independently of plant execution under the
previous, legitimate code.

We ran the same experiments for all of our case studies.
Figure 7 shows how much each analysis step contributes to
verification for each case study on the Raspberry Pi with
bound 6. Requirements for each step vary due to different
factors. The costliest test case for symbolic execution was the
AssemblyWay, which explored the most feasible paths. The
single costliest operation was construction of the TEG for the
train interlocking. This was caused by checking the feasibility
of very large path predicates in the symbolic scan cycle.
Despite the variance between use cases, it is clear that the
net overhead is within reasonable bounds for all case studies.
Figure 8 shows the state space cardinality for the generated
temporal execution graphs for the case studies. It is noteworthy
that there is not a direct correlation between the state space
size and the overall analysis time requirement, e.g., the Train
case study results in the smallest state space and yet requires

1"

10"

100"

1000"

State"Space"Size"

N
um

be
r'o

f'S
ta
te
s'

PLC'Program'Analysis'and'Formal'Verifica<on'Steps'

Traffic"Light"

Assembly"Way"

Stacker"

Sorter"

Train"

PID"

Fig. 8. State Space Size for All Case Studies on Raspberry Pi.

the largest amount of time to finish the overall analysis.

E. Scalability

To make sure that TSV can be used for real-world PLC
code verifications, it is crucial that it can handle safety
properties of realistic sizes, i.e., number of atomic propo-
sitions, efficiently. To that end, we investigated typical and
frequently-used linear temporal logic-based software specifi-
cation formula10 [10], where the largest predicate includes
5 atomic propositions. Figure 9 shows the results of our
experiments with TSV that can handle requirement predicates
with 9 atomic propositions within approximately 2 minutes
on average. It is noteworthy that handling additional safety
properties only requires rerunning the atomic proposition value
concretization on the temporal execution graph. Consequently,
the time requirement to process every new security predicate is
often negligible because the execution graph generation is the
dominant factor in TSV’s overall performance overhead (see
Section VI-D).

VII. RELATED WORK

We now review several previous approaches to safety
verification of PLC software. The set of approaches reviewed
here represent the most applicable in terms of ability to run
directly on PLC code without requiring engineers to author an
additional high-level system model. As shown in Table I, our
approach can check more features than any previous approach
to PLC analysis. Existing tools for binary analysis of general
purpose programs are omitted as they do not handle PLC
architectural traits like multi-indexed memories.

10http://patterns.projects.cis.ksu.edu/documentation/patterns/ltl.shtml.

11

Lifting SymEx TEG1 TEG2,3 Trans NuSMV2

T
im

e
(s

)

PID

Systems and Internet Infrastructure Security Laboratory (SIIS) Page

Related Work

�51

TABLE I. COMPARISON OF ANALYZED FEATURES WITH RELATED WORK. RELATED APPROACHES ARE ABBREVIATED: SAT=SAT SOLVING,
THM=THEOREM PROVING, MOD=MODEL CHECKING

Ap
pr

oa
ch

Bo
ole

an
Lo

gic
En

um

Nu
m

er
ic

Co
nd

. B
ra

nc
hi

ng
Fu

nc
tio

n
Bl

oc
ks

M
CR

Ne
ste

d
Lo

gic
Ti

m
er

s

Co
un

ter
s

Po
in

ter
s

Da
ta

Bl
oc

ks
Ed

ge
De

tec
tio

n

Park et al. [22] SAT X
Groote et al. [14] SAT X X
Homer [15] Thm X X X X
Biha [21] Thm X X X X X
SABOT [18] Mod X X
Canet et al. [6] Mod X X X
TSV - X X X X X X X X X X X X

Fig. 9. Scalability Analysis for Various Predicates

The most basic approaches are those using SAT-based
model checking. Park et al. [22] handle only Boolean logic.
This had the advantage of being able to analyze larger
sequence-based control systems, but is only narrowly appli-
cable. Groote et al. [14] employs a similar technique, but
is able to handle timers by modeling the exact wall clock
execution time. This assumes that the approximate time taken
for each scan cycle is known, and fails if scan cycle times
vary too greatly depending on input. An improved handling
of timers can be found in SABOT [18], which models their
termination as a nondeterministic Boolean value. Additionally,
TSV’s improvements over SABOT allow for virtually all PLC
programs to be analyzed, as opposed to exclusively Boolean
variables and timers, which SABOT is limited to.

The two theorem proving based approaches [15], [21]
handle numerical instructions, but not do not implement rules
for overflow checks or mixed bit vector and integer arithmetic.
The model checking approach used by Canet et al. [6], uses
the same modeling as TSV for conditional branches, but does
not implement numerical instructions, which lead to state
space explosion. Our use of symbolic execution eliminates
this explosion problem. TSV’s ability to handle more PLC
features (in most cases all available features) than previous
work is thanks to the use of ILIL, which reduces side effects
that would otherwise require many high-level modeling rules
into a small set of low-level primitives.

We now review some representative past efforts at securing
control systems. Stouffer et al. [31] present a series of NIST
guideline security architectures for the industrial control sys-
tems that cover supervisory control and data acquisition sys-

tems, distributed control systems, and PLCs. Such guidelines
are also used in the energy industry [20], [32]. It has, however,
been argued that compliance with these standards can lead to
a false sense of security [24], [33].

There have also been efforts to build novel security mech-
anisms for control systems. Mohan et al. [19] introduced a
monitor that dynamically checks the safety of plant behavior.
A similar approach using model based intrusion detection was
proposed in [7]. Goble [13] introduce mathematical analysis
techniques to evaluate various aspects, such as safety and
reliability, of a given control system including the PLC devices
quantitatively. However, the proposed solution focuses mainly
on accidental failures and does not investigate intentionally
malicious actions.

Compared with existing binary analysis tools, TSV is more
apt for verifying temporal properties. For example, platforms
such as BitBlaze [30], are aimed mainly at comparing binary
programs, identifying malicious behavior, and exploit genera-
tion. Additionally, compared with the existing work combining
symbolic execution and model checking to reduce state space
explosion, TSV is the only solution enabling binary-level
analysis.

PLC vendors themselves have included some rudimentary
security measures into their solutions. Based on market data by
Schwartz et al. [28], we studied the security measures used by
PLCs accounting for 74% of market share. This included PLCs
from Siemens (31%), Rockwell (22%), Mitsubishi Electric
(13%), and Schneider Electric (8%). We found that all four
vendors use only password authorization, typically with a
single privilege level. Furthermore, password authentication
measure can be disabled in all four systems. Additionally,
certain Siemens systems use client-side authentication. This
allows the attacker to completely bypass authentication by
implementing his own client for uploading malicious code.

VIII. CONCLUSIONS

In this paper, we presented TSV, a trusted verification
platform for programmable logic controllers, that allows last
step security verification of the control commands right before
they affect the physical system. TSV achieves a reasonable
efficiency via using a new hybrid symbolic execution-enable
model checking algorithm. We implemented a real-world pro-
totype of the TSV framework on an independent Raspberry PI
chip with minimal attack surface. Our evaluation results shows

12

Systems and Internet Infrastructure Security Laboratory (SIIS) Page

Related Work

�52

TABLE I. COMPARISON OF ANALYZED FEATURES WITH RELATED WORK. RELATED APPROACHES ARE ABBREVIATED: SAT=SAT SOLVING,
THM=THEOREM PROVING, MOD=MODEL CHECKING

Ap
pr

oa
ch

Bo
ole

an
Lo

gic
En

um

Nu
m

er
ic

Co
nd

. B
ra

nc
hi

ng
Fu

nc
tio

n
Bl

oc
ks

M
CR

Ne
ste

d
Lo

gic
Ti

m
er

s

Co
un

ter
s

Po
in

ter
s

Da
ta

Bl
oc

ks
Ed

ge
De

tec
tio

n

Park et al. [22] SAT X
Groote et al. [14] SAT X X
Homer [15] Thm X X X X
Biha [21] Thm X X X X X
SABOT [18] Mod X X
Canet et al. [6] Mod X X X
TSV - X X X X X X X X X X X X

Fig. 9. Scalability Analysis for Various Predicates

The most basic approaches are those using SAT-based
model checking. Park et al. [22] handle only Boolean logic.
This had the advantage of being able to analyze larger
sequence-based control systems, but is only narrowly appli-
cable. Groote et al. [14] employs a similar technique, but
is able to handle timers by modeling the exact wall clock
execution time. This assumes that the approximate time taken
for each scan cycle is known, and fails if scan cycle times
vary too greatly depending on input. An improved handling
of timers can be found in SABOT [18], which models their
termination as a nondeterministic Boolean value. Additionally,
TSV’s improvements over SABOT allow for virtually all PLC
programs to be analyzed, as opposed to exclusively Boolean
variables and timers, which SABOT is limited to.

The two theorem proving based approaches [15], [21]
handle numerical instructions, but not do not implement rules
for overflow checks or mixed bit vector and integer arithmetic.
The model checking approach used by Canet et al. [6], uses
the same modeling as TSV for conditional branches, but does
not implement numerical instructions, which lead to state
space explosion. Our use of symbolic execution eliminates
this explosion problem. TSV’s ability to handle more PLC
features (in most cases all available features) than previous
work is thanks to the use of ILIL, which reduces side effects
that would otherwise require many high-level modeling rules
into a small set of low-level primitives.

We now review some representative past efforts at securing
control systems. Stouffer et al. [31] present a series of NIST
guideline security architectures for the industrial control sys-
tems that cover supervisory control and data acquisition sys-

tems, distributed control systems, and PLCs. Such guidelines
are also used in the energy industry [20], [32]. It has, however,
been argued that compliance with these standards can lead to
a false sense of security [24], [33].

There have also been efforts to build novel security mech-
anisms for control systems. Mohan et al. [19] introduced a
monitor that dynamically checks the safety of plant behavior.
A similar approach using model based intrusion detection was
proposed in [7]. Goble [13] introduce mathematical analysis
techniques to evaluate various aspects, such as safety and
reliability, of a given control system including the PLC devices
quantitatively. However, the proposed solution focuses mainly
on accidental failures and does not investigate intentionally
malicious actions.

Compared with existing binary analysis tools, TSV is more
apt for verifying temporal properties. For example, platforms
such as BitBlaze [30], are aimed mainly at comparing binary
programs, identifying malicious behavior, and exploit genera-
tion. Additionally, compared with the existing work combining
symbolic execution and model checking to reduce state space
explosion, TSV is the only solution enabling binary-level
analysis.

PLC vendors themselves have included some rudimentary
security measures into their solutions. Based on market data by
Schwartz et al. [28], we studied the security measures used by
PLCs accounting for 74% of market share. This included PLCs
from Siemens (31%), Rockwell (22%), Mitsubishi Electric
(13%), and Schneider Electric (8%). We found that all four
vendors use only password authorization, typically with a
single privilege level. Furthermore, password authentication
measure can be disabled in all four systems. Additionally,
certain Siemens systems use client-side authentication. This
allows the attacker to completely bypass authentication by
implementing his own client for uploading malicious code.

VIII. CONCLUSIONS

In this paper, we presented TSV, a trusted verification
platform for programmable logic controllers, that allows last
step security verification of the control commands right before
they affect the physical system. TSV achieves a reasonable
efficiency via using a new hybrid symbolic execution-enable
model checking algorithm. We implemented a real-world pro-
totype of the TSV framework on an independent Raspberry PI
chip with minimal attack surface. Our evaluation results shows

12

No efficient reduction

Systems and Internet Infrastructure Security Laboratory (SIIS) Page

Related Work

�53

TABLE I. COMPARISON OF ANALYZED FEATURES WITH RELATED WORK. RELATED APPROACHES ARE ABBREVIATED: SAT=SAT SOLVING,
THM=THEOREM PROVING, MOD=MODEL CHECKING

Ap
pr

oa
ch

Bo
ole

an
Lo

gic
En

um

Nu
m

er
ic

Co
nd

. B
ra

nc
hi

ng
Fu

nc
tio

n
Bl

oc
ks

M
CR

Ne
ste

d
Lo

gic
Ti

m
er

s

Co
un

ter
s

Po
in

ter
s

Da
ta

Bl
oc

ks
Ed

ge
De

tec
tio

n

Park et al. [22] SAT X
Groote et al. [14] SAT X X
Homer [15] Thm X X X X
Biha [21] Thm X X X X X
SABOT [18] Mod X X
Canet et al. [6] Mod X X X
TSV - X X X X X X X X X X X X

Fig. 9. Scalability Analysis for Various Predicates

The most basic approaches are those using SAT-based
model checking. Park et al. [22] handle only Boolean logic.
This had the advantage of being able to analyze larger
sequence-based control systems, but is only narrowly appli-
cable. Groote et al. [14] employs a similar technique, but
is able to handle timers by modeling the exact wall clock
execution time. This assumes that the approximate time taken
for each scan cycle is known, and fails if scan cycle times
vary too greatly depending on input. An improved handling
of timers can be found in SABOT [18], which models their
termination as a nondeterministic Boolean value. Additionally,
TSV’s improvements over SABOT allow for virtually all PLC
programs to be analyzed, as opposed to exclusively Boolean
variables and timers, which SABOT is limited to.

The two theorem proving based approaches [15], [21]
handle numerical instructions, but not do not implement rules
for overflow checks or mixed bit vector and integer arithmetic.
The model checking approach used by Canet et al. [6], uses
the same modeling as TSV for conditional branches, but does
not implement numerical instructions, which lead to state
space explosion. Our use of symbolic execution eliminates
this explosion problem. TSV’s ability to handle more PLC
features (in most cases all available features) than previous
work is thanks to the use of ILIL, which reduces side effects
that would otherwise require many high-level modeling rules
into a small set of low-level primitives.

We now review some representative past efforts at securing
control systems. Stouffer et al. [31] present a series of NIST
guideline security architectures for the industrial control sys-
tems that cover supervisory control and data acquisition sys-

tems, distributed control systems, and PLCs. Such guidelines
are also used in the energy industry [20], [32]. It has, however,
been argued that compliance with these standards can lead to
a false sense of security [24], [33].

There have also been efforts to build novel security mech-
anisms for control systems. Mohan et al. [19] introduced a
monitor that dynamically checks the safety of plant behavior.
A similar approach using model based intrusion detection was
proposed in [7]. Goble [13] introduce mathematical analysis
techniques to evaluate various aspects, such as safety and
reliability, of a given control system including the PLC devices
quantitatively. However, the proposed solution focuses mainly
on accidental failures and does not investigate intentionally
malicious actions.

Compared with existing binary analysis tools, TSV is more
apt for verifying temporal properties. For example, platforms
such as BitBlaze [30], are aimed mainly at comparing binary
programs, identifying malicious behavior, and exploit genera-
tion. Additionally, compared with the existing work combining
symbolic execution and model checking to reduce state space
explosion, TSV is the only solution enabling binary-level
analysis.

PLC vendors themselves have included some rudimentary
security measures into their solutions. Based on market data by
Schwartz et al. [28], we studied the security measures used by
PLCs accounting for 74% of market share. This included PLCs
from Siemens (31%), Rockwell (22%), Mitsubishi Electric
(13%), and Schneider Electric (8%). We found that all four
vendors use only password authorization, typically with a
single privilege level. Furthermore, password authentication
measure can be disabled in all four systems. Additionally,
certain Siemens systems use client-side authentication. This
allows the attacker to completely bypass authentication by
implementing his own client for uploading malicious code.

VIII. CONCLUSIONS

In this paper, we presented TSV, a trusted verification
platform for programmable logic controllers, that allows last
step security verification of the control commands right before
they affect the physical system. TSV achieves a reasonable
efficiency via using a new hybrid symbolic execution-enable
model checking algorithm. We implemented a real-world pro-
totype of the TSV framework on an independent Raspberry PI
chip with minimal attack surface. Our evaluation results shows

12

Hard to formalize IL instructions with side-effects

Systems and Internet Infrastructure Security Laboratory (SIIS) Page

Related Work

�54

TABLE I. COMPARISON OF ANALYZED FEATURES WITH RELATED WORK. RELATED APPROACHES ARE ABBREVIATED: SAT=SAT SOLVING,
THM=THEOREM PROVING, MOD=MODEL CHECKING

Ap
pr

oa
ch

Bo
ole

an
Lo

gic
En

um

Nu
m

er
ic

Co
nd

. B
ra

nc
hi

ng
Fu

nc
tio

n
Bl

oc
ks

M
CR

Ne
ste

d
Lo

gic
Ti

m
er

s

Co
un

ter
s

Po
in

ter
s

Da
ta

Bl
oc

ks
Ed

ge
De

tec
tio

n

Park et al. [22] SAT X
Groote et al. [14] SAT X X
Homer [15] Thm X X X X
Biha [21] Thm X X X X X
SABOT [18] Mod X X
Canet et al. [6] Mod X X X
TSV - X X X X X X X X X X X X

Fig. 9. Scalability Analysis for Various Predicates

The most basic approaches are those using SAT-based
model checking. Park et al. [22] handle only Boolean logic.
This had the advantage of being able to analyze larger
sequence-based control systems, but is only narrowly appli-
cable. Groote et al. [14] employs a similar technique, but
is able to handle timers by modeling the exact wall clock
execution time. This assumes that the approximate time taken
for each scan cycle is known, and fails if scan cycle times
vary too greatly depending on input. An improved handling
of timers can be found in SABOT [18], which models their
termination as a nondeterministic Boolean value. Additionally,
TSV’s improvements over SABOT allow for virtually all PLC
programs to be analyzed, as opposed to exclusively Boolean
variables and timers, which SABOT is limited to.

The two theorem proving based approaches [15], [21]
handle numerical instructions, but not do not implement rules
for overflow checks or mixed bit vector and integer arithmetic.
The model checking approach used by Canet et al. [6], uses
the same modeling as TSV for conditional branches, but does
not implement numerical instructions, which lead to state
space explosion. Our use of symbolic execution eliminates
this explosion problem. TSV’s ability to handle more PLC
features (in most cases all available features) than previous
work is thanks to the use of ILIL, which reduces side effects
that would otherwise require many high-level modeling rules
into a small set of low-level primitives.

We now review some representative past efforts at securing
control systems. Stouffer et al. [31] present a series of NIST
guideline security architectures for the industrial control sys-
tems that cover supervisory control and data acquisition sys-

tems, distributed control systems, and PLCs. Such guidelines
are also used in the energy industry [20], [32]. It has, however,
been argued that compliance with these standards can lead to
a false sense of security [24], [33].

There have also been efforts to build novel security mech-
anisms for control systems. Mohan et al. [19] introduced a
monitor that dynamically checks the safety of plant behavior.
A similar approach using model based intrusion detection was
proposed in [7]. Goble [13] introduce mathematical analysis
techniques to evaluate various aspects, such as safety and
reliability, of a given control system including the PLC devices
quantitatively. However, the proposed solution focuses mainly
on accidental failures and does not investigate intentionally
malicious actions.

Compared with existing binary analysis tools, TSV is more
apt for verifying temporal properties. For example, platforms
such as BitBlaze [30], are aimed mainly at comparing binary
programs, identifying malicious behavior, and exploit genera-
tion. Additionally, compared with the existing work combining
symbolic execution and model checking to reduce state space
explosion, TSV is the only solution enabling binary-level
analysis.

PLC vendors themselves have included some rudimentary
security measures into their solutions. Based on market data by
Schwartz et al. [28], we studied the security measures used by
PLCs accounting for 74% of market share. This included PLCs
from Siemens (31%), Rockwell (22%), Mitsubishi Electric
(13%), and Schneider Electric (8%). We found that all four
vendors use only password authorization, typically with a
single privilege level. Furthermore, password authentication
measure can be disabled in all four systems. Additionally,
certain Siemens systems use client-side authentication. This
allows the attacker to completely bypass authentication by
implementing his own client for uploading malicious code.

VIII. CONCLUSIONS

In this paper, we presented TSV, a trusted verification
platform for programmable logic controllers, that allows last
step security verification of the control commands right before
they affect the physical system. TSV achieves a reasonable
efficiency via using a new hybrid symbolic execution-enable
model checking algorithm. We implemented a real-world pro-
totype of the TSV framework on an independent Raspberry PI
chip with minimal attack surface. Our evaluation results shows

12

No symbolic state lumping

Systems and Internet Infrastructure Security Laboratory (SIIS) Page

Thanks!

�55

???

Steve: smclaugh@cse.psu.edu	
Saman: s.zonouz@miami.edu	

mailto:smclaugh@cse.psu.edu
mailto:s.zonouz@miami.edu

