
Attacking the

Network Time Protocol (NTP)

Aanchal Malhotra
Isaac E. Cohen, Erik Brakke

Sharon Goldberg

NDSS, 2016

client

server

Outline of the talk

• Background
 How does NTP work?

 How does NTP client take time?

• Our attacks
 Denial of Service by Spoofed Kiss-of-Death (off-path)

 Denial of Service by Priming the Pump (off-path)

 Timeshifting by IPv4 Packet Fragmentation (off-path)

client

server

off-path attacker

Background: How does NTP work?

• Sends queries at randomized & adaptively-selected intervals

• Requires certain number of self-consistent responses to update its clock

server 1

server 2

server 3

Stratum 3 Stratum 1Stratum 2

ntp.conf

server 1

server 2

server 3

client

• Every host can act as both client and the server

• My laptop will answer queries from public Internet

We assume NTP messages are not

cryptographically authenticated.
(Ask me why after.)

We attack the NTPv4 spec (RFC5905)

and its reference implementation

(ntpd v4.2.8p2 & ntpd v4.2.6p5)

server

Non-Crypto Authentication with Origin Timestamp (T1)

TEST2: Match
T3 in Query to T1 in Response.

client

*ntpd does not randomize

UDP source port!

How much entropy is in Origin

Timestamp (T1)?
Off-path attacker

v4 IHL=20 TOS Total length = 76

IPID x DF MF Frag Offset

TTL Protocol = 17 IP Header Checksum

Source IP

Destination IP

Source Port = 123 Destination Port = 123

Length = 76 UDP Checksum

LI v4 Response Stratum Poll Precision

Root Delay

Root Dispersion

Reference ID

Reference Timestamp

T1 = Origin Timestamp

T2 = Receive Timestamp

T3 = Transmit Timestamp

Analogous to

- UDP source port randomization

- TCP sequence no randomization

≈ 32 bits!

Outline of the talk

• Background
 How does NTP work?

 How does NTP client take time?

• Our attacks
 Denial of Service by Spoofed Kiss-of-Death (off-path)

 Denial of Service by Priming the Pump (off-path)

 Timeshifting by IPv4 packet fragmentation (off-path)

client

server

Off-path attacker

server 3

server 2

server 1

Denial of Service via Spoofed Kiss-o-Death

client

v4 IHL=20 TOS Total length = 76

TTL Protocol = 17 IP Header Checksum

Source IP

Destination IP

Source Port = 123 Destination Port = 123

Length = 76 UDP Checksum

LI v4 Response Stratum Poll

Root Delay

Root Dispersion

Reference ID = RATE

Reference Timestamp = Jan 1, 1970 0:00:00 UTC

T1 = Origin Timestamp = July 29, 2015 01:23:45

T2 = Receive Timestamp = July 29, 2015 01:23:45

T3 = Transmit Timestamp = July 29, 2015 01:23:45

TEST2?

Kiss-o’-Death (KoD)
“Keep quiet for 2poll sec!”

(36 hours!)

One packet prevents

client from querying its

servers for days or

years!

“Keep quiet for 217 sec!”

server

How to learn the server’s IP for the spoofed KoD?

v4 IHL=20 TOS Total length = 76

TTL Protocol = 17 IP Header Checksum

Source IP = client

Destination IP = attacker

Source Port = 123 Destination Port = 123

Length = 76 UDP Checksum

Response Stratum Poll

Root Delay

Root Dispersion

Reference ID = server IP

Reference Timestamp = Aug 18, 2015 4:40:23 AM

T1 = Origin Timestamp = Aug 18, 2015, 4:59:55 AM

T2 = Receive Timestamp = Aug 18, 2015, 4:59:56 AM

T3 = Transmit Timestamp = Aug 18, 2015, 4:59:56 AM

 An attacker can deactivate

NTP for the whole Internet

within hours / days with one

machine!

client

Denial of Service by Priming-the-Pump

server

1. Denial of Service by

Spoofed Kiss-of-

Death (off-path)

2. Denial of Service by

Priming the Pump

(off-path)

Patched!
ntpd 4.2.8p4client

Outline of the talk

• Background
 How does NTP work?

 How does NTP client take time?

• Our attacks
 Denial of Service by Spoofed Kiss-of-Death (off-path)

 Denial of Service by Priming the Pump (off-path)

 Timeshifting by IPv4 packet fragmentation (off-path)

client

server

Off-path attacker

client server

IPID=1

Frag1

IPID=1
Frag2network

element

client buffer

Background: IPv4 Packet Fragmentation

X bytes

IPID=1

client server

IPID=1

LF1

IPID=1
LF2

Off-path attacker

client buffer

IPID=1

SF1

IPID=1

SF2

Origin Timestamp

How Our Attacker Uses IPv4 Packet Fragmentation?

ICMP fragmentation

needed to 68 bytes

68

bytes

8 bytes

52 bytes

16 bytes

52 bytes

16 bytes

8 bytes

v4 IHL=20 TOS Total length = 76

IPID x DF MF Frag Offset

Protocol = 17 IP Header Checksum

Source IP

Destination IP

Source Port = 123 Destination Port = 123

Length = 76 UDP Checksum = 0

LI v4 response Stratum Poll Precision=-29

Root Delay = 0.002

Root Dispersion = 0.003

Reference ID

Reference Timestamp = 22 Feb 2016, 2:50:30 PM

T1 = Origin Timestamp = 22 Feb 2016, 2:50:30 PM

T2 = Receive Timestamp = 22 Feb 2006, 2:51:22 PM

T3 = Transmit Timestamp = 22 Feb 2006, 2:51:54 PM

36

0

68

Reassembled Packet

Pass TEST2!

T1

T2

client

20

28

44

52

60

76

T2 – T1 = - 10 years + 52 sec

Key Challenge:

Craft a stream of packets

where T2-T1 is consistent

within 1 sec!

T3

Conditions for the Attack

• Server must fragment NTP packets to 68 bytes

- Scanned 13M servers

- About 24K servers were willing to fragment to 68-byte

• Client reassembles overlapping fragments according to First policy

- The client prefers fragments that arrive earliest

(We can not safely measure because of teardrop [CA-1997-28])

• Server uses incrementing IPID

- attacker can infer IPID using techniques explained in

[Gilad, Herzberg’2013] and [Knockell, Crandall’2014]

Summary, Recommendations & Impact

• Attack: DoS by spoofed KoD:

• Rec: Implement TEST2 (patched in v4.2.8p4 & NTPSec & Cisco &

RedHat Linux etc.)

• Attack: DoS by priming the pump:

• Rec: Authentication in both directions (IETF Network Time Security

draft updated)

• client  server & server client

• Rate limit like Response Rate Limiting (RRL) in DNS (under

discussion)

• Attack: Time shifting by IPv4 Packet Fragmentation:

• Rec: Server should not fragment to 68 bytes (Test your server on our

site)

• Clients should drop overlapping fragments

• Other recommendations:

• Stop my laptop from answering timing queries

• More work on cryptography for NTP

Thank You!

Questions ?

