
Avatar: A Framework to Support Dynamic Security
Analysis of Embedded Systems’ Firmwares

Jonas Zaddach, Luca Bruno, Aurélien Francillon and Davide Balzarotti
EURECOM

{firstname.lastname}@eurecom.fr

Abstract—To address the growing concerns about the security
of embedded systems, it is important to perform accurate analysis
of firmware binaries, even when the source code or the hardware
documentation are not available. However, research in this field
is hindered by the lack of dedicated tools. For example, dynamic
analysis is one of the main foundations of security analysis, e.g.,
through dynamic taint tracing or symbolic execution. Unlike
static analysis, dynamic analysis relies on the ability to execute
software in a controlled environment, often an instrumented
emulator. However, emulating firmwares of embedded devices
requires accurate models of all hardware components used by the
system under analysis. Unfortunately, the lack of documentation
and the large variety of hardware on the market make this
approach infeasible in practice.

In this paper we present Avatar, a framework that enables
complex dynamic analysis of embedded devices by orchestrating
the execution of an emulator together with the real hardware. We
first introduce the basic mechanism to forward I/O accesses from
the emulator to the embedded device, and then describe several
techniques to improve the system’s performance by dynamically
optimizing the distribution of code and data between the two
environments. Finally, we evaluate our tool by applying it to
three different security scenarios, including reverse engineering,
vulnerability discovery and hardcoded backdoor detection. To
show the flexibility of Avatar, we perform this analysis on three
completely different devices: a GSM feature phone, a hard disk
bootloader, and a wireless sensor node.

I. INTRODUCTION

An embedded system consists of a number of interdepen-
dent hardware and software components, often designed to
interact with a specific environment (e.g., a car, a peacemaker,
a television, or an industrial control system). Those compo-
nents are often based on basic blocks, such as CPUs and
bus controllers, which are integrated into a complete custom
system. When produced in large quantities, such customization
results in a considerable cost reduction. For large quantities,
custom built integrated circuits (ASIC) are preferred as they
allow to tailor functionality according to the specific needs,
which results in cost reduction, better integration, and a
reduction of the total number of parts. Such chips, also called
System on a Chip (SoC), are often built from a standard CPU
core to which both standard and custom hardware blocks are

added. Standard blocks, commonly called IP Cores, are often
in the form of a single component that can be integrated
into a more complex design (e.g., memory controllers or
standard peripherals). On the other hand, custom hardware
blocks are often developed for a specific purpose, device,
and manufacturer. For example, a mobile phone modem may
contain a custom voice processing DSP, an accelerator for the
GSM proprietary hardware cryptography (A5 algorithms) and
an off-the-shelf USB controller.

Over the years, such SoCs have significantly grown in
complexity. Nowadays, they often include Multiple Processors
(MPSoC) and complex, custom, hardware devices. As a conse-
quence, virtually every embedded system relies on a different,
application specific, system configuration. As a witness of this
phenomenon, the website of ARM Ltd., which provides one
of the most common CPU core used in embedded systems,
lists about 200 silicon partners1. Most of those partners are
producing several product families of SoCs relying on ARM
cores. This leads to a huge number of systems on the market,
which are all different, but all rely on the same CPU core
family.

Unfortunately, the increasing pervasiveness and connectiv-
ity of embedded devices significantly increased their exposure
to attacks and misuses. Such systems are often designed
without security in mind. Moreover visible features, low time
to market, and reduction of costs are the common driving
forces of their engineering teams. As a consequence, an
increase in the number of reports of embedded systems ex-
ploitation has been recently observed, often with very serious
consequences [8], [11], [12], [19], [23], [25], [44], [46], [54],
[60]. To make things worse, such systems frequently play an
important role in security-relevant scenarios: they are often part
of safety critical systems, integrated in home networks, or they
are responsible to handle personal user information. Therefore,
it is very important to develop the tools and techniques
that would make easier to analyze the security of embedded
systems.

In the traditional IT world, dynamic analysis systems play a
crucial role in many security activities - ranging from malware
analysis and reverse engineering, to vulnerability discovery and
incident handling. Unfortunately, there is not an equivalent
in the embedded system world. If an attacker compromises
the firmware of a device (e.g., a smart meter or a PLC in a
Stuxnet-like attack scenario [25]) even vendors often do not
have the required tools to dynamically analyze the behavior of
the malicious code.

1http://www.arm.com/community/partners/silicon.php

Permission to freely reproduce all or part of this paper for noncommercial
purposes is granted provided that copies bear this notice and the full citation
on the first page. Reproduction for commercial purposes is strictly prohibited
without the prior written consent of the Internet Society, the first-named author
(for reproduction of an entire paper only), and the author’s employer if the
paper was prepared within the scope of employment.
NDSS ’14, 23-26 February 2014, San Diego, CA, USA
Copyright 2014 Internet Society, ISBN 1-891562-35-5
http://dx.doi.org/

http://www.arm.com/community/partners/silicon.php
http://dx.doi.org/10.14722/ndss.2014.23229

Dynamic analysis allows users to overcome many limita-
tions of static analysis (e.g., packed or obfuscated code) and to
perform a wide range of more sophisticated examinations [24]
- including taint propagation [33], [55], symbolic and concolic
execution [10], [15], [22], unpacking [34], malware sandbox-
ing [1], [5], and whitebox fuzzing [28], [29].

Unfortunately, all these techniques and their benefits are
still not available in the world of embedded systems. The
reason is that in the majority of the cases they require an
emulator to execute the code and possibly monitor or alter its
execution. However, as we will explain in Section II, the large
number of custom and proprietary hardware components make
the task of building an accurate emulator a daunting process. If
we then consider that additional modules and hardware plugins
should be developed for each embedded system on the market,
we can easily understand the infeasibility of this approach.

In this paper, we present a technique to fill this gap and
overcome the limitation of pure firmware emulation. Our tool,
named Avatar, acts as an orchestration engine between the
physical device and an external emulator. By injecting a special
software proxy in the embedded device, Avatar can execute the
firmware instructions inside the emulator while channeling the
I/O operations to the physical hardware. Since it is infeasible to
perfectly emulate an entire embedded system and it is currently
impossible to perform advanced dynamic analysis by running
code on the device itself, Avatar takes a hybrid approach.
It leverages the real hardware to handle I/O operations, but
extracts the firmware code from the embedded device and
emulates it on an external machine.

To summarize, in this paper we make the following con-
tributions:

• We present the design and implementation of Avatar,
a novel dynamic analysis framework that allows a user
to emulate the firmware of an embedded device.

• We discuss several techniques that can be used to
optimize the performance of the system and to adapt
Avatar to the user’s needs. We also show how com-
plex dynamic analysis applications (such as concolic
execution) can be implemented on top of Avatar.

• We evaluate Avatar by applying it to three different
security scenarios, including reverse engineering, vul-
nerability discovery, and backdoor detection. To show
the flexibility of our system, each test was performed
on a completely different class of devices.

II. DYNAMIC FIRMWARE ANALYSIS

While the security analysis of firmwares of embedded
devices is still a new and emerging field, several techniques
have been proposed in the past to support the debugging and
troubleshooting of embedded systems.

Hardware debugging features (mostly built around In-
Circuit Emulators [13], [35], [42] and JTAG-based hardware
debuggers [3]) are nowadays included in many embedded
devices to simplify the debugging procedure. However, the
analysis remains extremely challenging and often requires ded-
icated hardware and a profound knowledge of the system under
test. Several debugging interfaces exist, like the Background

Debug Mode (BDM) [58] and the ARM CoreSight debug and
trace technology [58]. Architecture-independent standards for
debugging embedded devices also exist, such as the IEEE
NEXUS standard [4]. Most of these technologies allow the user
to access, copy, and manipulate the state of the memory and
of the CPU core, to insert breakpoints, to single step through
the code, and to collect instructions or data traces.

When available, hardware debugging interfaces can be used
to perform certain types of dynamic analysis. However, they
are often limited in their functionalities and do not allow the
user to perform complex operations, such as taint propaga-
tion or symbolic execution. In fact, these advanced dynamic
analysis techniques require an instruction set simulator to
interpret the firmware of the embedded target. But for a proper
emulation of the embedded system, not only the CPU, but
all peripheral devices need to be emulated. Without such a
support, the emulated firmware would often hang, crash, or
in the best case, show a different behavior than on the real
hardware. Such deviations can be due, for example, to incorrect
memory mappings, active polling on a value that should be
changed by the hardware, or the lack of the proper hardware-
generated interrupts or DMA operations.

To overcome these problems, researchers and engineers
have resolved to three classes of solutions, each with its own
limitations and drawbacks:

• Complete Hardware Emulation
Chipounov [14] and Kuznetsov et al. [37] analyze
device drivers by relying on an emulated PCI bus
and network card that return symbolic values. This
approach has the main drawback that it requires to
emulate the device properly. While this is not much
of a problem for well understood devices, like a PCI
network card supported by most PC emulation soft-
ware, it can be a real challenge in embedded systems
and can be just impossible when the hardware is not
documented. Unfortunately, lack of documentation is
the rule in the embedded world, especially in complex
proprietary SoCs.
In some cases, accurate system emulators are devel-
oped as part of the product development to allow the
firmware development team to develop software while
the final hardware is still not available. However, those
emulators are usually unavailable outside the develop-
ment team and they are often not designed for code
instrumentation, making them unable to perform basic
security analysis like tainting or symbolic execution.

• Hardware Over-Approximation
Another approach consists in using a generic, ap-
proximated, model of the hardware. For example, by
assuming interrupts can happen at any time or that
reading an IO port can return any value. This approach
is easy to implement because it does not require
a deep knowledge of the real hardware, but it can
clearly lead to false positives, (e.g., values that will
never be returned by the real system) or misbehavior
of the emulated code (when a particular value is
required). This approach is commonly used when an-
alyzing small systems and programs that are typically
limited to a few hundreds lines of code, as showed

2

by Schlich [49] and Davidson et al. [22]. However,
on larger programs and on complex peripherals this
approach will invariably lead to a state explosion that
will prevent any useful analysis.

• Firmware Adaptation
Another approach consists in adapting the firmware
(or in extracting limited parts of its code) in order
to emulate it in a generic emulator. While this is
possible in some specific cases, for example with
Linux-based embedded devices, this technique does
not allow for an holistic analysis and may still be
limited by the presence of custom peripherals. More-
over, this approach is not possible for monolithic
firmwares that cannot be easily split into independent
parts - unfortunately a very common case in low-end
embedded systems [20].

In the next section we present our novel hybrid technique
based on a combination of the actual hardware with a generic
CPU emulator. Our approach allows to perform advanced
dynamic analysis of embedded systems, even when very little
information is available on their firmware and hardware, or
when basic hardware debugging support is not available. This
opens the possibility to analyze a large corpus of devices on
which dynamic analysis was not possible before.

III. AVATAR

Avatar2 is an event-based arbitration framework that or-
chestrates the communication between an emulator and a target
physical device.

Avatar’s goal is to enable complex dynamic analysis of
embedded firmware in order to assist in a wide range of
security-related activities including (but not limited to) re-
verse engineering, malware analysis, vulnerability discovery,
vulnerability assessment, backtrace acquisition and root-cause
analysis of known test cases.

A. System Architecture

The architecture of the system is summarized in Figure 1:
the firmware code is executed inside a modified emulator,
running on a traditional personal computer. Any IO access is
then intercepted and forwarded to the physical device, while
signals and interrupts are collected on the device and injected
into the emulator.

The internal architecture is completely event-based, allow-
ing user-defined plugins to tap into the data stream and even
modify the data as it flows between the emulator and the target.

In the simplest case Avatar requires only a backend to
talk to the emulator and one to talk to the target system,
but more plugins can be added to automate, customize, and
enhance the firmware analysis. In our prototype, we developed
a single emulator backend. This controls S2E (or Selective
Symbolic Execution engine), which is an open-source platform
for selective symbolic execution of binary code [15]. It builds
on the foundation of Qemu, a very popular open-source system
emulator [7]. Qemu supports many processor families such as

2The Avatar framework is open-source and available at
http://s3.eurecom.fr/tools/avatar.

i386, x86-64, Arm, Mips and many others. Apart from being
a processor emulator, Qemu can also mimic the behavior of
many hardware devices that are typically attached to the central
processor, such as serial ports, network cards, displays, etc.

S2E leverages the intermediate binary code representation
of Qemu called Tiny Code Generator (TCG), and dynamically
translates from TCG bytecode to Low-Level Virtual Machine
(LLVM) bytecode whenever symbolic execution is active [39].
KLEE, the actual symbolic execution engine, is then taking
care of exploring the different execution paths and keeps track
of the path constraints for each symbolic value [10]. Evaluating
possible states exhaustively, for some symbolic input, can be
assimilated to model checking and can lead to proving some
property about a piece of software [38].

Even though S2E uses the TCG representation of the binary
code to generate LLVM code, each processor architecture has
its own intricacies that make it necessary to write architecture
specific extensions to make S2E work with a new processor
architecture. Since our focus was on embedded systems and
all the systems we analyzed are ARM systems, we updated
and improved an existing incomplete ARM port3 of S2E, to
suit the needs of dynamic analysis of firmware binaries.

To control the execution of code in more detail, S2E pro-
vides a powerful plugin interface that allows instrumentation
of virtually every aspect of execution. Any emulation event
(e.g., translation of a basic block, instruction translation or
execution, memory accesses, processor exceptions) can be
intercepted by a plugin, which then can modify the execution
state according to its needs. This modular architecture let
us perform dynamic analysis of firmware behaviour, such
as recording and sandboxing memory accesses, performing
live migration of subroutines (see Section III-C), symbolically
executing specific portion of code as well as detecting vulner-
abilities (see Section V).

S2E is connected through three different control interfaces
with Avatar: the first interface is a GDB debug connection
using the GDB serial protocol. Avatar is connecting to this
interface using a GDB instance controlled via the GDB/MI
protocol. This connection is used for fine-grained control over
the execution, such as putting breakpoints, single-stepping the
execution, and inspecting register values. The second interface
is Qemu’s Management Protocol (QMP) interface, a JSON-
based request-response protocol. Though detailed virtual ma-
chine control is possible through this interface, it is currently
only used to dynamically change S2E’s configuration at run
time. This is done by accessing S2E through its Lua interface,
which is called from Lua code embedded in the JSON requests.
The third interface is a plugin for S2E that is triggered
whenever a memory access is performed. This S2E plugin
then forwards this request to Avatar, which in turn handles the
memory access (e.g., sends it to Avatar’s plugins), or forwards
it to the target.

Even though at the moment the only available emulator
back-end is for Qemu/S2E, the emulator interface is generic
and allows other emulators to be added easily.

3Our patches have been submitted to the official S2E project and are
currently under review for merging.

3

Open
OCD

Avatar

Analysis script

Target
backend

GDB
adapter

Telnet
adapter

BinProto
adapter

GDB/MI
adapter

Emulator
backend

Memory
forwarder

QMP/Lua
interface

GDB
interface

Config
writer

Emulator

 RemoteMem
plugin

S²E
QMP/Lua

Qemu
GDB

Qemu
config

Target device

In-memory
stub

Target state
● Registers
● CPU state
● Memory

VM state
● Registers
● CPU state
● Memory

Qemu
executer

Qemu
frontend

LLVM

Symbolic
states

KLEE

TCG

JTAG

UART

Analysis
Plugins

S²E
hooks

Fig. 1: Overview of Avatar.

On the target side, we developed three back-ends:

• A back-end that uses the GDB serial protocol to
communicate with GDB servers (e.g., a debugger stub
installed on the device or a JTAG GDB server).

• A back-end to support low-level access to the
OpenOCD’s JTAG debugging interface via a telnet-
like protocol.

• A back-end that talks to a custom Avatar debugger
proxy over an optimized binary protocol (which is
more efficient than the verbose protocol used by
GDB). This proxy can be installed in an embedded
device that lacks debugging hardware support (e.g.,
no hardware breakpoints) or on which such support
was permanently deactivated.

The proper target back-end has to be selected by the user
based on the characteristics and the debugging functionalities
provided by the hardware of the embedded device. For exam-
ple, in our experiments we used the OpenOCD back-end to
connect to the JTAG debugger of the mobile phone and of the
Econotag, while we used the Avatar proxy to perform dynamic
analysis of the hard drive firmware.

To analyze a firmware, an access to the firmware’s device
is needed. This can be either a debugging link (e.g., JTAG), a
way to load software or a code injection vulnerability. In cases
where a debugging stub, for example the GDB stub, is used,
an additional communication channel, e.g., an UART, is also
needed.

B. Full-Separation Mode

When Avatar is first started on a previously unknown
firmware, it can be run in what we call “full-separation mode”.
In this configuration, the entire firmware code is executed in
the emulator and the entire (memory) state is kept in the
physical device. In other words, for each instruction that is
executed by the emulator, the accessed memory addresses are
fetched from and written to the real memory of the embedded
system. At the same time, interrupts are intercepted by the
debugging stub in the physical system and forwarded back to
the emulator. Code and memory are perfectly separated, and
Avatar is responsible to link them together.

Even though this technique is in theory capable of perform-
ing dynamic analysis on unknown firmwares, it has several
practical limitations. First of all, the execution is very slow.
Using a serial debug channel at 38400 Baud, the system can
perform around five memory accesses per second, reducing
the overall emulation speed to the order of tens instructions
per second. Even worse, many physical devices have time-
critical sections that need to be executed in a short amount
of time or the execution would fail, making the system crash.
For example, DRAM initialization, timer accuracy and stability
checks belong to this category.

Moreover, tight hardware-polling loops (e.g., UART read-
with-timeout) become painfully slow in full separation mode.
Finally, regular interrupts (e.g., the clock tick) quickly overload
the limited bandwidth between the target system and the
emulator.

These limitations make the full separation approach viable
only to analyze a limited number of instructions or when the
user wants to focus only on particular events in more complex
firmwares. For this reason, Avatar supports arbitrary context-
switching between the emulator and the real device.

C. Context Switching

While it is possible to run the firmware code from be-
ginning to end inside the emulator, sometimes it is more
efficient to let the firmware run natively on the target device
for a certain amount of time. This allows, for example, to
execute the code without any delay until a particular point
of interest is reached, skipping through initialization routines
that may involve intensive I/O operations or network protocol
communications that may need to be performed in real-time.
In such cases, it is important to let the target device run the
firmware, while still monitoring the execution for regions of
code relevant to the current analysis. The ability of Avatar to
perform arbitrary context switches gives the user the ability
to quickly focus her analysis on a particular section of the
code, without the drawbacks of emulating the entire firmware
execution.

Starting the analysis at specific points of interest: In this
case the firmware starts the execution on the physical device
and runs natively until a certain pre-defined event occurs (e.g.,

4

Firmware
Embedded

device

Emulator Proxy

Avatar

Emulator
Backend

Target
Backend

Plugins

read/write memory

 interrupt

read/write memory

valuevalue

 interrupt

 . . .
mov r2, r0
mov r3, r1
add r3, r3, #1
add r2, ip, r2
ldr r2, [r2, #0
cmp r2, r3
 . . .

Fig. 2: Avatar architecture and message exchange in full separation mode.

a breakpoint is reached or an exception is raised). At this
point, the execution on the physical device is frozen and the
state (e.g., the content of the CPU registers) is transferred to
the emulator, where the execution is resumed. An example
of this transition is described in Section VI-C, in which the
firmware of a mobile phone baseband chip is executed until
the phone receives an SMS, and then transferred by Avatar in
the emulator to perform further analysis.

Returning execution to the hardware: After the required
analysis is performed on the emulator, the execution of the
firmware can be transferred back to continue on the real device.
In this case, any state kept on the virtual environment is copied
back to the physical device. Depending on the user’s needs, it
is possible to switch again to the emulator at a later stage. This
approach is used in Section VI-A, in which the firmware of
a hard disk is started inside the emulator and later transferred
back to the disk.

D. Interrupts Handling

Software interrupts do not present a problem for our
framework, since they are issued by the firmware code and
the emulator takes care of calling the corresponding interrupt
handler directly. However, as shown in Figure 2, hardware
interrupts need to be trapped in the real hardware and for-
warded back to the emulator. In this case, the stub in the
embedded system receive the interrupt and forwards them to
Avatar’s target back-end. Finally, using the emulator back-
end, Avatar suspends the firmware execution and injects the
interrupt in the emulator.

Based on the circumstances in which the interrupt is
generated, we distinguish three different cases:

• Hardware interrupts that indicate the completion of a
task. These interrupts are issued by a device to indicate
that a particular task initiated by the code has been
completed. For example, the UART send interrupt
indicates that the send buffer has been successfully
transmitted. This type of interrupts is easy to handle
because it just needs to be forwarded from the target
to the emulator.

• Periodical hardware interrupts, e.g., the timer notifica-
tions. These interrupts can be forwarded to the emula-
tor but their frequency needs to be scaled down to the

actual execution speed in the emulator. The equivalent
number of instructions between two interrupts should
be executed in the emulator as it would on the target
running in native mode. In our current implementation,
an Avatar plugin detects periodic interrupts and report
their information to the user, who can decide how to
handle each class. For example, the user can instruct
Avatar to drop the clock interrupts on the device and
just generate them (at the right frequency) on the
emulator, thus saving bandwidth and increasing the
analysis performance.

• Hardware interrupts that notify of an external event.
For example the receive interrupt of an UART indi-
cates that new data on the UART buffer is available.
The emulation strategy for those interrupts depends
on the frequency of the external event. For events
that require previous activity (e.g., a request-response
protocol where the response triggers an interrupt) a
simple forwarding strategy can be used. For unrelated
events that happen very frequently (i.e., where the
handler in the emulator cannot process the interrupt
in time before the next interrupt is generated) the user
can choose if she wants to suppress some of them or
to handle the interrupt by migrating the handler itself
back to the embedded device (see Section IV)

While the straightforward interrupt forwarding does not
present any problem for Avatar, when the user needs to tune
the framework to handle specific cases (e.g., regular or very
frequent interrupts) the stub needs to be able to distinguish
between them. Unfortunately, this task is often difficult.

Interrupts de-multiplexing: In a traditional, x86-based,
personal computer there is a standard interrupt controller
that handles interrupt lines from each device and peripheral.
However, on ARM-based systems there are only two interrupt
lines directly attached and visible to the processor: IRQ and
FIQ. Because of this embedded devices often use an interrupt
multiplexer (or controller) peripheral that is normally included
as an hardware block (“IP core”) on the same chip. The disad-
vantage for a user is that at the point where the interrupt vector
routine is called, all interrupt signals are still multiplexed
together. The driver for a particular interrupt multiplexer will
then query the underlying hardware multiplexer to identify

5

which line was actually triggered and then forward the event
to the handler registered for this interrupt.

Now, suppose the user wants to instruct Avatar to suppress
a particular interrupt on the device (e.g., the timer), while
still letting through the ones associated to important hardware
events that need to be forwarded to the emulator. In this case,
the proxy needs to take a decision based on the interrupt
type which is unfortunately not available when the interrupt
is received.

In this case, the user needs to disassemble the interrupt
vector handler, and follow the code flow until the code of the
interrupt controller driver branches into different functions that
handle each device’s interrupt. At this point, she can specify
these program points to Avatar that can terminate the interrupt
vector’s execution and signal to the proxy that an interrupt
has been identified. The proxy then sends the interrupt event
to Avatar. Now the target backend of Avatar can suppress
a particular interrupt by instructing the proxy to drop the
corresponding event.

E. Replaying Hardware Interaction

It is quite common for a firmware to have several sec-
tions that require only a limited interaction with dedicated
peripherals. In this case, the I/O operations can be recorded by
Avatar and transparently replayed during the next execution of
the firmware.

This allows the user to test the firmware without the
bottleneck of the interaction with the physical device. In this
mode of operation the firmware itself or parts of it (e.g.,
applications) can be significantly changed, as long as the
order of I/O interactions is not modified. This is a major
advantage over resuming a snapshot, which requires the full
code path until the snapshot point to be executed to ensure
that peripherals are in the state the snapshot expects them to
be in.

IV. OVERCOMING THE LIMITS OF FULL SEPARATION

The techniques introduced in the previous section are
enough to perform dynamic analysis on small portions of a
firmware code. However, sometimes the internals and behavior
of the system are completely unknown. In those cases, it can
be very useful to perform the analysis on larger portions of
the binary, or, in the extreme case, on the entire firmware.

In this case, the performance of Avatar running in full
separation mode poses a great limitation to the usability of
our framework. To overcome this problem, in this section we
present two techniques designed to overcome the limits of full
separation by moving part of the code to the physical device
and part of the memory to the emulator. This results in a
considerable reduction in the number of messages forwarded
by Avatar between the emulator and the target, and therefore
a large improvement in the overall performance of the analysis
system.

A. Memory Optimization

Forwarding all memory accesses from the emulator to the
target over a limited-bandwidth channel like UART or JTAG
incurs in a heavy performance penalty. For example, in our

Access type Read Write Cumulative

Code 61,632 - 61,632

Stack & data 646 1,795 64,073

I/O 3,614 2,097 69,784

TABLE I: Number of memory accesses grouped by memory
regions for the HDD bootloader.

experiments an average of five instructions per second were
executed using the GDB stub through a 38400 baud UART
connection.

The reason why memory operations need to be forwarded
in the first place is that different embedded systems typically
have different mappings of addresses to memory regions. Some
of these memory regions are used for code (in RAM, ROM or
Flash memories), stack and heap, but one or several regions
will be used to access registers of physical peripherals through
Memory-Mapped I/O (MMIO). In this case, any I/O operation
on those areas is equivalent to sending and receiving data from
an external device. If these address ranges are known, the user
can configure Avatar to keep every read-only memory (such
as the code segment) on the emulator. Read-write memory
regions can also be marked as local to the emulator, but
modifications to them need to be tracked by Avatar to be able
to transfer those changes to the target at a later context switch.
In fact, when an emulator-to-target context switch happens, all
modified local memory (“dirty memory”) needs to be copied
to the target before the execution can resume on the embedded
device.

However, in most of the cases the user does not know a
priori which area of memory is assigned to I/O. For this reason,
Avatar includes an automated memory optimization plugin
that monitors the execution in the emulator and automatically
identifies the regions that do not require access to the hardware.
This includes the stack (easily identified by the execution
of stack-related operations) and the code segment (identified
by the values of the program counter). For any other area,
Avatar starts by forwarding the read and write operations to
the target device. It then keeps track of the values that are
returned and applies a simple heuristic: if the target always
returns the value that was previously written by the firmware
code (or if it always returns the same value and it is never
written by the firmware) then it is probably not assigned to a
memory mapped device.

Table I shows an example of how many memory accesses
could be saved by keeping memory regions local to the emu-
lator: transferring the code region to the emulator would save
61,632 memory accesses (88%). Moving the stack and data
region in local memory as well would save 64,073 memory
accesses (92%). Only the I/O accesses cannot be moved to the
emulator’s memory.

B. Selective Code Migration

So far, we assumed that the firmware is either running
entirely inside the emulator, or entirely on the embedded
device. The user can instruct Avatar to switch from one mode
to the other when certain conditions are met, but such context
switches are time consuming.

6

In this section we present a fine-grained solution that
allows the user to migrate only parts of the firmware code
back to the target. This technique allows to overcome two
limitations of the full-separation mode. Some code blocks
need to be executed atomically, for example when there are
timing constraints on the code. We will describe such a case
in Section VI-A, where we encountered a function that read
the timer twice and waited for the difference to be below
a certain limit. Another example is when delays introduced
by Avatar would lead the target in an invalid state. We
encountered such a case during the DRAM initialization of
the HDD, as shown in Section VI-A).

The second limitation addressed by selective code migra-
tion is related to the analysis performance. In fact, certain
functions (e.g., polling loops and interrupt handlers) can be
executed significantly faster when run natively on the target.

In the current Avatar prototype, code migration is sup-
ported at a function level. In this case, the code can be copied
to its location in the target’s memory without modification. Its
exit points are then replaced by breakpoints, and the virtual
machine register state is transferred from the emulator to the
target. The execution is resumed on the target until one of
the exit breakpoints is triggered, and at that point the state is
transferred back to the emulator. This transition is much faster
than a complete context switch, since Avatar only needs to
transfer few bytes and not the entire content of the memory.

Even though this simple technique is enough to circumvent
critical code regions in several real world scenarios, it neglects
some difficulties that may affect code migration. First, the code
may read or write arbitrary memory locations associated, for
example, with global variables. Avatar keeps track of those
locations, copy their content over to the target before the
execution, and copy written locations back after the execution.
Second, the code may use instructions that change the control
flow in unforeseen ways, like software interrupts, processor
mode changes, and indirect jumps.

Our framework prototype addresses these issues by per-
forming an on-the-fly static analysis. When a function is
selected for code migration, Avatar disassembles its code
using the llvm-mc disassembler. The result is then analyzed
to identify critical instructions. In this way, we can predict
memory accesses outside the function stack, compute the
control flow of the code and verify that no instructions can
escape from this computed control flow. As we describe in
Section VI, this technique is sufficient to migrate small, atomic
functions. However, we plan to extend the capabilities of
the code migration system to apply transformations to the
code. On the one hand, those transformations will allow to
ensure that instructions which are not statically verifiable (e.g.,
indirect jumps) will not escape the proxy’s sandbox. On the
other hand, it can be used to track memory accesses, so
that only the modified (“dirty”) part of the state needs to be
copied back from the target to the emulator when a context
switch happens. Those critical instructions will be replaced
with instrumentation code that calls functions in proxy, which
will handle them in a safe way.

V. EXTENDING AVATAR

Avatar’s architecture is designed to be modular and its base
framework can be easily customized to fit different analysis
scenarios. We chose S2E as default Avatar emulator back-end
because it offers many hooks and manipulation facilities on
top of QEMU which facilitates the development of custom
dynamic analysis plugins.

In this section, we show an example of an Avatar extension:
we built upon its core capabilities to support selective symbolic
execution. For this we add several features and plugins to
the ARM port of S2E. Moreover, we believe the symbolic
execution engine provides a super-set of the capabilities needed
to implement taint analysis, even though a targeted plugin
could be needed to perform concrete data tracking and taint
analysis in a more lightweight way.

In the rest of this section we describe the technique
Avatar employs to fully exploit the symbolic engine of S2E and
perform selective symbolic execution on unmodified portions
of firmware blobs. Moreover, we show how we use our
extended version of S2E in Avatar to dynamically detect
potential control flow corruption vulnerabilities by injecting
and tracking symbolic inputs.

A. Injecting Symbolic Values Into the Firmware’s Execution
Flow

In the field of program testing, symbolic execution is
a technique employed to improve code coverage by using
symbols as input data (instead of concrete values) and keeping
track of constraints upon their manipulation or comparison
(c.f. [51]). The result of symbolic evaluation is an execution
tree, where each path is a possible execution state that can
be reached by satisfying the constraints associated to each
symbolic value.

S2E further develops this concept by performing selective
symbolic execution, i.e., by restricting the area of symbolic
execution to specific code portions and treating only specific
input data as symbolic [15]. This greatly helps to speedup
the analysis process (as symbolic execution of code results in
significant slowdowns) and to drive the exhaustive symbolic
exploration into selected regions of code. This process requires
Avatar to control the introduction of symbolic values into S2E,
in place of existing real values.

The remote memory interface between S2E and Avatar, as
introduced in Section III, ensures that only concrete values
reach the real hardware through Avatar. Symbolic values re-
main therefore confined to the emulation domain. If a symbolic
value is about to be written to the target hardware, the remote
memory interface in S2E performs a forced concretization
before forwarding it. Such symbolic value concretizations
happen in two stages. First, all the constraints associated with
the value are retrieved and evaluated by the integrated SAT-
solver. Second, a single example value which satisfies all the
constraints is forwarded to Avatar to be written on the target.

On the one hand, making Avatar handle only concrete
values leaves it as a controller with a simpler external view
of S2E and avoids having to keep track of execution paths
and paths conditions twice. On the other hand, this choice
brings the minor drawback that Avatar has no direct control

7

on symbolic execution, which is instead under the control of
S2E/KLEE.

We designed a simple plugin for detecting arbitrary exe-
cution conditions. It relies on the following heuristics as signs
of possibly exploitable conditions:

• a symbolic address being used as the target of a load
or store instruction,

• a symbolic address being leaked into the program
counter (e.g., as the target of a branch),

• a symbolic address being moved into the stack pointer
register.

In order to selectively mark some input data as symbolic,
two different approaches can be taken: either modify the
binary code (or the source code, if available) to inject cus-
tom instructions into the firmware, or dynamically instrument
the emulation environment to specify the scope of symbolic
analysis at run-time. The first approach requires some high-
level knowledge of the firmware under analysis (e.g., access
to source code) and the guarantee that injecting custom in-
structions into firmware code would not affect its behavior.
Examples include the Android Dalvik VM, whose source code
can be modified and rebuilt to enable transparent analysis of
pristine Java bytecode with S2E [36].

Since we did not want to limit Avatar to this scenario,
we decided to follow the second approach, which requires to
extend the symbolic engine and the Avatar framework. Such
extensions should know when symbolic execution has to be
triggered and where symbolic values should be injected.

This choice leads to two major advantages:

• Firmware Integrity
The binary code is emulated as-is, without injecting
custom opcodes or performing recompilation. This
guarantees that the emulated code adheres to the
original firmware behavior (i.e., no side-effects or bugs
are introduced by the intermediate toolchain)

• Programmatic Annotation
The control and data flow of firmware emulation can
be manipulated and annotated with symbolic meta-
data in an imperative way. A high-level language (Lua)
is used to dynamically script and interact with current
emulation environment, as well as introducing and
tracing symbolic meta-data.

For this we first completed the port of S2E to the ARM
architecture in order to have complete symbolic execution
capabilities, then we ported the Annotation plugin to the ARM
architecture. The Annotation plugin lets the user specify a
trigger event (e.g., a call/return to a specific subroutine or the
execution of code at a specific address), and a Lua function
to be executed upon the event. A simple API is then provided
to allow for manipulation of the S2E emulation environment
directly from the Lua code. Avatar provides direct channels to
dynamically control the emulation flow via QMP command
messages. These channels can also be used to inject Lua
code at run-time, in order to dynamically generate annotations
which depend on the current emulation flow and inject them

back into S2E. Once symbolic values are introduced in the ex-
ecution flow, S2E tracks them and propagates the constraints.

Symbolic analysis via Lua annotations is intended to be
used as a tool for late stage analysis, typically to ease the
discovery of flaws in logic-handling code, with hand-made
Lua analysis code directly provided by the user. It can be
employed in both full separation mode and context switching,
as soon as code execution can be safely moved to the emulator
(e.g., outside of raw I/O setup routines, sensors polling). This
normally happens after an initial analysis has been done with
Avatar to detect interesting code and memory mappings.

A similar non-intrusive approach has already been used
in a x86-specific context, to test and reverse-engineer the
Windows driver of a network card [14]. To the best of our
knowledge, however, this technique has never been applied
before to embedded devices. In the context of firmware se-
curity testing, annotations can be used in a broad range of
scenarios. In Section VI, we present how we applied this
technique to different technologies and devices, to perform
dynamic analysis of widespread embedded systems such as
hard drives, GSM phones, and wireless sensors.

B. Symbolically Detecting Arbitrary Execution Conditions

When dealing with modern operating systems, an incorrect
behavior in a user-space program is often detected because
an invalid operation is performed by the program itself. Such
operations can be, for example, an unauthorized access to a
memory page, or the access to a page that is not mapped in
memory. In those cases, the kernel would catch the wrong
behavior and terminate the program, optionally triggering some
analysis tools to register the event and collect further informa-
tion that can later be used to identify and debug the problem.
Moreover, thanks to the wide range of exploit mitigation
techniques in place today (DEP, canaries, sandboxing and
more), the system is often able to detect the most common
invalid operations performed by userspace processes.

When dealing with embedded systems, however, detecting
misbehavior in firmware code can be more difficult. The
observable symptoms are not always directly pinpointed to
some specific portion of code. For example, many firmware
are designed for devices without a Memory Management Unit
(MMU) or Memory Protection Unit (MPU) or are just not
using them. In such a context, incorrect memory accesses
often result in subtle data corruption which sometimes leads
to erratic behaviors and rare software faults, such as random
events triggering, UI glitches, system lock or slowdown [18].
For this reason, it is common for embedded devices to have a
hardware watchdog in charge of resetting the device execution
in case of any erratic behavior, e.g., a missed reply to timed
watchdog probes.

For these reasons, detecting incorrect execution inside
the emulation is easier when some OS support can be used
for co-operation (e.g., a Blue Screen Of Death interceptor
for Windows kernel bugs is implemented in S2E). On the
other hand, catching such conditions during the emulation
of an embedded device firmware is bound to many system-
specific constraints, and require additional knowledge about
the internal details of the firmware under analysis.

8

However, Avatar does not rely on the knowledge of any
specific operating system or the fact that a MMU is used.
Instead, it aims at detecting a larger range of potentially
critical situations which may result in control flow hijacking
of firmware code, by using a technique similar to the one
employed by AEG [6].

All three conditions may lead to false positives, when the
variable is symbolic but strongly constrained. Therefore, once
such a condition is detected the constraints imposed on the
symbolic variables must be analyzed: the less constrained is
the result, the higher is the chance of control flow corruption.
Intuitively, if the constraints are very loose (e.g., a symbolic
program counter without an upper bound) then the attacker
may obtain enough control on the code to easily exploit the
behavior. In addition to this, tight constraints are sometimes
encountered in legitimate cases (e.g., access to an array with
a symbolic but constrained index such as with a jump table),
and are not relevant for the purpose of security analysis.

When an interesting execution path is detected by the above
heuristic, the state associated to the faulty operation is recorded
and the emulation is terminated. At this point a test-case with
an example input to reach this state is generated, and the
constraints associated with each symbolic value are stored to
be checked for false positives (i.e., values too strictly bound).

Automatically telling normal constraints apart from those
that are a sign of a vulnerability is a complex task. In fact
it would require knowledge of the program semantics that
were lost during compilation (e.g., array boundaries). Such
knowledge could be extracted from the source code if it
is available, or might be extrapolated from binary artifacts
in the executable itself or the build environment. In such
cases, specific constraints could be fed into Avatar by writing
appropriate plugins to parse them, for example by scanning
debug symbols in a non-stripped firmware (e.g., a DWARF
parser for ELF firmwares) or by reading other similar symbols
information.

Finally, Avatar could highly benefit from a tighter coupling
with a dynamic data excavator, helping to reverse engineer
firmware data structures [17]. In particular, the heuristic
proposed in Howard [52] for recovering data structures by
observing access patterns under several execution cycles could
be easily imported into the Avatar framework. Both tools
perform binary instrumentation on top of QEMU dynamic
translation and make use of a symbolic engine to expand the
analyzed code coverage area.

C. Limitations of state synchronization

Our current implementation of the synchronization between
device state and emulator state works well in general, but is
difficult in some special cases.

First it is difficult to handle DMA memory accesses in our
current model. For example, the firmware can send a memory
address to a peripheral and request data to be written there.
The peripheral will then notify the firmware of the request’s
completion using an interrupt. Since Avatar does not know
about this protocol between firmware and peripheral, it will
not know which memory regions have been changed. On newer
ARM architectures with caches, data synchronization barrier

or cache invalidation instructions might be taken as hint that
some memory region has been changed by DMA.

Second, if code is executed on the device, Avatar is
currently incapable of detecting which regions have been
modified. In consequence, whenever memory accesses of the
code run on the device are not predictable by static analysis,
we need to transfer the whole memory of the device back to
the emulator on a device-to-emulator state switch. We plan to
address this issue by using checksumming to detect memory
region changes and minimize transferred data by identifying
smallest changed regions through binary search.

Third, when Avatar performs symbolic execution, symbolic
values are confined to the emulator. In case that a symbolic
value needs to be concretized and sent to the device, a
strategy is needed to keep track of the different states and
I/O interactions that were required to put the device in that
state. This can be performed reliably by restarting the device
and replaying I/O accesses. While this solution ensures full
consistency, it is rather slow.

VI. EVALUATION

In this section we present three case studies to demonstrate
the capabilities of the Avatar framework on three different real
world embedded systems. These three examples by no means
cover all the possible scenarios in which Avatar can be applied.
Our goal was to realize a flexible framework that a user can
use to perform a wide range of dynamic analysis on known
and unknown firmware images.

As many other security tools (such as a disassembler or an
emulator), Avatar requires to be configured and tuned for each
situation. In this section, we try to emphasize this process, in
order to show all the steps a user would follow to successfully
perform the analysis and reach her goal. In particular, we will
discuss how different Avatar configurations and optimization
techniques affected the performance of the analysis and the
success of the emulation.

Not all the devices we tested were equipped with a debug
interface, and the amount of available documentation varied
considerably between them. In each case, human intervention
was required to determine appropriate points where to hook
execution and portions of code to be analyzed, incrementally
building the knowledge-base on each firmware in an iterative
way. A summary of the main characteristics of each device
and of the goal of our analysis is shown in Table II.

A. Analysis of the Mask ROM Bootloader of a Hard Disk
Drive

Our first case study is the analysis of a masked ROM
bootloader and the first part of the secondary bootloader of
a hard disk drive.

The hard disk we used in our experiment is a commercial-
off-the-shelf SATA drive from a major hard disk manufacturer.
It contains an ARM 966 processor (that implements the
ARMv5 instruction set), an on-chip ROM memory which con-
tains the masked ROM bootloader and some library functions,
an external serial flash that is connected over the SPI bus
to the processor, a dynamic memory (SDRAM) controller, a
serial port accessible through the master/slave jumpers, and

9

Target device Manufacturer and model System-on-Chip CPU Debug access Analyzed code Scope of analysis

Experiment VI-A Hard disk undisclosed unknown ARM966 Serial port Bootloader Backdoor detection

Experiment VI-B ZigBee sensor Redwire Econotag MC13224 ARM7TDMI JTAG ZigBee stack Vulnerability discovery

Experiment VI-C GSM phone Motorola C118 TI Calypso ARM7TDMI JTAG SMS decoding Reverse engineering

TABLE II: Comparison of experiments described in Section VI.

Fig. 3: The disk drive used for experiments. The disk is
connected to a SATA (Data+Power) to USB interface (black
box on the right) and its serial port is connected to a TTL-
serial to USB converter (not shown) via the 3 wires that can
be seen on the right.

some other custom hardware that is necessary for the drive’s
operation. The drive is equipped with a JTAG connection,
but unfortunately the debugging features were disabled in our
device. The hard drive’s memory layout is summarized in
Figure 4.

The stage-0 bootloader executed from mask ROM is nor-
mally used to load the next bootloader stage from a SPI-
attached flash memory. However, a debug mode is known to
be reachable over the serial port, with a handful of commands
available for flashing purposes. Our first goal was to inject
the Avatar stub through this channel to take over the booting
process, and later use our framework for deeper analysis of
possible hidden features (e.g., backdoors reachable via the
UART).

The first experiment we performed consisted of loading the
Avatar stub on the drive controller and run the bootloader’s
firmware in full separation mode. This mimics what a user
with no previous knowledge of the system would do in the
beginning. In full separation mode, all memory accesses were
forwarded through the Avatar binary protocol over the serial
port connection to the stub and executed on the hard drive,
while the code was interpreted by S2E. Because of the limited
capacity of the serial connection, and the very intensive I/O
performed at the beginning of the loader (to read the next
stage from the flash chip), only few instructions per second
were emulated by the system. After 24 hours of execution

Address Space
0x00000000

0x00000040

Interrupt vect.

0x00008000

Code SRAM

0x00100000

0x00120000

ROM

0x00200000

0x00400000

DRAM

0x04000000

0x04004000

Data SRAM

0x40000000

0x50000000

Memory Mapped IO

0xFFFFFFFF

Fig. 4: Hard drive memory layout.

without even reaching the first bootloader menu, we aborted
the experiment.

In the second experiment we kept the same setting, but we
used the memory optimization plugin to automatically detect
the code and the stack memory regions and mark them as
local to the emulator. This change was enough to reach the
bootloader menu after approximately eight hours of emulation.
Though considerably faster than in the first experiment, the
overhead was still unacceptable for this kind of analysis.

Since the bottleneck of the process was the multiple read
operations performed by the firmware to load the second stage,
we configured Avatar to replay the hardware interaction from
disk, without forwarding the request to the real hardware.
In particular, we used the trace of the communication with
the flash memory from the second experiment to extract the
content of the flash memory, and dump it into a file. Once the
read operations were performed locally in the emulator, the
bootloader menu was reached in less than four minutes.

At this point, we reached an acceptable working configu-
ration. In the next experiment, we show how Avatar can be
used in conjunction with the symbolic execution of S2E to
automatically analyze the communication protocol of the hard
drive’s bootloader and detect any hidden backdoor in it.

10

DS Use a minimal version of the Motorola S-Record
binary data format to transmit data to the device

AP <addr> Set the value of the address pointer from the parameter
passed as hexadecimal number. The address pointer
provides the address for the read, write and execute
commands.

WT <data> Write a byte value at the address pointer. The address
pointer is incremented by this operation. The reply of
this command depends on the current terminal echo
state.

RD Read a byte from the memory pointed to by the address
pointer. The address pointer is incremented by this
operation. The reply of this command depends on the
current terminal echo state.

GO Execute the code pointed to by the address pointer.
The code is called as a function with no parameters,
to execute Thumb code one needs to specify the code’s
address + 1.

TE Switch the terminal echo state. The terminal echo state
controls the verbosity of the read and write commands.

BR <divisor> Set the serial port baud rate. The parameter is the
value that will be written in the baud rate register,
for example ”A2” will set a baudrate of 38400.

BT Resume execution with the firmware loaded from flash.
WW Erase a word (4 bytes) at the address pointer and

increment address pointer.

? Print the help menu showing these commands.

TABLE III: Mask ROM bootloader commands of the hard
drive. In the left column you can see the output of the help
menu that is printed by the bootloader. In the right column
a description obtained by reverse engineering with symbolic
execution is given.

We configured Avatar to execute the hard drive’s boot-
loader until the menu was loaded, and then replace all data
read from the serial port register by symbolic values. As a
result, S2E started exploring all possible code paths related to
the user input. This way, we were able to discover all possible
input commands, either legitimate or hidden (which may be
considered backdoors), that could be used to execute arbitrary
code by using S2E to track when symbolic values were used as
address and value of a memory write, and when the program
counter would become symbolic. With similar methodologies,
a user could use symbolic execution to automatically discover
backdoors or undocumented commands in input parsers and
communication protocols.

In order to conduct a larger verification of the firmware
input handler, we were also able to recover all the accepted
commands and verify their semantics. Since the menu offered
a simple online help to list all the available commands, we
could demonstrate that Avatar was indeed able to automatically
detect each and all of them (the complete list is reported
in Table III). In this particular device, we verified that no
hidden commands are interpreted by the firmware and that
a subset of the commands can be used to make arbitrary
memory modifications or execute code on the controller, as
documented.

However, we found that the actual protocol (as extracted by
symbolic analysis) is much looser than what is specified in the
help menu. For example the argument of the ’AP’ command

Address Space

RO
M

R
A

M
IO

0x00000000

0x00000020

ROM interrupt vect.

0x00400000

Libraries in ROM

0x00400020

User interrupt vect.

0x80000000

User program

0x80003000

Unused

0x80003000

Memory mapped IO
Unused

0xFFFFFFFF

Fig. 5: Econotag memory layout (respective scales not re-
spected).

can be separated by any character from the command, not only
spaces. It is also possible to enter arbitrarily long numbers as
arguments, where only the last 8 digits are actually taken into
account by the firmware code.

After the analysis of the first stage was completed, we tried
to move to the emulation of the second stage bootloader. At
one point, in what turned out to be the initialization of the
DRAM, the execution got stuck: the proxy on the hard drive
would not respond any more, and the whole device seemed to
have crashed. Our guess was that the initialization writes the
DRAM timings and needs to be performed atomically. Since
we already knew the exact line of the crash from the execution
trace, it was easy to locate the responsible code, isolate the
corresponding function, and instruct Avatar to push its code
back to be executed natively on the hard drive.

In a similar manner, we had to mark few other functions
to be migrated to the real hardware. One example is the timer
routine, which was reading the timer value twice and then
checked that the difference was below a certain threshold (most
probably to ensure that the timer read had not been subject
to jitter). Using this technique, in few iterations we managed
to arrive at the final Avatar configuration that allowed us to
emulate the first and second stages up to the point in which
the disk would start loading the actual operating system from
the disk’s platters.

B. Finding Vulnerabilities Into a Commercial Zigbee Device

The Econotag, shown in Figure 6, is an all-in-one device for
experimenting with low power wireless protocols based on the
IEEE 802.15.4 standard [32], such as Zigbee or 6lowpan [43].
It is built around the MC13224v System on a Chip from
Freescale. The MC13224v [47] is built upon an ARM7TDMI
microcontroller, includes several memories, peripherals and
has an integrated IEEE 802.15.4 compatible radio transceiver.
As it can be seen in Figure 5, the device includes 96KB of
RAM memory, 80 KB of ROM and a serial Flash for storing
data. The ROM memory contains drivers for several peripher-
als as well as one to control the radio, known as MACA (MAC
Accelerator), which allows to use the dedicated hardware logic

11

Fig. 6: The Econotag device. From left to right: the USB
connector, serial and JTAG to USB converter (FTDI), Freescale
MC13224v controller and the PCB 2.4 GHz antenna.

supporting radio communications (e.g., automated ACK and
CRC computation).

The goal of this experiment is to detect vulnerabilities in
the code that process incoming packets. For this purpose, we
use two Econotag devices and a program from the Freescale
demonstration kit that simulates a wireless serial connection
(wireless UART [26]) using the Simple MAC (SMAC [27])
proprietary MAC layer network stack. The program is essen-
tially receiving characters from its UART and transmitting
them as radio packets as well as forwarding the characters
received on the radio side to its serial port. Two such devices
communicating together essentially simulate a wireless serial
connection.

The data received from the radio is buffered before being
sent to the serial port. For demonstration purposes, we artifi-
cially modified this buffer management to insert a vulnerabil-
ity: a simple stack-based buffer overflow. We then compiled
this program for the Econotag and installed it on both devices.

Avatar was configured to let the firmware run natively until
the communication between the two devices started. At this
point, Avatar was instructed to perform a context switch to
move the run-time state (registers and data memory) of one
of the devices to the emulator. At this point, the execution
proceeded in full separation mode inside the emulator using
the code loaded in ROM memory (extracted from a previous
dump), and the code loaded in RAM memory (taken from the
application). Every I/O access was forwarded to the physical
device through the JTAG connection.

The emulator was also configured to perform symbolic
execution. For this purpose, we used annotations to mark the
buffer that contains the received packet data as symbolic. Then,
we employed a state selection strategy to choose symbolic
states which maximize the code coverage, leading to a thor-
ough analysis of the function.

On the first instruction that uses symbolic values in the
buffer, S2E would switch from concrete to symbolic exe-
cution mode. Execution will fork states when, for example,
conditional branches that depend on such symbolic values
are evaluated. After exploring 564 states, and within less
than a minute of symbolic execution, our simple arbitrary
execution detection module detected that an unconstrained

Fig. 7: The Motorola C118. The clip-on battery (on the right)
has been wired to the corresponding power pins, while the
ribbon cable is connected to the JTAG pads reachable on the
back (not shown).

symbolic value was used as a return address. This confirmed
the detection of the vulnerability and also provided an example
of payload that triggers the vulnerability.

We also used Avatar to exhaustively explore all possible
states of this function on a program without the injected vulner-
ability, and confirmed the absence of control flow corruption
vulnerabilities that could be triggered by a network packet (that
our simple arbitrary execution detection module could detect).

C. Manipulating the GSM Network Stack of a Common Fea-
ture Phone

Our final test-case is centered on the analysis of the
firmware of a common GSM feature phone. In contrast with
most recent and advanced mobile phones and smartphones,
feature phones are characterized by having one single em-
bedded processor for both the network stack (i.e., GSM
baseband capabilities) and the Human-to-Machine Interface
(HMI: comprising the main Graphical User Interface, advanced
phone services, and miscellaneous applications). As such,
there is no clear code separation between different firmware
sections. On these phones, typically a real-time kernel takes
care of scheduling all the tasks for the processes currently
in execution. These are executed in the same context and
have shared access to the whole physical memory as well as
memory-mapped I/O.

12

Address Space
0x00000000

0x00000020

Interrupt vect.

0x00002000

ROM (bootloader)

0x00002020

User interrupt vector

0x00400000

NOR flash

0x00800000

Unused

0x00c00000

Internal SRAM

0x01000000

Unused

0x01800000

External SRAM

0xFFFF0000

Unused

Memory mapped IO
0xFFFFFFFF

Fig. 8: Motorola C118 memory layout (respective scales not
respected).

GSM baseband stacks have already been shown to have a
large potentially exploitable attack surface [56]. Those stacks
are developed by few companies worldwide and have many
legacy parts which were not written with security in mind,
and in particular were not considering attacks coming from
the GSM infrastructure [57].

For our experiment, we used a Motorola C118, which is
a re-branded version of the Compal E88 board also found
in other Motorola feature phones. This board makes use of
the Texas Instruments “Calypso” digital baseband, which is
composed of a mask-ROM, a DSP for GSM signal decoding,
and a single ARM7TDMI processor. It also includes several
peripherals such as an RTC clock, a PWM generator for
controlling the lights and buzzer as well as a memory mapped
UART as shown in Figure 8. Some board models have JTAG
and UART ports available, which are from time to time left
enabled by manufacturers to simplify servicing devices. In our
case, we gained access to the JTAG port and used an adapter
to bridge communication between Avatar and the hardware, as
shown in Figure 7.

Some specification documents on the Calypso chipset have
been leaked in the past, leading to the creation of home-brew
phone OS that could be run on such boards. As part of the
Osmocom-BB project, most of the platform has been reversed
and documented, and it is now possible to run a free open-
source software GSM stack on it [2]. However, we conducted
our experiments on the original Motorola firmware, in order to
assess the baseband code of an unmodified phone. Moreover,
as the GSM network code is provided as a library by the
baseband manufacturer, there is an higher chance that flaws
affecting the library code would also be present in a broader
range of phones using baseband chips from that same vendor.

The phone has a first-stage bootloader executed on hard-

ware reset, which can be used to re-flash the firmware. After
phone setup, execution continues to the main firmware, which
is mainly composed of the Nucleus RTOS, the TI network
stack library, and of third-party code to manage the user inter-
face. The phone bootloader can be analyzed using Avatar in a
similar way as the one already described for the hard disk in
Section VI-A to discover flashing commands, hidden menus
and possible backdoors. However, the bootloader revealed
itself to be simpler than the hard drive one, supporting only
a UART command to trigger firmware flashing and executing
the flashed firmware, or continuing execution after a timeout
expiration.

For this reason, we focused on the analysis of the GSM
network stack, and in particular on the routines dedicated to
SMS decoding. It has already been shown in the past how
maliciously crafted SMS can cause misbehavior, ranging from
UI issues to phone crashes [44]. However, due to the lack
of a dynamic analysis platform to analyze embedded devices,
previous studies relied on blind SMS fuzzing. Our experiment
aims at improving the effectiveness of SMS fuzzing to detect
remotely exploitable execution paths.

In this scenario, Avatar was configured to start the exe-
cution of the firmware on the real device, and switch to the
emulator once the code reached the SMS receiving state (e.g.,
by sending a legitimate SMS to it through the GSM network).
Avatar was then used to selectively emulate and symbolically
explore the decoding routines. As a result of this exploration,
a user is able to detect faulty conditions, to determine code
coverage due to different inputs and to recover precise input
constraints to drive the firmware execution into interesting
areas.

In this context, Avatar uses the JTAG connection to stop the
execution on the target and later perform all synchronization
steps between the emulator and the target. All memory and
I/O accesses through JTAG are traced by Avatar to let the user
identify address mappings. When the phone reaches the SMS
receiving state, a target-to-emulator context switch happens
and the phone’s state is transferred into S2E. Using address
mapping information previously recovered through Avatar, just
the relevant memory is moved into S2E (e.g., portions of
code and the execution stack), while remaining memory is
kept on the target and forwarded on-the-fly by Avatar (e.g.,
I/O regions). On this device, no selective code migration was
required.

Using this Avatar configuration, the SMS payload can be
intercepted in memory and marked as symbolic by employing
the techniques shown in Section V. In particular, we wrote
Annotation functions to be triggered before entering the decod-
ing routines and we then proceeded to selectively mark some
bytes of their input arguments as symbolic. The S2E plug-in
for Arbitrary Execution Detection has been employed to isolate
interesting vulnerable cases, while other execution paths were
killed upon reaching the end of the decoding function.

The symbolic execution experiments have been performed
over several days, with the ones with larger number of sym-
bolic inputs taking up to 10 hours before filling up 60 GB
of available memory. In such case, we observed more than
120,000 states being spawned according to different constraints
solving. Unfortunately, and contrary to the other experiments,

13

the GSM network stack proved to be way too complex to be
symbolically analyzed without prior knowledge on the high-
level structure of the code. The analysis was clobbered by
an explosion of possible states due to many forks happening
in pointer-manipulating loops. Avatar was able to symboli-
cally explore 42 subroutines executed during SMS decoding,
without detecting any exploitable conditions. However, it was
able to highlight several situations of user-controlled memory
load, which were unfortunately too strictly constrained to be
exploited, as discussed in Section V-B.

State explosion is a well-known limitation of symbolic
execution. To mitigate the problem, a user may need to define
heuristics to avoid an excessive resource consumption. This
could be done, for example, by employing more aggressive
state selectors to enhance code coverage, and actively prune
states by looking at loops invariants [50]. However, this
optimizations are outside the scope of our paper. The objective
of our experiments are, in fact, limited to prove that Avatar can
be used to perform dynamic analysis of complex firmware of
embedded devices.

VII. RELATED WORK

The importance of porting dynamic analysis techniques to
different platforms has been discussed by Li and Wang [41],
who proposed a set of tools built on top of IDA Pro and the
REIL Intermediate Language to perform symbolic execution
in a portable way.

However, embedded systems have long been recognized
to be a difficult target for debugging and dynamic analysis.
SymDrive [48] presents a technique based on symbolic ex-
ecution to test Linux and FreeBSD device drivers without
their device present. However, by replacing every input with
a symbolic value, this approach is hard to scale and would
suffer of state explosion on any real world firmware. In [14],
Chipounov and Candea present REVNIC, a tool based on
S2E [15] that helps to reverse engineer network device drivers.
As a case study the authors port a Windows device driver for a
common network card to a different Operating System. While
the presented approach is interesting, it relies on the presence
(and extension) of the emulated device and PCI bus in QEMU.
Instead, Avatar is hardware agnostic, as it does not need to
know how peripherals are connected, mapped and accessed.
Instead I/O can be simply forwarded to the real target and I/O
related code directly executed there.

Cui et al., adopted software symbiotes [20], an on-device
binary instrumentation to automatically insert hooks in embed-
ded firmwares. Their solution allows to insert pieces of code
that can be used to interact with the original firmware. How-
ever, while this allows some analysis (like tracing), performing
advanced dynamic analysis often requires to be able to run the
firmware code inside an emulator.

Dynamic analysis based on virtualization has already been
proposed in the past [37], also in embedded systems con-
texts [40], [31]. However, Avatar aims at overcoming many
of the limitations of pure-virtualization systems, by providing
an hybrid system where code execution can be transferred back
and forth between the device and an emulator, as well as a full
framework to orchestrate all the analysis steps.

The state migration technique employed by Avatar is
highly influenced by existing solutions been used to improve
the performance during hot-migration of virtual machines. In
particular, our approach is a simplified version of the one
proposed by Clark et al. [16], where Avatar is the arbiter of a
managed migration, which can either happen in a single stop-
and-copy phase (as in full-separation mode) or in an event-
driven pull-phase (during context switching).

The ”security by obscurity” approach is still relevant
among embedded systems manufacturers and has lead in the
past to the discovery of major weaknesses in commonly
deployed technologies [45]. We believe that Avatar represents
a flexible solution to provide a symbolic analysis environment
which can greatly speed-up such blackbox analysis cases,
aiming at automatically reverse engineer input formats [21], [9]
and detect hidden data structures [53]. In the past, backdoors
and insecure firmware update facilities were found into em-
bedded systems, often disguised into other standard interfaces
such as Printer Job Language updates for HP printers [19].
In our experiments we showed how Avatar can be used to
actively look for such backdoors, by symbolically executing
input parsing routines.

Davidson et al. [22] present a tool to perform symbolic
execution of embedded firmware for MSP430-based devices.
Like Avatar, this tool is based on the KLEE symbolic execution
engine. However, it relies on firmware’s source code as well
as on documented SoCs, peripherals mapping, or on a simple
emulation layer for them, all of those are rarely available for
commercial devices.

Delugre [23] reports on the techniques that were used to
reverse engineer the firmware of a PCI network card, and to
develop a backdoored firmware. For this purpose, QEMU was
adapted to emulate the firmware and to forward IO access to
the device. However, this was limited by bad performance. We
have seen similar performance blockers when using Avatar in
full separation mode, but the ability to perform memory
optimization and push back code to the physical device allow
Avatar to overcome such limitations.

Dedicated hardware support can provide a very good
solution to improve efficiency of debugging, improving sig-
nificantly the ability to replay events and system status. In
[59] Xu et al., presents an hardware architecture for recording
precise events and replay them during debugging sessions. For
this purpose custom hardware logs memory and taps on several
important internal features (e.g., cache lines). Simpler systems
also exist, like In-Circuit Emulators [58], which replace the
CPU core by an emulated CPU which can then directly interact
with hardware peripherals. While Avatar could make use of
such features, it also aims at enabling analysis on devices
without such dedicated hardware support.

VIII. CONCLUSION

This paper introduced Avatar, a new framework for dy-
namic analysis of embedded devices’ firmwares. Avatar en-
ables the execution of firmware code in an analysis-friendly
emulator by forwarding memory access to the real device. This
allows to analyze firmwares that rely on completely unknown
peripherals.

14

Avatar proved to be capable of acceptable performances
and flexibility in three real-word tests, performed on a variety
of target devices and with different goals. It was successfully
used across these three scenarios, which included a common
reverse engineering task, a vulnerability discovery and a hard-
coded backdoor detection.

Future work will consist in integrating better analysis
techniques with avatar to improve its bug detection rate. For
example, augmenting Avatar with techniques like those used
in Howard [52] would allow to recover memory structures
and therefore improve bug detection, while other techniques
as used in AEG [6] could be applicable as well. Another area
where significant improvements can be achieved is in provid-
ing improved state exploration heuristics, that lead to better
coverage or to the analysis of more error prone code [30].

Finally, Avatar has been tested on ARM embedded systems
and could easily support x86 targets, but could be ported with
reasonable effort to a wider set of architectures supported by
QEMU such as MIPS and PowerPC, in order to analyze many
other devices.

ACKNOWLEDGMENTS

Authors would like to thank Pascal Sachs and Luka Malisa
that worked on an early prototype of the system, and Lucian
Cojocar for his helpful comments on the current version of
Avatar. The research leading to these results was partially
funded by the European Union Seventh Framework Pro-
gramme (contract Nr 257007 and project FP7-SEC-285477-
CRISALIS).

REFERENCES

[1] Anubis: Analyzing Unknown Binaries. http://anubis.iseclab.org/.
[2] OsmocomBB. http://bb.osmocom.org/trac/.
[3] IEEE Standard Test Access Port and Boundary-Scan Architecture, 1990.

IEEE Standard. 1149.1-1990.
[4] IEEE-ISTO 5001 - 2003 the nexus 5001 forum standard for a global

embedded processor debug interface. IEEE - Industry Standards and
Technology Organization, December 2003.

[5] CWSandbox, 2008. http://www.cwsandbox.org.
[6] AVGERINOS, T., CHA, S. K., HAO, B. L. T., AND BRUMLEY, D.

AEG: Automatic exploit generation. In Network and Distributed System
Security Symposium (Feb. 2011), pp. 283–300.

[7] BELLARD, F. QEMU, a fast and portable dynamic translator. In ATEC
’05: Proceedings of the annual conference on USENIX Annual Tech-
nical Conference (Berkeley, CA, USA, 2005), USENIX Association,
pp. 41–41.

[8] BOJINOV, H., BURSZTEIN, E., AND BONEH, D. Embedded man-
agement interfaces: Emerging massive insecurity. In Blackhat 2009
Technical Briefing / whitepaper (2009).

[9] CABALLERO, J., YIN, H., LIANG, Z., AND SONG, D. Polyglot:
automatic extraction of protocol message format using dynamic binary
analysis. In Proceedings of the 14th ACM conference on Computer and
communications security (New York, NY, USA, 2007), CCS ’07, ACM,
pp. 317–329.

[10] CADAR, C., DUNBAR, D., AND ENGLER, D. KLEE unassisted
and automatic generation of high-coverage tests for complex systems
programs. In OSDI (2008).

[11] CARNA BOTNET. Internet census 2012, port scanning /0 using insecure
embedded devices, 2012. http://internetcensus2012.bitbucket.org/paper.
html.

[12] CHECKOWAY, S., MCCOY, D., ANDERSON, D., KANTOR, B., SAV-
AGE, S., KOSCHER, K., CZESKIS, A., ROESNER, F., AND KOHNO,
T. Comprehensive Experimental Analysis of Automototive Attack
Surfaces. In Proceedings of the USENIX Security Symposium (San
Francisco, CA, August 2011).

[13] CHING, P. C., CHENG, Y., AND KO, M. H. An in-circuit emulator for
TMS320C25. IEEE Transactions on Education 37, 1 (1994), 51–56.

[14] CHIPOUNOV, V., AND CANDEA, G. Reverse Engineering of Binary
Device Drivers with RevNIC. In Proceedings of the 5th ACM SIGOP-
S/EuroSys European Conference on Computer Systems (EuroSys), Paris
France, April 2010 (Paris, France, 2010).

[15] CHIPOUNOV, V., KUZNETSOV, V., AND CANDEA, G. The S2E Plat-
form: Design, Implementation, and Applications. ACM Trans. Comput.
Syst. 30, 1 (Feb. 2012), 2:1–2:49.

[16] CLARK, C., FRASER, K., HAND, S., HANSEN, J. G., JUL, E.,
LIMPACH, C., PRATT, I., AND WARFIELD, A. Live migration of virtual
machines. In Proceedings of the 2nd conference on Symposium on
Networked Systems Design & Implementation - Volume 2 (Berkeley,
CA, USA, 2005), NSDI’05, USENIX Association, pp. 273–286.

[17] COZZIE, A., STRATTON, F., XUE, H., AND KING, S. T. Digging
for data structures. In Proceedings of the 8th USENIX conference on
Operating systems design and implementation (Berkeley, CA, USA,
2008), OSDI’08, USENIX Association, pp. 255–266.

[18] CRISTIAN, F. Exception handling and software fault tolerance. IEEE
Transactions on Computers C-31, 6 (1982), 531–540.

[19] CUI, A., COSTELLO, M., AND STOLFO, S. J. When firmware modifi-
cations attack: A case study of embedded exploitation. In 20th Annual
Network and Distributed System Security Symposium, NDSS 2013, San
Diego, California, USA, February 24-27, 2013 (2013), The Internet
Society.

[20] CUI, A., AND STOLFO, S. J. Defending embedded systems with soft-
ware symbiotes. In Proceedings of the 14th International Conference
on Recent Advances in Intrusion Detection (Berlin, Heidelberg, 2011),
RAID’11, Springer-Verlag, pp. 358–377.

[21] CUI, W., PEINADO, M., CHEN, K., WANG, H. J., AND IRUN-BRIZ,
L. Tupni: automatic reverse engineering of input formats. In CCS
’08: Proceedings of the 15th ACM conference on Computer and
communications security (New York, NY, USA, 2008), ACM, pp. 391–
402.

[22] DAVIDSON, D., MOENCH, B., JHA, S., AND RISTENPART, T. FIE on
firmware: Finding vulnerabilities in embedded systems using symbolic
execution. In Proceedings of the USENIX Security Symposium (Wash-
ington, DC, August 2013).

[23] DELUGRÉ, G. Closer to metal: Reverse engineering the broadcom
netextreme’s firmware. HACK.LU 2010.

[24] EGELE, M., SCHOLTE, T., KIRDA, E., AND KRUEGEL, C. A survey
on automated dynamic malware-analysis techniques and tools. ACM
Comput. Surv. 44, 2 (Mar. 2008), 6:1–6:42.

[25] FALLIERE, N., MURCHU, L. O., AND CHIEN, E. W32.Stuxnet Dossier,
2011.

[26] FREESCALE SEMICONDUCTOR, INC. MC1322x Simple Media Access
Controller Demonstration Applications User’s Guide, 9 2011. Rev. 1.3.

[27] FREESCALE SEMICONDUCTOR, INC. MC1322x Simple Media Access
Controller (SMAC) Reference Manual, 09 2011. Rev. 1.7.

[28] GODEFROID, P., LEVIN, M. Y., AND MOLNAR, D. Automated White-
box Fuzz Testing. In Network Distributed Security Symposium (NDSS)
(2008), Internet Society.

[29] GODEFROID, P., LEVIN, M. Y., AND MOLNAR, D. SAGE: whitebox
fuzzing for security testing. Communications of The ACM (2012), 40–
44.

[30] HALLER, I., SLOWINSKA, A., NEUGSCHWANDTNER, M., AND BOS,
H. Dowsing for overflows: A guided fuzzer to find buffer boundary
violations. In Proceedings of USENIX Security’13 (Washington, DC,
August 2013), USENIX.

[31] HAN, Y., LIU, S., SU, X., AND HU, Z. A dynamic analysis system for
Cisco IO based on virtualization. In Multimedia Information Networking
and Security (MINES), 2011 Third International Conference on (2011),
pp. 330–332.

[32] IEEE COMPUTER SOCIETY. IEEE 802.15.4, Wireless Medium Access
Control (MAC) and Physical Layer (PHY) Specifications for Low-Rate

15

http://bb.osmocom.org/trac/
http://internetcensus2012.bitbucket.org/paper.html
http://internetcensus2012.bitbucket.org/paper.html

Wireless Personal Area Networks (WPANs), June 2006. ISBN 0-7381-
4996-9.

[33] KANG, M. G., MCCAMANT, S., POOSANKAM, P., AND SONG, D.
DTA++: Dynamic Taint Analysis with Targeted Control-Flow Propa-
gation. In Proceedings of the 18th Annual Network and Distributed
System Security Symposium (San Diego, CA, Feb. 2011).

[34] KANG, M. G., POOSANKAM, P., AND YIN, H. Renovo: a hidden code
extractor for packed executables. In Proceedings of the 2007 ACM
workshop on Recurring malcode (New York, NY, USA, 2007), WORM
’07, ACM, pp. 46–53.

[35] KAO, C.-F., HUANG, I.-J., AND CHEN, H.-M. Hardware-software
approaches to in-circuit emulation for embedded processors. Design
Test of Computers, IEEE 25, 5 (2008), 462–477.

[36] KIRCHNER, A. Data Leak Detection in Smartphone Applications.
Master thesis, Vienna University of Technology.

[37] KUZNETSOV, V., CHIPOUNOV, V., AND CANDEA, G. Testing closed-
source binary device drivers with DDT. In Proceedings of the 2010
USENIX conference on USENIX annual technical conference (Berkeley,
CA, USA, 2010), USENIXATC’10, USENIX Association, pp. 12–12.

[38] KUZNETSOV, V., KINDER, J., BUCUR, S., AND CANDEA, G. Efficient
state merging in symbolic execution. In Proceedings of the 33rd
ACM SIGPLAN Conference on Programming Language Design and
Implementation (New York, NY, USA, 2012), PLDI ’12, ACM, pp. 193–
204.

[39] LATTNER, C., AND ADVE, V. LLVM: A compilation framework for
lifelong program analysis & transformation. In International Symposium
on Code Generation and Optimization, 2004. CGO 2004. (2004), IEEE,
pp. 75–86.

[40] LEE, Y.-H., SONG, Y. W., GIRME, R., ZAVERI, S., AND CHEN, Y.
Replay debugging for multi-threaded embedded software. In Embedded
and Ubiquitous Computing (EUC), 2010 IEEE/IFIP 8th International
Conference on (2010), pp. 15–22.

[41] LI, L., AND WANG, C. Dynamic analysis and debugging of binary
code for security applications. In 4th International Conference on
Runtime Verification (RV) 2013, Rennes, France, September 24-27,
2013. Proceedings (2013), vol. 8174 of Lecture Notes in Computer
Science, Springer, pp. 403–423.

[42] MELEAR, C. Emulation techniques for microcontrollers. In Wescon/97.
Conference Proceedings (1997), pp. 532–541.

[43] MONTENEGRO, G., KUSHALNAGAR, N., HUI, J., AND CULLER, D.
Transmission of IPv6 packets over IEEE 802.15.4 networks (RFC
4944). Tech. rep., IETF, September 2007. http://www.ietf.org/rfc/
rfc4944.txt.

[44] MULLINER, C., GOLDE, N., AND SEIFERT, J.-P. SMS of Death:
From Analyzing to Attacking Mobile Phones on a Large Scale. In
Proceedings of the 20th USENIX Security Symposium (San Francisco,
CA, USA, August 2011).

[45] NOHL, K., EVANS, D., STARBUG, S., AND PLÖTZ, H. Reverse-
engineering a cryptographic RFID tag. In Proceedings of the 17th con-
ference on Security symposium (Berkeley, CA, USA, 2008), USENIX
Association, pp. 185–193.

[46] PEREZ, Y.-A., AND DUFLOT, L. Can you still trust your network card?
CanSecWest 2010.

[47] REDWIRE LLC. Econotag: MC13224V development board w/ on-board
debugging. http://www.redwirellc.com/store/node/1.

[48] RENZELMANN, M. J., KADAV, A., AND SWIFT, M. M. SymDrive:
testing drivers without devices. In Proceedings of the 10th USENIX
conference on Operating Systems Design and Implementation (Berkeley,
CA, USA, 2012), OSDI’12, USENIX Association, pp. 279–292.

[49] SCHLICH, B. Model checking of software for microcontrollers. ACM
Trans. Embed. Comput. Syst. 9, 4 (Apr. 2010), 36:1–36:27.

[50] SCHMITT, P. H., AND WEISS, B. Inferring invariants by symbolic
execution. In Proceedings, 4th International Verification Workshop
(VERIFY’07) (2007), B. Beckert, Ed., vol. 259 of CEUR Workshop
Proceedings, CEUR-WS.org, pp. 195–210.

[51] SCHWARTZ, E. J., AVGERINOS, T., AND BRUMLEY, D. All you ever
wanted to know about dynamic taint analysis and forward symbolic
execution (but might have been afraid to ask). In Proceedings of the
2010 IEEE Symposium on Security and Privacy (Washington, DC, USA,
2010), SP ’10, IEEE Computer Society, pp. 317–331.

[52] SLOWINSKA, A., STANCESCU, T., AND BOS, H. Howard: A dynamic
excavator for reverse engineering data structures. In Proceedings of the
Network and Distributed System Security Symposium, NDSS 2011, San
Diego, California, USA, 6th February - 9th February 2011 (2011).

[53] SONG, D., BRUMLEY, D., CABALLERO, J., JAGER, I., KANG, M. G.,
LIANG, Z., NEWSOME, J., POOSANKAM, P., AND SAXENA, P. Bit-
blaze: A new approach to computer security via binary analysis. In In
Proceedings of the 4th International Conference on Information Systems
Security (2008).

[54] TRIULZI, A. A SSH server in your NIC. PacSec 2008.
[55] WANG, T., WEI, T., GU, G., AND ZOU, W. TaintScope: A Checksum-

Aware Directed Fuzzing Tool for Automatic Software Vulnerability
Detection. In IEEE Symposium on Security and Privacy (2010),
pp. 497–512.

[56] WEINMANN, R.-P. Baseband attacks: remote exploitation of memory
corruptions in cellular protocol stacks. In Proceedings of the 6th
USENIX conference on Offensive Technologies (Berkeley, CA, USA,
2012), WOOT’12, USENIX Association, pp. 2–2.

[57] WELTE, H. Anatomy of Contemporary GSM Cellphone Hardware.
[58] WILLIAMS, M. ARMV8 debug and trace architectures. In System,

Software, SoC and Silicon Debug Conference (S4D), 2012 (2012),
pp. 1–6.

[59] XU, M., BODIK, R., AND HILL, M. D. A ”flight data recorder” for en-
abling full-system multiprocessor deterministic replay. In Proceedings
of the 30th annual international symposium on Computer architecture
(New York, NY, USA, 2003), ISCA ’03, ACM, pp. 122–135.

[60] ZADDACH, J., KURMUS, A., BALZAROTTI, D., BLASS, E. O., FRAN-
CILLON, A., GOODSPEED, T., GUPTA, M., AND KOLTSIDAS, I. Im-
plementation and implications of a stealth hard-drive backdoor. In
ACSAC 2013, 29th Annual Computer Security Applications Conference,
December 9-13, 2013, New Orleans, Louisiana, USA (New orleans,
UNITED STATES, 12 2013).

16

http://www.ietf.org/rfc/rfc4944.txt
http://www.ietf.org/rfc/rfc4944.txt

	I Introduction
	II Dynamic Firmware Analysis
	III Avatar
	III-A System Architecture
	III-B Full-Separation Mode
	III-C Context Switching
	III-D Interrupts Handling
	III-E Replaying Hardware Interaction

	IV Overcoming the limits of Full Separation
	IV-A Memory Optimization
	IV-B Selective Code Migration

	V Extending Avatar
	V-A Injecting Symbolic Values Into the Firmware's Execution Flow
	V-B Symbolically Detecting Arbitrary Execution Conditions
	V-C Limitations of state synchronization

	VI Evaluation
	VI-A Analysis of the Mask ROM Bootloader of a Hard Disk Drive
	VI-B Finding Vulnerabilities Into a Commercial Zigbee Device
	VI-C Manipulating the GSM Network Stack of a Common Feature Phone

	VII Related work
	VIII Conclusion
	References

