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Motivation

- Targeted attacks on industrial control
systems (ICS) are growing in frequency and
severity

— 7,200 Internet-facing control system devices in
U.S. [1]

* Industrial control systems use specialized
but insecure communication protocols

. . . . [1] DHS ICS-CERT Monitor,
— Enterprise security tools are not able to identify October/November/December 2012

zero-day attacks specific to these protocols

* Alternative: anomaly-based detection
(AD) sensors
— Natively well-suited for detecting zero-day attacks



Motivation — AD Sensors

* Control systems exhibit constrained behavior:
— Fixed topology
— Regular communication patterns
— Limited number of protocols
— Simpler protocols

e Content-based anomaly detection
— Sequence of commands, command data, request/response

* Extensible & modular framework
— Common analysis method for different protocols



Main Contributions

* A new probabilistic-suffix-tree-based approach for ICS anomaly detection,
which extracts the normal patterns of command and data sequences from
ICS communications

* A false positive rate reduction mechanism, instrumental for ICS
environments

* An implementation of the proposed approached applied to both real and
simulated datasets



Connection Model

Master Slave

R Cmd + Parameter
Dwx} Dev Y
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« Slave can receive N command types

» For the same command type,

— parameters can vary, but not much

— responses depend on the <Cmd, Parameter> pair
« Devices will have an ‘internal’ state

— May not be directly visible

— Operational modes, normal/compromised



Predictable Behavior of ICS Network

- Globally?

— No. Devices behavior change with different frequencies.
* Device level?

— Better, but still not deterministic as a device may communicate with many devices
* Connection level?

— Stable, deterministic!
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Patterns for Commands and Data

« Given a connection, the sequence of commands has patterns
— Periodic operations -> form a transaction of commands

2 7 27
2

. leen a command type over a connectlon data IS mostly elther

ss s9 61 63 65 67

— a fixed value or
— a value changing with a pattern

« Both can be modeled as sequence patterns




Patterns for Commands and Data

(o N

We detect anomalies in command and data sequences
- Master sends unknown commands

- with normal/abnormal data

- Master sends known but abnormal commands
- out of context

- Slave responds with abnormal response data

- Master sends requests to unusual slaves
- that it has never/rarely commmunicated with

]
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How to Model Sequence Patterns?

t, Time

a b a blclc a b a b ¢ c
[

* What is the probability of seeing a certain command at time t, given a
history of commands of length m?



Learning Patterns of Commands and Data

« Learning the normal sequence of commands = Learning a Markov
chain of order m

« Challenges
— Packets can be missing
— Patterns may vary

* Need for a probabilistic approach
— Learn the conditional probability distribution (CPD)

Pr(oot—m - 0o1-1)



Learning Patterns Using PST

* Probabilistic Suffix Tree (PST)
— A variable-order Markov model
— Bounded depth (the maximum order), L

Pr(o¢|oi09---0¢_1) ~ Pr(o¢|os_ - 0¢-1)

, Where k<=1
— Efficiently represents CPD using tree structure



PST Structure

Depth O

Depth 1

Depth L

s)
Condition Probability Distribution



PST Example
Basepattern: 1 2 1 2 4 4 L (MaxDepth) = 3
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Likelihood Calculation

Basepattern: 1 2 1 2 4 4 L (MaxDepth) = 3

617

604

Suppose we have observed
... 2-4-4-1-2
and now see 1.

304 294 Traverse from the root to 2, 12, and then

NG .




Likelihood Calculation

Basepattern: 1 2 1 2 4 4 L (MaxDepth) = 3

/ A1 | #41201) = 261 \

C12 | #41202) = 3

N4 | #(412¢4) = 30

#(412¢0) = 294
I

Pr (1 | history) = Pr(1 | 412)

= #(4121) / #(412+0) > have observed
= 261/294 = 0.8877 ..
o 2-4-4-1-2
@ and now see 1.
6
304 294 Traverse from the root to 2, 12, and then

NG .




Incremental PST

* For online learning
— Batch learning is not applicable to network-level AD due to the flow of packets

— Need to be able to deal with varying patterns

« Update the tree whenever reading an element, o

— Start from an empty tree
— Keep recently-read elements

— Update the counts #(S®0O) for recent history s of length 1,..., L



Incremental PST Example
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- A MODBUS connection
— Base pattern: 1-2-1-2-4-4
— Normal sequence
— Mostly, the likelihoods are close to 1.0
— Sometimes, near zero -> because of missing packets!



False Positive Due to Missing Packets

Basepattern: 1 2 1 2 4 4 L (MaxDepth) = 3
>
101044 - 1004 - 1 Time
\_'_'

Pr(2]4-1-2) = 1.69%

« Missing one packet can cause multiple false positives
— In the example, missing ‘1’ causes two false positives
« We want low false positive rate!



Incremental PST with Prediction

o If PT(O‘t‘O't_L . °O't_1) < 0

— assume an element is missing and try to restore it!

* First, find what we should have seen.
oy = argmax Pr(olos_p - 04_1)
o
* Then, use it to calculate the new likelihood

O {LOt—L+1" " Ot—1 —s Ot—L41° " Ot—10ML
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Incremental PST with Prediction Example
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Reduced many FP!
But, still, some are FP.

4-4-1-0-4
1-0-1-2-1-4
1-2-1-2-1-2

It doesn’t restore well when
consecutive packets are missing!



Evaluation

* Modbus traffic
— 2 masters, 25 slaves
— 86 connections (43 pairs)
— 4 cmd types
— No attack/anomaly is known
— Some packets are missing

« Synthetic data (random sequences of commands)
— Evaluate the detection rate and the false positive rate



False Positive Rates of Modbus Traffic
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Generation of Random Sequence of Commands

» Generate a random base pattern

* Then, generate a random sequence based on the pattern
— With a missing probability, a command can be dropped
— With an attack probability, a random short sequence is inserted

* |Input parameters
— Min, max of base pattern length
— # of command types
— Missing, attack probabilities



Better Performance for INC w/Pred
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Similar Performance Across All Methods
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Conclusions

* We proposed a novel anomaly detection method for ICS devices

— Built accurate models
— Reduced false positive rate

* The proposed method has been implemented and applied to a
Modbus network testbed and a synthetic dataset

— Reached a high detection rate for the synthetic dataset while successfully
keeping the false positive rate in check



Future Work

* A complete evaluation on real operational datasets will be a critical
next step

— We are currently analyzing real Modbus traffic

« We plan to extend the set of protocols that we investigate and to
target different industry sectors

« We plan to also extend the ICS-specific anomaly detection
techniques within a more flexible and general framework, that can
cope with long lasting attacks targeting our architecture
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