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Abstract

The Android software stack for mobile devices defines
and enforces its own security model for apps through its
application-layer permissions model. However, at its foun-
dation, Android relies upon the Linux kernel to protect the
system from malicious or flawed apps and to isolate apps
from one another. At present, Android leverages Linux dis-
cretionary access control (DAC) to enforce these guaran-
tees, despite the known shortcomings of DAC. In this pa-
per, we motivate and describe our work to bring flexible
mandatory access control (MAC) to Android by enabling
the effective use of Security Enhanced Linux (SELinux) for
kernel-level MAC and by developing a set of middleware
MAC extensions to the Android permissions model. We then
demonstrate the benefits of our security enhancements for
Android through a detailed analysis of how they mitigate a
number of previously published exploits and vulnerabilities
for Android. Finally, we evaluate the overheads imposed by
our security enhancements.

1. Introduction

Android is a Linux-based open source software stack for
mobile devices [4]. One of Android’s design goals was
to facilitate a rich and open ecosystem of applications in
which critical functionality can be provided or replaced by
third party applications or apps [40]. Google Play, the of-
ficial app market for Android apps, is also notable for its
low barrier to entry and lack of a formal review process for
accepting new apps [2]. In such an environment, the need
for a strong security model that is capable of addressing the
threat of flawed and malicious apps is particularly evident.

Android’s existing security model is implemented at two
layers: an application-level permissions model (aka An-
droid permissions) and a kernel-level sandboxing and isola-
tion mechanism. The application-level permissions model,
which is enforced by the Android middleware, controls ac-
cess to application components, such as the ability to invoke

a service provided by another application, and it controls
access to system resources, such as the ability to access the
camera or the network. The Android permissions model
is directly exposed to Android application developers, who
must specify the set of required permissions as part of their
application’s manifest file, and to end users, who must ap-
prove the set of permissions deemed dangerous before in-
stalling an application [1].

Underneath the user-visible Android permission model,
the Linux kernel provides the foundational mechanism for
application isolation and sandboxing. This mechanism nor-
mally operates invisibly to the app developers and users, so
long as an app does not attempt to violate the restrictions
imposed by the kernel. Application isolation and sandbox-
ing in Android is necessarily enforced by the Linux kernel
since the Dalvik VM is not a security boundary and any app
can run native code [3]. At present, Android relies on Linux
discretionary access control (DAC) to implement these con-
trols.

In particular, Android employs DAC in two primary
ways. First, Android uses DAC to restrict the use of system
facilities by apps. In some cases, DAC is used to ensure that
certain system resources can only be indirectly accessed by
apps through system services which can then mediate ac-
cess and address sharing concerns. In other cases, DAC is
used to directly authorize apps to access system resources,
e.g. the ability to create bluetooth or network sockets and
the ability to access the filesystem on the SDcard. The
socket controls required some custom kernel modifications
for Android since Linux DAC does not normally control the
use of these sockets.

Second, Android uses DAC to isolate apps from one an-
other in much the same way DAC is employed in conven-
tional Linux systems to isolate users on a multi-user sys-
tem. Each app is allocated a unique user and group iden-
tifier (UID and GID, respectively) when it is installed, and
this (UID, GID) pair is assigned to the processes and the
private data files associated with the app [1]. This approach
is designed to prevent one app from directly accessing the
process state or files of another app through the kernel in-



terfaces. Apps signed by the same key may optionally be
run in the same (UID, GID) pair if they wish to fully share
resources without restriction.

The shortcomings of DAC, particularly with respect to
protecting against flawed and malicious applications, are
well established [29]. In some respects, by modifying the
Linux kernel and by using DAC identities to directly rep-
resent applications rather than users, Android has mitigated
some of the problems associated with DAC in its security
model. Nonetheless, significant weaknesses remain, such
as the ability of flawed or malicious apps to leak access to
data, the coarse granularity of the DAC permissions, and the
inability to confine any system daemons or setuid programs
that run with the root or superuser identity.

Security Enhanced Linux (SELinux) was originally de-
veloped as a Mandatory Access Control (MAC) mechanism
for Linux to demonstrate how to overcome the shortcom-
ings of DAC [28]. Although SELinux has long been in-
tegrated into the mainline Linux kernel and is available in
many Linux distributions, neither it nor any other kernel
MAC mechanism is presently used by Android. Unlike
DAC, SELinux enforces a system-wide security policy over
all processes, objects and operations based on security la-
bels that can encode a variety of security-relevant informa-
tion about each process and object. As a MAC mechanism,
SELinux is capable of confining flawed and malicious ap-
plications, even ones that run with the root or superuser
identity.

SELinux offers three primary benefits for Android. First,
SELinux is capable of confining the privileged Android sys-
tem daemons in order to protect them from misuse and
to limit the damage that can be done via them. In the
absence of SELinux, any flaw in any one of these privi-
leged daemons is fatal to the security of the device. Sec-
ond, SELinux provides a stronger mechanism than DAC
for isolating and sandboxing Android apps. SELinux can
fully control all possible interactions among Android apps
at the kernel layer, and it can control all access to system
resources by the apps. Lastly, SELinux provides a central-
ized policy configuration that can be analyzed for potential
information flows and privilege escalation paths.

In order to bring these benefits to Android and motivate
the need for similar capabilities in other mobile operating
systems, we initiated the Security Enhanced Android or SE
Android project. The SE Android project is initially en-
abling the use of SELinux in Android, although it is not
limited in scope to SELinux alone. SE Android also refers
to the reference implementation produced by the project.
The current SE Android reference implementation provides
a worked example of how to enable and apply SELinux at
the lower layers of the Android software stack and provides
a demonstration of the value provided by SELinux in con-
fining various root exploits and application vulnerabilities.

Our unique contributions in the work described by this
paper include:

• Identifying and overcoming several challenges to en-
abling the effective use of SELinux in Android,

• Integrating SELinux and middleware MAC into An-
droid in a comprehensive and coherent manner,

• Demonstrating concretely how SELinux mitigates real
Android exploits and app vulnerabilities, and

• Merging our security enhancements into the mainline
Android platform maintained by the Android Open
Source Project (AOSP).

The remainder of this paper is as follows. We first pro-
vide a description of the challenges to enabling the effective
use of SELinux in Android in Section 2. We then identify
how those challenges were overcome in the SE Android ref-
erence implementation in Section 3. An analysis of how SE
Android blocks a variety of previously published exploits
and vulnerabilities for Android is captured in Section 4. Our
results from measuring the size and performance overheads
due to SE Android are reported in Section 5. Related work
is discussed in Section 6.

2. Challenges

Prior to our work, the challenges to using SELinux in
Android were manifold. These challenges spanned the ker-
nel, userspace, and policy configuration. In prior efforts by
others to enable the use of SELinux in Android [44, 35],
many of these challenges were either completely over-
looked or merely worked around rather than being fully ad-
dressed.

2.1. Kernel challenges

The first set of challenges to using SELinux in Android
was in the Linux kernel. Even though SELinux is part of
the standard Linux kernel, enabling the use of SELinux in
Android requires more than merely enabling SELinux in the
kernel build configuration. In order to provide per-file pro-
tection and to support automatic security context transitions
on executables, SELinux requires that the filesystem pro-
vide support for security labeling. In Linux, the underlying
storage for file security labels is typically provided through
the use of extended attributes on files. However, the orig-
inal preferred filesystem type for Android devices was the
yaffs2 filesystem, which is not part of the mainline Linux
kernel and did not originally support extended attributes at
all. More recently, yaffs2 has gained support for extended
attributes, but still lacked the necessary support for auto-
matic security labeling of newly created files.



Furthermore, Android introduces a number of new ker-
nel subsystems and drivers to the Linux kernel. These sub-
systems include new mechanisms for application processes
to communicate, such as the Binder IPC mechanism and the
Anonymous Shared Memory (ashmem) mechanism, as well
as various other Android-specific facilities, such as the An-
droid logging and wake lock mechanisms. These Android-
unique kernel subsystems have not been previously studied
or instrumented for SELinux and thus introduce the possi-
bility of inter-app communication or privileged interfaces
that are completely uncontrolled by SELinux.

2.2. Userspace challenges

The second set of challenges was in the Android
userspace software stack. In the past, significant work has
gone into integrating support for SELinux into conventional
GNU/Linux distributions. However, in Android, almost ev-
erything above the kernel is different from a typical Linux
distribution, from system-level components such as its own
unique init program, C library (bionic) and core daemons
up through the Dalvik runtime and application frameworks.
As a result, none of the prior work to integrate SELinux into
Linux userspace could be directly reused for Android.

Android also brings unique challenges for integrating
SELinux into the userspace due to its model for starting
apps. In Android, a single process, the zygote, preloads
the Dalvik VM and common class files, and then upon re-
quest, forks a child process for each app, loading that app’s
specific classes into the child. This avoids the overhead of
the Dalvik VM and common class initialization on each app
start. However, SELinux normally performs automatic se-
curity context transitions upon program execution. Hence,
the zygote model does not naturally lend itself to running
apps in particular SELinux security contexts by default.

Android’s rich support for sharing through the Android
framework services also poses challenges for enabling the
effective use of SELinux in Android. As much of this shar-
ing occurs at the middleware layer and is only visible at
the kernel layer as communications between each app and
the system server (where the framework service implemen-
tation resides) in Android, it is impossible to fully address
controlled sharing among apps at the kernel layer.

2.3. Policy challenges

The third set of challenges to enabling the use of
SELinux in Android was in the policy configuration. For
Linux distributions, the SELinux reference policy [43, 47]
provides the standard base policy from which the various
distribution policies are constructed. This reference policy
has been developed over many years based on the feedback
and contributions of many SELinux users and developers.

However, the reference policy was developed based on
the normal operation of the conventional Linux userspace
and the typical ways in which Linux distributions are used.
As Android has its own unique userspace software stack,
and as its filesystem layout and usage model differs substan-
tially from that of conventional Linux, the reference pol-
icy does not provide a good foundation for constructing a
SELinux policy for Android. The reference policy is also
quite large, and thus is not well suited to the resource con-
straints of small devices.

Lastly, the reference policy aims to provide comprehen-
sive least privilege for Linux distributions. This requires
that the distributions and end users often have to customize
the policy for their specific environment and needs. While
this is feasible for Linux developers and administrators, it
would impose a significant usability challenge for typical
Android users and app developers if they had to understand
or write SELinux policy.

3. Implementation

This section discusses how the previously noted chal-
lenges to enabling the effective use of SELinux in Android
were overcome in the SE Android reference implementa-
tion. Overcoming these challenges required changes to the
kernel, changes and new additions to the Android userspace
software stack, and the creation of a new policy configura-
tion for Android.

3.1. Kernel support

Kernel support for SELinux in Android can be divided
into two categories. Basic enablement of SELinux and
filesystem support for security labels is required in order to
use SELinux at all. Instrumenting Android-specific subsys-
tems for SELinux is required in order to provide complete
control.

3.1.1. Basic enablement and filesystem support. Using
SELinux in Android first requires enabling SELinux and
its dependencies in the kernel configuration and rebuilding
the kernel. SELinux dependencies in the kernel include the
Linux Security Module (LSM) framework [49], the audit
subsystem, and filesystem support for extended attributes
and security labels for each relevant filesystem for the de-
vice. Filesystems that do not support extended attributes or
security labeling such as vfat can still be used, but can only
be labeled and protected at per-mount granularity rather
than per-file granularity.

As noted earlier, the yaffs2 filesystem used for NAND
storage on Android devices did not originally support ex-
tended attributes or security labeling. Filesystem support
for extended attributes was recently added to the yaffs2



filesystem, thereby providing storage for security labels. To
provide full security labeling functionality, we implemented
a fix to the yaffs2 getxattr implementation and we imple-
mented support for automatically setting a security label on
new yaffs2 files when they are created.

More recent Android devices have begun using the Linux
ext4 filesystem for eMMC storage on Android devices,
since eMMC exposes a traditional block-based interface
on which conventional disk-based Linux filesystems can be
layered. ext4 already incorporates all the necessary support
for extended attributes and security labeling and is already
tested with SELinux as part of conventional Linux distribu-
tions.

3.1.2. Android-specific subsystems. We began our study
of the Android-specific kernel subsystems and drivers with
the Binder subsystem as it is the central IPC primitive for
Android apps. The Binder enables transparent invocation
of objects whether local (intra-process) or remote (inter-
process), and it provides lifecycle management of objects
shared across multiple processes. At the kernel level, the
core Binder functionality is implemented by a binder driver
that presents a /dev/binder interface to applications. This
/dev/binder interface can be opened by all Android apps to
perform IPC transactions via specific ioctl commands im-
plemented by the driver.

One process, known as the Binder context manager, pro-
vides name service functionality for the Binder and enables
the bootstrapping of communications with other services.
The Android servicemanager program registers itself as the
Binder context manager via the /dev/binder interface during
system startup and handles initial requests by applications
to obtain references to other services.

Once the servicemanager is operating, the various An-
droid framework services can register object references
with the servicemanager. These object references can then
be looked up by Android apps from the servicemanager and
used to initiate IPC to the Android framework services. The
Binder references are kernel-managed capabilities, similar
to open file descriptors. Initially, each app can only initiate
IPC to the servicemanager, and it can only initiate IPC on
a given Binder object if it receives a reference to the object
from a process that already has one.

To support SELinux or any other MAC mechanism, it
was necessary to define new LSM security hooks and in-
sert calls to these hooks into the binder driver on IPC
transactions and on security-relevant control operations.
These hooks were then implemented for SELinux to pro-
vide SELinux permission checks over inter-app commu-
nication and over binder control operations. In particular,
permission checks were implemented to control which pro-
cesses can communicate with one another, to control the
propagation of Binder references and open file descriptors

via Binder IPC, and to control which process can serve as
the Binder context manager.

We next looked at the Anonymous Shared Memory or
ashmem subsystem. As ashmem regions are represented by
open file descriptors and backed by regular Linux shmem
objects, the existing support for SELinux appeared suffi-
cient to provide basic control over read and write access to
ashmem regions by Android apps. However, an area for fur-
ther exploration of security hooks and SELinux permission
checks lies in the ashmem-specific ioctl commands.

Study and possible instrumentation of the remaining
Android-specific subsystems remains as future work. We
expect that some of these subsystems will require their own
set of security hooks and corresponding SELinux permis-
sion checks in order to fully control security-relevant oper-
ations and potential means of communications among apps.

3.2. Userspace support

Enabling userspace support for SELinux in Android re-
quired changes to a wide variety of software components,
ranging from Android’s C library implementation, filesys-
tem generation tools, and init program up through the An-
droid framework services. It also required porting the core
SELinux userspace components to Android. In this section,
we examine each aspect of enabling support for SELinux in
the Android userspace software stack.

3.2.1. C library and dynamic linker support. The
SELinux userspace code makes extensive use of the Linux
extended attribute system calls in order to get and set file
security labels. Therefore, we had to first extend Android’s
C library implementation, called bionic, with wrappers for
these calls. Previously, bionic did not provide these wrap-
pers as no other Android userspace code was using these
calls. While our motivation for adding these calls was for
SELinux, Linux extended attributes are generally useful for
other purposes as well, and thus this was a general feature
enhancement for Android.

We also had to modify Android’s dynamic linker to rec-
ognize and use the kernel-supplied AT SECURE auxiliary
vector (auxv) flag for determining whether to enable se-
cure mode. The Linux kernel provides this flag to inform
userspace whether or not a security transition has occurred.
Checking the flag is more reliable than checking the uid/gid
against the euid/egid as was done by the Android linker
prior to this change, because the flag covers not only the
setuid/setgid case but also file capabilities, SELinux, and
any other security module state transitions. Using the flag
is also a more efficient test since it does not require the ad-
ditional system calls to get the uid/gid.

3.2.2. SELinux libraries and tools. In order to leverage
the SELinux facilities from the Android userspace, we had



Command Action
seclabel Set service security context.
restorecon Restore file security context.
setcon Set init security context.
setenforce Set enforcing mode.
setsebool Set policy boolean.

Table 1. Android init language extensions.

Command Action
chcon Change file security context.
getenforce Get enforcing mode.
getsebool Get policy boolean values.
id Display process security context.
load policy Load policy file.
ls -Z Display file security context.
ps -Z Display process security context.
restorecon Restore file security context.
runcon Run program in security context.
setenforce Set enforcing mode.
setsebool Set policy boolean values.

Table 2. Android toolbox extensions.

to port the core SELinux userspace libraries and tools to
Android. In order to minimize the userspace footprint of
SE Android, we created a minimal port of the SELinux
API library (called libselinux) for Android. As bionic lacks
various GNU extensions which the mainstream libselinux
presently leverages, we also had to adapt our port of lib-
selinux to eliminate these dependencies.

The other SELinux libraries, namely libsepol and libse-
manage, are not required on the Android device, as they
are only required for creating and manipulating SELinux
policy, which can be done off-line. However, we did need
to adapt libsepol and the SELinux policy compiler, called
checkpolicy, so that they could be built and used not only
on Linux but also MacOS X, as many Android developers
use the latter platform as a build host OS for Android.

Specific SELinux utilities were ported to Android on an
as-needed basis. As Android’s init program directly inter-
prets the initialization configuration files (the init.rc files)
rather than running a shell interpreter, support was added for
several of the SELinux utilities as init built-in commands,
as shown in Table 1. Support was also added for several
of these utilities as part of the Android toolbox, as shown
in Table 2, which supports various Linux commands via a
single binary for use from a shell or by apps.

3.2.3. Labeling files. Android filesystem images for the
device are generated using special purpose tools, namely

mkyaffs2image and make ext4fs, during the Android build
process. These tools have Android-specific support for set-
ting the UID, GID, and mode bits on the files within the im-
ages when they are initially generated. However, the tools
had no support for setting security labels on files within the
generated filesystem image. We extended both tools to sup-
port setting of file security labels based on the SELinux
file contexts configuration, which specifies the initial as-
signment of security labels for each file. As a result, the
images generated during the Android build process for the
system and the userdata partitions have correct security la-
bel assignments from the very beginning, and there is no
need for a separate relabeling step in the SE Android instal-
lation process.

We also extended the Android recovery console and up-
dater programs to ensure that files created from the recovery
console, e.g. system updates, are correctly labeled. This
was necessary to ensure that the system remains in a se-
curely labeled state even across updates and likewise avoids
the need for a separate relabeling step after updates or other
changes are applied from recovery. We included a copy of
the file contexts configuration file within the recovery im-
age so the updater program can determine the correct file
labels, as the recovery image is the only visible mounted
file system during the update process.

3.2.4. System initialization. Android has its own unique
init program for system initialization and its own unique
ueventd program for managing device nodes. We extended
Android’s init program to load the SELinux policy early
during startup prior to executing any commands from the
init.rc files, and we extended the ueventd program to label
device nodes in accordance with policy. The security con-
text of the init process is set from the early-init section of
the init.rc configuration using the new setcon built-in com-
mand. Processes and files created after this initial setup can
then be labeled automatically in most cases.

Most system services are automatically transitioned into
their own security contexts by the kernel when they are ex-
ecuted from the system image by init. A few early ser-
vices, such as ueventd and adbd, require explicit labeling
via a new seclabel option in the init.rc configuration be-
cause their executables live in the root filesystem, which is
merely an in-memory filesystem unpacked from the initial
ramfs image passed to the kernel and thus does not have
per-file security labels. This allows each system service to
be distinguished in the SELinux policy.

The Android init program handles the creation and bind-
ing of local sockets for many of the system services. As
these sockets should be labeled to reflect the security at-
tributes of the individual service and not just those of the
init process, we also extended init to set the security context
for the sockets and the socket files. This allows connections



to each service socket to be controlled by SELinux policy.
The other new built-in commands can be used from the

init.rc to specify the initial state for SELinux operation.
In particular, the setenforce command can be used to put
SELinux into enforcing mode and the setsebool command
can be used to set specific SELinux policy booleans to a de-
sired initial state. Other approaches to managing SELinux
enforcing mode and policy booleans are described in Sec-
tion 3.2.8.

3.2.5. App security labeling. All Android apps are created
by the zygote process, typically at the request of the Activi-
tyManagerService (AMS) running within the system server
process. The AMS invokes the Process.start() method,
which sends a command string over a local socket to the zy-
gote. The zygote then calls the Zygote.forkAndSpecialize()
method, which in turn performs a JNI call to the native im-
plementation within the Dalvik VM. The Dalvik VM then
forks a child process and sets the DAC credentials (UID,
GID, supplementary groups) for the child process to reflect
the credentials of the app.

Even the Android system server, which provides the An-
droid framework services for the apps and runs in the system
UID with a number of Linux superuser capabilities, is cre-
ated by the zygote. This is done using a variant interface,
forkSystemServer, which is also implemented by the Dalvik
runtime and internally uses the same function, forkAndSpe-
cializeCommon, within the Dalvik VM.

To enable the system server and the Android apps to be
labeled differently from the zygote process, we had to ex-
tend the Dalvik VM to also set the SELinux security con-
text for the child process. To support this functionality, we
inserted a hook within the Dalvik VM to call a new inter-
face in the libselinux library at the right point during setup
of the new child process. The setting of the SELinux secu-
rity context for the child must occur after the setting of the
DAC credentials as the new SELinux security context may
not be allowed to change DAC credentials at all, and it must
occur before any other threads or objects are created by the
child to ensure proper labeling of all associated threads and
objects.

In order to support a greater range of inputs to select a
SELinux security context for app processes, we extended
the relevant interfaces and their callers to take an additional
seinfo string argument that can be used to pass higher-level
information from the AMS about the particular app being
started. These changes spanned the Dalvik VM, the zygote,
and the AMS in order to convey the additional argument all
the way through the call chain for spawning an app process.
We also extended the relevant interfaces and their callers to
provide the name of the application package as one of the
inputs.

This mechanism allows SELinux to distinguish the sys-

tem server process from all apps, even apps running in the
system UID. It also allows SELinux to distinguish apps from
one another based on their platform UID, package name, or
other higher-level information provided by the AMS of the
system server. The seinfo string for the app is determined
from the middleware MAC policy configuration, described
in Section 3.3.2.

In addition to setting the security label of each app pro-
cess, we also needed to set the security label of each app
data directory. The creation of the app data directories is
performed by the installd daemon in Android, which re-
ceives commands over a local socket from the PackageM-
anagerService running in the system server. As with the
Dalvik VM, we inserted hooks into installd to call a new
interface in the libselinux library when the app data direc-
tories are being created to set the directory security context
correctly.

The new functions in libselinux that implement these
hooks for both Dalvik VM and installd are driven by a sin-
gle shared configuration file, the seapp contexts configura-
tion. This configuration was introduced specifically for SE
Android but is similar to other SELinux policy configura-
tion files. The configuration allows specification of how to
label app processes and data directories based on the avail-
able inputs.

3.2.6. Userspace policy enforcement. SELinux provides
support to allow seamless extension of the Mandatory Ac-
cess Control model to application layer objects and opera-
tions. The libselinux library provides interfaces for use by
applications to obtain security contexts for their own ob-
jects and to apply SELinux permission checks on opera-
tions performed on these objects. These userspace com-
ponents are typically referred to as userspace object man-
agers in the terminology of the Flask architecture on which
SELinux is based [46]. This approach has been previously
applied to various Linux applications such as the D-Bus
message bus [42], the X Window System [48], the Post-
greSQL DBMS [20], and the GConf [8] configuration sys-
tem.

In Android, there are number of applications that imple-
ment their own permission checking logic, typically based
on the DAC UID of the requesting process. Two such com-
ponents include the init program, which provides a global
property name/value space for all Android processes, and
the zygote, which provides the interface for spawning new
apps.

The init program was extended to apply security label-
ing for the system properties and to enforce mandatory ac-
cess controls over attempts to set their values. Fine-grained
control over reading the system properties is not presently
possible as they are stored in a single shared mapping that
is mapped read-only by all processes in Android. By con-



trolling the ability to set the system properties, SELinux
can prevent a compromise of one of the privileged system
services from being leveraged to set any arbitrary property.
SELinux can also support finer-grained distinctions over the
ability to set properties than the existing DAC controls.

The zygote was likewise extended to enforce manda-
tory access controls over the use of its socket interface for
spawning new apps. While the kernel can directly control
what processes can connect to the zygote via this socket in-
terface, finer-grained distinctions over the use of privileged
commands issued over the socket require permission check-
ing by the zygote itself. In order to enable the use of the
SELinux APIs from the zygote Java code and from the An-
droid framework services written in Java, we created a set
of SELinux JNI bindings for a subset of the libselinux in-
terfaces. The ZygoteConnection class was then extended to
use these APIs to obtain the security context of the client
process and apply SELinux permission checks for any priv-
ileged operation, such as specifying the UID and GID for
the new app being spawned. As with the property MAC
controls, these controls enable SELinux to prevent a com-
promise of one of the privileged system services from be-
ing leveraged to spawn apps with arbitrary credentials or
resource limits.

3.2.7. Middleware policy enforcement. Although the
SELinux userspace object manager approach worked well
for the init property service and the zygote, it proved far
more problematic at the Android middleware layer. First,
apps communicate with the Android middleware via Binder
IPC rather than socket IPC. Thus, the lack of support for
obtaining the sender security context for binder IPC was an
initial obstacle. We overcame this problem by implement-
ing support for passing the sender security context on binder
transactions.

However, we then discovered that binder transactions
often involve multi-stage call chains that require saving
and restoring caller identity for permission checking pur-
poses. For example, content providers are accessed in-
directly via the AMS, which saves the caller identity in
thread-local storage before invoking the content provider,
so that it can look up the original caller identity when the
content provider later queries the AMS for a permission
check. Providing similar support for saving and restoring
the sender security context would have required an invasive
and potentially costly set of changes.

Further, Android permission checks are often invoked by
application components using the public checkPermission
API, which only supports passing the sender PID and UID.
This would have required that we extend the public check-
Permission API in order to fully support permission check-
ing based on SELinux security contexts, thereby creating
compatibility problems for existing apps and impacting An-

droid app developers. We were further concerned about the
potential implications of using the SELinux policy to cap-
ture middleware MAC semantics on our goals for keeping
the SELinux policy small, simple, and relatively static.

As a result of these considerations, we chose to intro-
duce a separate middleware MAC (MMAC) layer for An-
droid. The MMAC layer should only interact with the ker-
nel MAC layer with respect to determining the seinfo string
used for app security labeling, as described in Section 3.2.5.
Otherwise, the two layers should largely function indepen-
dently, with the kernel MAC layer enforcing a small set of
fixed security goals based on the assigned security contexts.
As this design decision removed the need to pass sender se-
curity context information on Binder IPC, we reverted the
corresponding code changes from our reference implemen-
tation.

We have developed several MMAC mechanisms for
Android to explore the design and implementation space.
These MMAC mechanisms provide different forms of
mandatory restrictions over the Android permissions model.
One of these mechanisms, known as install-time MAC, has
been integrated as part of the core SE Android implemen-
tation as it provides the basis for determining seinfo strings
for apps and is the most mature mechanism.

Our install-time MAC mechanism applies install-time
checks of the permissions requested by an app, or implic-
itly granted by the system, against a MAC policy configu-
ration. This mechanism allows a policy-driven approach to
authorizing app installation that preserves the all-or-nothing
contract that Android presently offers to apps. Install-time
MAC differs from Android’s existing permission model in
that it ensures that policy has final determination when
installing apps rather than the user. This approach en-
ables enforcement of organizational limits on the maximum
permissions for apps. The policy is expressed in a new
mac permissions.xml configuration file described in Sec-
tion 3.3.2, and is enforced by extensions to the Android
PackageManagerService (PMS).

Integration of install-time MAC into the Android PMS
ensures that the policy checks are unbypassable and always
applied when apps are installed and when they are loaded
during system startup. As a result, restrictions can be ap-
plied even to pre-installed system apps via this mechanism,
in which case the app is completely disabled from running
if it is not authorized by the policy. For conventional third
party app installs, installation of the app is aborted if the
policy denies one of the requested permissions.

3.2.8. Runtime policy management. SE Android policy is
integrated into the Android build process and included in
the ramdisk image placed within the boot partition so that
it can be loaded by init very early in boot, before starting
any other processes. This approach ensures that all subse-



quent processes and files are labeled properly when created
and that policy is enforced as early as possible. However,
this approach does not directly allow runtime changes to the
policy without updating the entire boot image.

In order to support basic SELinux management function-
ality, we first developed SELinux JNI bindings to support
setting of the SELinux enforcing mode and policy booleans
by the system server or system UID apps, which must be
signed by the platform certificate. We developed a SEAn-
droidManager app to permit user management of these set-
tings. This mechanism however does not support modifying
policy beyond setting policy booleans.

In order to support runtime policy management, we
added support for reloading any of the policy files from
the standard Android /data/system directory that is already
used for various runtime system configuration data. This
directory is only writable by the system UID and thus these
configuration files can only be updated by the Android sys-
tem server or system UID apps. Once the updated pol-
icy files have been written to /data/system, a policy reload
is initiated by setting a new Android system property, the
selinux.reload policy property, which also can only be set
by system UID processes. The ability to write these files
and set this property can be further restricted using SE An-
droid policy.

Each time the property is set, the init process reloads the
kernel policy as well as any other policy configuration files
it uses, e.g. the file contexts and property contexts configu-
rations. The init process then executes any triggers defined
for the selinux.reload policy property in the init.rc config-
uration. We added a trigger to the init.rc configuration to
restart the ueventd and installd daemons so that they also
reload the policy configuration files relevant to their opera-
tion. We confirmed that restarting of these daemons at run-
time does not cause any problems for Android. An alterna-
tive approach would have been to notify the daemons of the
policy reload via their existing socket interfaces and allow
them to reload policy without restarting.

With this support in place, we created device admin APIs
to allow management of the SELinux settings and provi-
sioning of alternate policy configurations via a device ad-
min app. We also created a sample device admin app, SE-
AndroidAdmin, to demonstrate these APIs. The code from
this sample app could be leveraged by MDM vendors as a
starting point for integrating support for SE Android man-
agement.

3.3. Policy configuration

Policy configuration for SE Android can be divided into
two categories. The kernel layer MAC mechanism is gov-
erned by the SELinux policy configuration, which includes
both the kernel policy and various configuration files lever-

aged by userspace to look up SELinux security contexts.
The middleware MAC mechanisms are governed by their
own configurations. This section describes each configura-
tion for SE Android.

3.3.1. SELinux policy configuration. Our goal for SE An-
droid was to apply SELinux to enforce a small set of plat-
form security goals in a manner that would avoid any user-
visible or app developer-visible changes. Recognizing that
Android was unlikely to discard its existing DAC model
altogether, we focused on using SELinux to reinforce the
DAC model and to address the gaps left by the DAC model.
Primarily, we wanted a policy that would confine the priv-
ileged daemons in Android, ensure that the Android mid-
dleware components could not be bypassed, and strongly
isolate apps from each other and from the system.

As explained in Section 2.3, the SELinux reference pol-
icy was not suitable as a starting point for Android SELinux
policy configuration. Instead, we created a small policy
from scratch tailored to Android’s userspace software stack
and to our security goals. The Type Enforcement (TE) por-
tion of the policy was configured to define confined domains
for the system daemons and apps. The Multi-Level Secu-
rity (MLS) portion of the policy was configured to isolate
app processes and files from each other based on MLS cat-
egories. This approach yielded a small, fixed policy at the
kernel layer with no requirement for policy writing by An-
droid app developers. As with the existing DAC model, the
kernel layer MAC is normally invisible to users and to apps,
only manifesting if an app violates one of the security goals.

SE Android Fedora
Size 71K 4828K
Domains 39 702
Types 182 3197
Allows 1251 96010
Transitions 65 14963
Unconfined 3 61

Table 3. Policy size and complexity.

The SE Android policy is significantly smaller and sim-
pler than the SELinux policies used in conventional Linux
distributions. Table 3 shows some statistics for the SE An-
droid policy compared to the Fedora SELinux policy. The
SE Android policy is notably smaller in terms of the binary
policy size, the number of domains (subjects), the number
of types (objects), the number of allow rules, and the num-
ber of type transitions. The SE Android policy also differs
in that it defines very few unconfined domains (i.e. domains
that are allowed all permissions); in particular, only the do-
mains for kernel threads, the init process, and the su pro-
gram (which is only included in debug builds) are uncon-



fined. No app domains are unconfined in SE Android. The
source files for the SE Android policy can be found within
the external/sepolicy directory of the Android Open Source
Project (AOSP) master branch.

Two new configuration files were added to the Android
SELinux policy configuration for use by applications. The
property contexts configuration is used to specify the secu-
rity context of Android system properties. This configura-
tion is used by the init property service as described in Sec-
tion 3.2.6. The seapp contexts configuration is used to label
app processes and app package directories. This configura-
tion is used by the Dalvik VM and by installd as described
in Section 3.2.5.

3.3.2. Middleware policy. The mac permissions.xml con-
figuration for the install-time MAC mechanism is written in
XML format and follows the conventions of other Android
system configuration files. Recognizing that managing ac-
cess control policies for potentially hundreds of apps on a
per-app basis was infeasible, we provided a scalable policy
that does not require a new policy for each app. In order
to express app-permission authorizations without having to
specify per-app rules, we devised a method to specify X.509
certificates as part of our policy. Android already requires
each installed app to be signed with such a certificate. We
leveraged this existing attribute of Android apps by identi-
fying groups of apps in our configuration by their certificate.

The mac permissions.xml configuration uses the AOSP
signing keys to organize apps into equivalence classes and
to allow or deny, based on whitelist/blacklist logic, an ap-
propriate permission set. Each entry in the configuration
can also contain a seinfo tag to specify the seinfo string used
for app security labeling. Individual apps can be specified
when appropriate by package name in addition to specify-
ing their certificate. As enumerating all possible third party
app certificates is infeasible, we provide a default tag that is
used to match any apps that are not otherwise specified by
the configuration.

4. Analysis

This section surveys a set of previously published ex-
ploits and vulnerabilities for Android and describes the re-
sults of analysis and testing performed to assess the effec-
tiveness of SE Android in addressing the threats of flawed
and malicious apps. It then provides a general discussion
of the threats that can and cannot be mitigated by SE An-
droid. The analysis and testing was performed using the ini-
tial SE Android policy configuration developed before read-
ing about any of these specific exploits or vulnerabilities in
Android. The policy configuration was developed based on
normal Android operation and SELinux policy development
practices.

4.1. Root exploits

The first class of exploits and vulnerabilities that was
evaluated were Android root exploits. These exploits esca-
late privilege from an unprivileged app or user shell to gain
full root access to the device, enabling the exploit to then
perform arbitrary actions on the device. Often these root
exploits are developed by the Android modding community
for the purpose of enabling them to modify their own de-
vices for customization and optimization. However, these
exploits can also be leveraged by malware to gain complete
control of a user’s device.

4.1.1. GingerBreak and Exploid. The Android volume
daemon or vold is a system service that runs as root on An-
droid and manages the mounting of the SDcard (and in An-
droid 4.0 and later, the mounting of the encrypted storage).
In order to support this functionality, vold listens for mes-
sages on a netlink socket in order receive notifications from
the kernel.

CVE-2011-1823 identifies a vulnerability in vold’s han-
dling of the netlink messages [33]. First, vold did not verify
that the netlink messages originated from the kernel, and it
was possible for unprivileged applications to generate mes-
sages on these sockets. Second, vold used a signed integer
from the message as an array index, checking only for an
upper bound but not whether the integer was non-negative.

The GingerBreak exploit demonstrated how to exploit
this vulnerability in order to gain root access from a user
shell [23]. The exploit has also been packaged as an An-
droid app and has shown up in the wild in Android malware
in the GingerMaster malware [19].

The GingerBreak exploit code is able to dynamically sur-
vey the device in order to find all of the information it re-
quires to mount a successful attack on vold. It obtains the
PID of the vold process from the proc filesystem, and it ob-
tains information required to craft the malicious payload by
reading several files from the system partition. It also makes
use of access to the Android logging facility (logcat) in or-
der to dynamically observe the effect of its attacks on vold
and refine its attack incrementally until successful.

Once GingerBreak has found the vold process and
crafted the malicious payload, it sends the payload to vold
via a netlink socket. The payload triggers execution of the
exploit binary by vold and the exploit code is then running
with full root privileges. The exploit code then proceeds to
create a setuid-root shell, and the original GingerBreak pro-
cess executes this setuid-root shell to give the user a root
shell.

We performed an analysis and testing of the impact of
SE Android on GingerBreak. During the information col-
lection stage of GingerBreak, the policy denied the exploit’s
attempt to read the proc information for the vold process,



and it denied the exploit’s attempt to read the vold binary to
discover the target address range. This caused the exploit
to fail immediately. However, we assumed for the sake of
further analysis that the exploit writer could have rewritten
the exploit based on prior knowledge of the target, and al-
lowed the corresponding permissions for the sake of further
testing.

Next, the policy denied GingerBreak’s attempt to create
the netlink socket, as there is no legitimate need for user
shells or apps to create this type of socket. Thus, the exploit
could not even reach the vulnerable code in vold. This pro-
vided unbypassable protection for the vulnerability; how-
ever, we allowed the necessary permissions and continued
our analysis.

GingerBreak was then able to send the malicious pay-
load to vold. However, this merely triggered an attempt to
execute the exploit binary from vold, which was also de-
nied by policy. There was no legitimate case where vold
executed non-system binaries, so the attempt to execute a
binary from the data partition was not allowed by the policy
we had developed. The exploit again failed, but we assumed
for the sake of further analysis that the exploit writer could
have rewritten the exploit to avoid executing a separate bi-
nary from the filesystem and simply allowed this permis-
sion.

Once running as root, the exploit code then attempts to
create a setuid-root shell. SE Android denied the attempt to
set the ownership and mode of the exploit file (or any file
writable by the exploit). We allowed these permissions for
the sake of further testing.

In its final act, assuming all of the previous denials were
allowed, GingerBreak then executed the setuid-root shell.
This did provide the user with a uid 0 shell, but the SELinux
security context remained the same, and the shell was still
limited to the same set of permissions with no superuser
privileges allowed by SELinux.

In summary, SE Android would have blocked the exploit
at many points in its execution and would have forced the
exploit writer to tailor the exploit to the target rather than
being able to survey the target device at runtime for all of the
necessary information. SE Android also would have made
the underlying vulnerability in vold completely unreachable
from an app or an unprivileged user shell.

A similar vulnerability was discovered in Android’s
ueventd daemon. The vulnerability was the same flaw re-
ported as CVE-2009-1185 [30] for the Linux udev imple-
mentation, simply replicated in Android’s ueventd imple-
mentation. The Exploid exploit demonstrated how to ex-
ploit this vulnerability in order to gain root access from a
user shell [22]. In our analysis and testing of Exploid on
SE Android, we found that Exploid would have been com-
pletely blocked in at least two ways by SE Android. SE
Android would have blocked not only these two specific

vulnerabilities, but all vulnerabilities that fall into the same
class, i.e. vulnerabilities in netlink socket message handling
in privileged daemons.

4.1.2. Zimperlich and RageAgainstTheCage. The An-
droid zygote is a system service that runs as root and is
responsible for spawning all Android apps. The zygote re-
ceives requests to spawn apps over a local socket. The zy-
gote forks a child process for each app and the child process
uses setuid() to switch to the unprivileged UID for the app
before executing any app code. The particular code imple-
menting this logic lives in the Dalvik VM.

However, the Dalvik VM did not check for failure on
the setuid() call, as this call normally does not fail for root
processes, and therefore did not abort the process on a failed
setuid(). The Zimperlich [24] exploit demonstrated how to
exploit this vulnerability in order to gain root access from
an Android app. It achieves this access by inducing a failure
in the setuid() call through a subtle interaction with Linux
resource limits.

First, the exploit code forks itself repeatedly in order to
reach the maximum number of processes allowed per uid
(RLIMIT NPROC) for the app UID. It then issues a request
to the zygote over the local socket to spawn one of its com-
ponents in a new process. When the zygote forks a child
process and attempts to set the app UID, the setuid() call
fails due to reaching the resource limit. As the Dalvik VM
did not abort in this situation, execution proceeds and the
malicious app’s code is run in the same UID as the zygote,
i.e. as a root process. The Zimperlich exploit then proceeds
to re-mount the system partition read-write and creates a
setuid-root shell in the system partition for later use in ob-
taining root access at any time.

In our analysis and testing of Zimperlich on SE Android,
we found that although the malicious app succeeds in run-
ning with the root UID, the SELinux security context is still
correctly set by the Dalvik VM based on the app’s creden-
tials, as this operation is not subject to a resource limit. Con-
sequently, the app runs in an unprivileged security context
with no superuser capabilities and is unable to re-mount the
system partition or perform other privileged actions.

A similar vulnerability was discovered in the An-
droid debug bridge daemon or adbd. The RageAgainst-
TheCage [25] exploit demonstrated how to exploit this vul-
nerability. When tested on SE Android, the user shell cre-
ated by adbd stills runs with the root UID but transitions
to an unprivileged security context automatically based on
SELinux policy. As a result, the user shell is not allowed
any superuser capabilities and remains confined.

The subtle interaction of setuid() and RLIMIT NPROC
in Linux has been the source of similar bugs in various root
daemons and setuid-root programs in conventional Linux
distributions and has led to some recent changes in the



Linux kernel [12]. As a result, recent Linux kernels defer
the resource limit failure until a subsequent call to execve(),
such that the setuid() always succeeds.

4.1.3. KillingInTheNameOf and psneuter. The Anony-
mous Shared Memory or ashmem subsystem is an Android-
specific kernel subsystem used to provide a shared memory
abstraction for inter-app data sharing. It was also originally
used to implement the global system property space man-
aged by the Android init process. A read-only mapping of
this global property space is mapped into every process on
the system and used to read the property values at any time.
CVE-2011-1149 identifies multiple vulnerabilities in the
ashmem implementation with respect to the memory protec-
tion settings of the system property space [31]. These vul-
nerabilities are demonstrated by the KillingInTheNameOf
and psneuter exploits [21].

The KillingInTheNameOf exploit invokes the mprotect()
system call to add write access to its mapping of the system
property space and is then free to modify any system prop-
erty at will via direct memory write. The exploit makes
use of this ability to modify the ro.secure property value so
that it can obtain a root shell via adbd upon its next restart.
When tested on SE Android, the KillingInTheNameOf ex-
ploit is denied the attempt to add write access to the map-
ping because the policy does not allow write access to the
memory mapping owned by the init process.

The psneuter exploit makes use of a different vulnera-
bility in the ashmem implementation. It uses an ashmem-
specific ioctl command (ASHMEM SET PROT MASK) to
set a protection mask on the system property space to zero.
Upon the next re-start of adbd (or any other process), the
mask is applied on its attempt to map the system property
space and thus the mapping fails. This leads to the ro.secure
system property being treated as zero since it cannot be
read, which again provides a root shell via adb. SE Android
does not prevent this exploit from modifying the protection
mask, although the shell still transitions to an unprivileged
security context and is therefore confined by SELinux.

The psneuter exploit suggests that SELinux instrumen-
tation of ashmem ioctl commands may be worth exploring
to provide better control of the security-relevant operations.
However, modern versions of Android have worked around
these issues by changing the ashmem implementation and
by switching the implementation of the init property space
from using ashmem to using a conventional Linux tmpfs file.

4.1.4. Mempodroid. The Linux proc pseudo file system
provides an interface for accessing various global sys-
tem state and for accessing per-process information. The
/proc/pid/mem file provides a kernel interface for access-
ing the memory of the process with the specified PID. In
the past, due to security concerns, this interface has been
restricted to read-only access to the memory of another pro-

cess, even for processes with the same DAC credentials. In
Linux 2.6.39, support for write access to /proc/pid/mem files
was enabled because it was believed that the prior security
concerns had been adequately addressed.

CVE-2012-0056 [34] identifies a vulnerability in the
Linux kernel permission checking for /proc/pid/mem that
can be used to induce a setuid-root program into writing
its own memory. This vulnerability was demonstrated for
conventional Linux distributions via the mempodipper ex-
ploit [11] and for Android by the mempodroid exploit [16].
mempodroid makes use of the Android run-as program as
the target setuid-root program. It invokes the setuid-root
program with an open file descriptor to /proc/pid/mem as its
standard error (stderr) stream, and passes the shellcode as an
argument string. The run-as program proceeds to overwrite
its own executable with the supplied shellcode, which sets
the UID/GID to 0 and executes a shell or command string
with full privileges.

On SE Android, we first tested the exploit without defin-
ing any specific policy for the run-as program. In this sit-
uation, the exploit will succeed in overwriting the memory
of the run-as process due to the kernel vulnerability and
can therefore execute the exploit payload with the root UID.
However, the security context of the run-as process remains
the same as its caller, and thus no privilege escalation oc-
curs. The exploit remains confined by SELinux and cannot
exercise any superuser privileges or any other permissions
not allowed to the original caller.

However, under these restrictions, the run-as program
cannot perform its legitimate function for Android, i.e. en-
abling app developers to debug their own apps on pro-
duction devices. To support this functionality, we de-
fined policy for the run-as program and we modified the
run-as program to switch to the correct app security con-
text before running the specified command or shell. With
these changes, the exploit fails to overwrite the memory of
the run-as process due to the SELinux file checks on the
/proc/pid/mem access. This protection blocks the exploit
completely.

Even if we allowed this access in the policy, the ex-
ploit would be limited to the permissions allowed to the
run-as program by the policy rather than having arbitrary
root access. The SE Android policy for the run-as pro-
gram only grants it the specific superuser capabilities re-
quired for its function, namely CAP DAC READ SEARCH,
CAP SETUID, and CAP SETGID. The exploit is unable to
exercise privileged operations requiring any of the other su-
peruser capabilities defined by Linux, such as performing
raw I/O to devices, loading kernel modules, or remounting
partitions. Further, the policy does not allow run-as to exe-
cute any programs without first changing to an app security
context, and thus the exploit cannot execute a command or
shell without first shedding even these capabilities.



4.2. Application vulnerabilities

The second class of vulnerabilities that was evaluated
were Android app vulnerabilities. These are vulnerabili-
ties in legitimate Android apps that allow data to be leaked
or modified without being authorized by the user in any
way. These vulnerabilities can then be leveraged by mal-
ware in order to gain access to sensitive user data or to mod-
ify security-relevant settings.

4.2.1. Skype. The Skype app for Android provides VOIP
functionality via the Skype service. CVE-2011-1717 identi-
fies a vulnerability in the Skype app in which the app stores
sensitive user data without encryption in files within its data
directory that are world readable and writable [32]. The in-
formation included the user’s account balance, date of birth,
home address, contacts, chat logs, etc. As a result, any other
app on the device could potentially read the data, and if al-
lowed INTERNET permission, could leak the data remotely.
Other apps on the device could also maliciously tamper with
the files.

This vulnerability provides a classic example of the dif-
ference between DAC and MAC. Under DAC, file permis-
sions are left to the discretion of each application and thus
are subject to intentional or accidental misconfiguration.
Under MAC, the policy is defined by the policy writer and
enforced on all applications running on the system. The SE
Android policy was configured to ensure that no app can
read or write files created by another app by assigning each
app and its files a unique MLS category. Thus, data isolation
of app data files is not dependent on the correctness of the
apps. As a result, on SE Android, although the Skype data
files are still created with weak DAC file permissions, SE
Android prevents any malicious app from reading or writ-
ing the files.

An obvious concern with this approach is that it does
not allow for intentional app data sharing via files. How-
ever, in general, Android’s own model gives preference to
app data sharing via Binder IPC rather than direct file ac-
cess. Thus, SE Android offers a way to enforce Android’s
own preferred system structure. Second, if two apps should
have fully shared access to data files, they can declare a
shared user id (as long as they are signed with the same cer-
tificate), and in this case, SE Android also will label them
with the same category, enabling such sharing. Third, the
assignment of MLS categories is configurable as part of
the seapp contexts configuration, so if direct sharing by file
is required among apps with different UIDs, SE Android
can be configured to place particular sets of apps within the
same category even if they do not share the same UID and
thus allow various sharing relationships.

4.2.2. Lookout Mobile Security. The Lookout Mobile Se-
curity app for Android provides security, backup, lost de-

vice tracking, and management functionality for Android
devices [27]. A vulnerability in this app was discov-
ered where the app created configuration and database files
via native calls without setting the umask for the pro-
cess, leading to the files being world-readable and world-
writable [26]. As a result, any app running on the device
could disable or reconfigure the Lookout app or could cause
the app to execute arbitrary code.

As in the Skype example, this example highlights the dif-
ference between DAC and MAC permissions, where a sub-
tle flaw in the application (in this case, the combination of
using native calls for file creation combined with the fail-
ure to set the umask) can subvert the DAC protections alto-
gether. The SE Android policy would have prevented any
other app from reading or writing the private data files of
the Lookout app regardless of such application flaws.

4.2.3. Opera Mobile. The Opera Mobile app for Android
is a version of the Opera web browser built for the Android
platform [41]. A vulnerability in this app was discovered
where the app created its cache files world-readable and
world-writable [17]. As a result, any app on the device
could both read and write to the browser’s cache, poten-
tially leaking sensitive user information and altering data or
code (e.g. JavaScript).

As with the prior vulnerabilities, this vulnerability stems
from the dependency of DAC on application correctness.
The SE Android policy would have ensured that no other
app on the device could read or write the cache files of the
browser, thereby preventing exploitation of this vulnerabil-
ity.

4.3. General analysis

In the preceding sections, we described our analysis and
testing of the impact of SE Android on specific Android ex-
ploits and vulnerabilities. That analysis and testing demon-
strated concretely that SE Android can mitigate real root
exploits and app vulnerabilities for Android. In this section,
we provide a more general discussion of what threats SE
Android can and cannot mitigate.

SE Android’s kernel layer MAC provides an effective
means of preventing privilege escalation by apps and of pre-
venting unauthorized data sharing by apps via the kernel
level interfaces. It also provides a foundation for ensuring
that higher level security functionality is unbypassable and
protected against tampering by apps. For example, SE An-
droid can rigorously ensure that hardware devices can only
be accessed by the authorized system services and not di-
rectly by apps, so that the system services can then enforce
the higher level Android permissions model. SE Android
also provides a way of protecting the integrity of apps and
their data. These same protections are provided by SELinux
for conventional Linux systems.



Similarly, the install-time MAC mechanism of SE An-
droid ensures that apps can only be installed if their re-
quested permissions are authorized by the middleware pol-
icy. This mechanism can help protect users and organi-
zations from installing untrustworthy apps with dangerous
sets of permissions, and can even be used to disable pre-
installed apps with dangerous permissions. However, this
mechanism cannot address privilege escalation attacks or
unauthorized data sharing at the middleware layer by apps
that have been allowed to be installed. Addressing such run-
time threats will require further MMAC mechanisms be-
yond install-time MAC. We are presently exploring such
runtime MMAC mechanisms.

There are a number of threats that SE Android cannot di-
rectly address. First, SE Android cannot mitigate anything
allowed by the policy. As such, developing good policy is
crucial to the effectiveness of SE Android, and the ability to
have a good policy while still having a functional system is
dependent on the software system architecture. Fortunately,
Android already makes good use of process isolation in its
existing architecture, thereby enabling the effective applica-
tion of SE Android.

Second, as a kernel level mechanism, SE Android can-
not in general mitigate kernel vulnerabilities. In some cases,
as shown in the KillingInTheNameOf and mempodroid case
studies, SE Android prevents a kernel vulnerability from be-
ing exploitable by making the vulnerable code unreachable
by untrusted applications or by rendering the impact of the
vulnerability inconsequential. However, this is not true of
all or even most kernel vulnerabilities. Thus, other mecha-
nisms for protecting and measuring kernel integrity are de-
sirable in combination with SE Android.

Lastly, SE Android cannot address threats from other
platform components, particularly ones that may have di-
rect access to system resources such as memory and storage.
For example, SE Android cannot protect against actions
by a compromised baseband processor or network card.
Such threats must be addressed through other, hardware-
facilitated mechanisms.

In spite of these limitations, we have shown that Android
security would benefit from some form of MAC in general,
and that SE Android in particular would mitigate many of
the exploits and vulnerabilities facing Android today. Mit-
igating the threat posed by flawed and malicious apps is an
important piece of an overall security architecture for mo-
bile devices.

5. Overhead

This section describes our results from measuring the
size and performance overheads introduced by SE Android
compared to a pristine build of the corresponding AOSP
version. The AOSP images were built from the android-

AOSP SE Android Increase
boot.img 4400K 4552K +152K
system.img 194072K 194208K +136K
recovery.img 4900K 5068K +168K

Table 4. Image sizes for full maguro-
userdebug (4.2).

4.2 r1 tag for the Galaxy Nexus (maguro) device, using the
prebuilt kernel supplied by AOSP for that device. These
images were measured to provide the baseline for each set
of results. The SE Android images were built from the
seandroid-4.2 branch of the SE Android source code reposi-
tory for the same device, using a kernel built from the same
kernel source tree but with the SE Android modifications
and with SELinux enabled. Both the AOSP and SE Android
images included the same set of additional apps used for
benchmarking. The results for SE Android images can be
compared against the AOSP results to determine the over-
head introduced by SE Android.

5.1. Size

Given the limited resources of mobile devices, a goal of
SE Android was to keep the number and size of changes
to a minimum. Table 4 shows the absolute sizes of the
boot, system, and recovery images for the AOSP and SE
Android builds and it shows the relative size increase of the
SE Android images. The data reveals relatively small size
increases for the three images. The userdata image was un-
changed in size and is therefore not shown.

The increase in boot image size is primarily due to the
increase in kernel size for SE Android (+100K). The SE
Android kernel enables filesystem support for extended at-
tributes and security labels as well as the kernel audit sub-
system, the Linux Security Module (LSM) framework, and
the SELinux security module. The remaining increase in
size for the boot image comes from the SE Android policy
files and extensions to the init program.

The system image increased in size largely from three
new components introduced by SE Android: the libselinux
library (+44K), the SEAndroidManager app (+40K) and
the mac permissions.xml file (+24K). The Android toolbox
program and the libandroid runtime library also increased
slightly in size (+4K each) due to the SE Android exten-
sions. Since the system image contains the core Android
OS, SE Android’s small relative increase in size (+.07%)
speaks to its small footprint. Further, the SEAndroidMan-
ager app is not required for SE Android operation and thus
could be omitted from the final image for the device if de-
sired.



AOSP SE Android
Mean SD Mean SD

total score 4172.68 148.83 4165.31 188.28
memory 507.05 51.81 514.27 65.42
integer 838.89 57.61 842.95 65.83
float 672.25 61.48 673.68 72.21

score2d 279.85 36.22 273.23 45.52
score3d 1230.67 0.86 1230.46 1.02
sdread 191.110 0.662 191.010 0.748
sdwrite 115.45 5.61 115.15 4.74
database 337.40 22.85 324.55 19.86

Table 5. AnTuTu comparative benchmarking
(n = 200) full maguro-userdebug (4.2).

The increase in size for the recovery image is similar to
the boot image. Like the boot image, the recovery image
includes the kernel and a minimal root filesystem, which
in the SE Android case includes the SE Android kernel ex-
tensions and the policy files. The recovery image further in-
cludes the recovery console and updater programs that were
extended for SE Android to ensure proper security labeling
of files upon updates.

5.2. Performance

In order to be acceptable in mainline Android, SE An-
droid must not impose significant runtime performance
overhead. To measure the runtime performance overhead
of SE Android, we ran two well known benchmark apps
found in the Google Play Store: AnTuTu [5] by AnTuTu
Labs and Benchmark by Softweg [45]. Each benchmark
was executed on both the AOSP and SE Android builds on
the same device. We ran a large number of trials to sharpen
the distribution. Under both benchmarks we ensured that
the same number of apps/services were loaded and running
at any time.

5.2.1. AnTuTu performance test. The results for 200 runs
of the AnTuTu benchmark on both AOSP and SE Android
are shown in Table 5. The memory, integer, and float tests
should be unaffected by SE Android as they do not involve
any system calls. The score3d and score2d tests are mea-
surements of graphical performance and should likewise be
unaffected by SE Android. Both tests measure the frames
per second (fps) for various images and graphics. The sd-
write and sdread tests perform writes and reads of the SD-
card storage, measuring the data transfer rate. The database
I/O test exercises the Android SQLite database functional-
ity. For these tests, we expect some small overhead from
SE Android due to the need to create and fetch the extended
attributes for file security labeling and due to the additional
permission checking performed by SE Android. For most

AOSP SE Android
Mean SD Mean SD

Total memory 588.88 68.61 591.71 67.28
Copy memory 535.11 62.35 537.68 61.13

Total CPU 3167.07 149.51 3113.31 138.51
MFLOPS DP 17.61 1.09 17.46 0.98
MFLOPS SP 41.85 5.06 41.22 5.20
MWIPS DP 200.86 8.83 197.16 10.10
MWIPS SP 289.18 19.04 283.73 14.93

VAX MIPS DP 139.03 6.19 136.73 6.62
VAX MIPS SP 191.31 16.08 187.69 15.12

Graphics Scores
Total score 19.50 0.37 19.62 0.38

Opacity 6.32 0.16 6.37 0.18
Transparent 5.58 0.13 5.62 0.11

Filesystem Scores
Total Score 236.99 20.88 234.77 20.05
Create files 0.38 0.02 0.44 0.03
Delete files 0.23 0.11 0.25 0.12
Read file 382.54 38.72 375.25 37.58
Write file 100.20 7.90 96.88 7.57

SDcard Scores
Create files 1.45 0.15 1.62 0.17
Delete files 0.46 0.06 0.49 0.06
Read file 64.73 5.33 63.46 5.21
Write file 33.78 2.54 33.65 2.89

Table 6. Softweg comparative benchmarking
(n = 200) full maguro-userdebug (4.2).

of the tests the SE Android result shows negligible overhead
and is within one standard deviation of the AOSP result.

5.2.2. Softweg performance test. The results for 200 runs
of the Benchmark by Softweg benchmark on both AOSP
and SE Android are shown in Table 6. The memory and
CPU scores should be unaffected by SE Android as they
do not involve any system calls. The graphics scores should
likewise be unaffected by SE Android, measuring the MPix-
els per sec for transparent and opaque image overlays.

For most of the tests, the SE Android result shows neg-
ligible overhead and is within one standard deviation of the
AOSP result. As with AnTuTu, for the filesystem and SD-
card tests, we expect some small overhead from SE Android
due to the need to create and fetch the extended attributes
for file security labeling and due to the additional permis-
sion checking performed by SE Android. The filesystem
write and read tests measured the speed (M/sec) of writing
and reading 1M. The create and delete tests were a mea-
sure of the time (seconds) it took to create or delete 1000
empty files. These create and delete tests can be viewed as
a worst case overhead for SE Android since the overhead
of extended attribute creation and removal is not amortized
over any real usage of the file.



6. Related work

There has been an extensive body of research into ex-
tensions to the Android access control model [14, 39, 13,
36, 38, 7, 18, 15, 10, 6]. Most of these extensions, includ-
ing Kirin [14], SAINT [39], TaintDroid [13], Porscha [38],
AppFence [18], IPC Inspection [15], and QUIRE [10] only
attempt to address access control at the Android middleware
layer and provide no solution for the underlying weaknesses
of the Linux DAC mechanism. As any access control model
implemented by the Android middleware is fundamentally
dependent on the kernel layer controls to ensure that the ac-
cess control enforcement is unbypassable, this leaves these
solutions still vulnerable to the root exploits and application
vulnerabilities that were described in Section 4. Of these
solutions, Kirin and SAINT are the closest to our install-
time MAC mechanism, and demonstrated the value of such
controls for Android. Our work provides a foundation for
supporting such install-time policies in Android.

There has also been prior research into integrating and
applying SELinux in embedded systems [9] and in An-
droid [35, 44]. While these efforts have shown how to per-
form basic enablement of SELinux, they have failed to ad-
dress or even identify many of the challenges present in en-
abling the effective use of SELinux in Android, as noted in
Section 2. Our work is the first to our knowledge to fully ad-
dress integration of SELinux support into the Android ker-
nel and userspace and to create a suitable SELinux policy
for Android, as described in Section 3. Our work is also the
first to our knowledge to concretely demonstrate the bene-
fits of SELinux for Android through the analysis and testing
described in Section 4.

TrustDroid [7] and XManDroid [6] bear the greatest sim-
ilarity to our work, both in their goals and approach. Those
systems provided MAC at both the middleware layer and
at the kernel layer, although the kernel layer solution relied
upon TOMOYO Linux [37] rather than SELinux. SELinux
provides a more natural and complete way of enforcing
data separation goals based on security labels, unlike the
pathname-based security model of TOMOYO. Our work
fills the gap in mainline Android for kernel layer MAC and
provides a sound base on which these systems and others
like them can build. Our work would in turn benefit from in-
corporating some of the ideas for runtime MMAC that have
been explored in TrustDroid and XManDroid.

7. Summary

This paper explains the need for mandatory access con-
trol (MAC) in Android, identifies the challenges to enabling
the effective use of SELinux in Android and presents how
we overcame these challenges in our SE Android reference
implementation. The benefits of SE Android are concretely

demonstrated through a series of case studies of the impact
of SE Android on public Android root exploits and appli-
cation vulnerabilities. The size and performance overhead
imposed by our implementation is evaluated and shown to
be negligible.

Availability

The Security Enhanced Android software is avail-
able from http://selinuxproject.org/page/
SEAndroid. Many of the changes have already been
merged onto the Android Open Source Project (AOSP)
master branch, and work is ongoing to bring the remaining
changes to mainline Android.
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Appendices
A Sample SELinux policy

This appendix shows the contents of a sample policy
source file from the SE Android policy. These contents were
taken from external/sepolicy/bluetoothd.te in the Android
source tree. This file defines a domain for the Android blue-
toothd daemon. The policy is written using a combination
of macros, such as the init daemon domain macro, and pol-
icy language statements, such as allow and type transition
rules.

type bluetoothd, domain;
type bluetoothd_exec, exec_type, file_type;

init_daemon_domain(bluetoothd)
allow bluetoothd self:capability { setuid \

net_raw net_bind_service net_admin };
allow bluetoothd self:socket *;
allow bluetoothd bluetoothd_data_file:dir \

create_dir_perms;
allow bluetoothd bluetoothd_data_file:file \

create_file_perms;
unix_socket_connect(bluetoothd, dbus, dbusd)

B Sample seapp contexts

This appendix shows an excerpt from the exter-
nal/sepolicy/seapp contexts configuration used to deter-
mine how to assign security contexts to app processes cre-
ated by the zygote and to app data directories created by
installd. Each line specifies a set of input selectors, such
as the isSystemServer boolean, the user name, the seinfo
string, and the package name, and a set of resulting output
values, such as the domain name, the type name, the level-
FromUid boolean, and the level string. A set of precedence
rules are applied for determining which entry to use, with
more specific entries taking precedence.

isSystemServer=true domain=system
user=system domain=system_app \

type=system_data_file
user=bluetooth domain=bluetooth \

type=bluetooth_data_file
user=nfc domain=nfc type=nfc_data_file
user=radio domain=radio type=radio_data_file
user=_app domain=untrusted_app \

type=app_data_file levelFromUid=true
user=_app seinfo=platform domain=platform_app \

type=platform_app_data_file
user=_app seinfo=release domain=release_app \

type=platform_app_data_file
user=_app seinfo=release \

name=com.android.browser \
domain=browser_app \
type=platform_app_data_file

C Sample property contexts

This appendix shows an excerpt from the exter-
nal/sepolicy/property contexts configuration used to deter-
mine the security context to use in permission checks on
setting Android properties. The longest matching prefix is
used. The wildcard (*) character can be specified to match
any property names that do not match any specified prefix.
The sample configuration matches the ownerships assigned
to property prefixes by an existing table in the init property
service code.

net.rmnet0 u:object_r:radio_prop:s0
net.gprs u:object_r:radio_prop:s0
net.ppp u:object_r:radio_prop:s0
net.qmi u:object_r:radio_prop:s0
net.lte u:object_r:radio_prop:s0
net.cdma u:object_r:radio_prop:s0
gsm. u:object_r:radio_prop:s0
persist.radio u:object_r:radio_prop:s0
ril. u:object_r:rild_prop:s0
net. u:object_r:system_prop:s0
dev. u:object_r:system_prop:s0
runtime. u:object_r:system_prop:s0
hw. u:object_r:system_prop:s0
sys. u:object_r:system_prop:s0
service. u:object_r:system_prop:s0
wlan. u:object_r:system_prop:s0
dhcp. u:object_r:system_prop:s0
debug. u:object_r:shell_prop:s0
log. u:object_r:shell_prop:s0
service.adb.root u:object_r:shell_prop:s0
service.adb.tcp.port u:object_r:shell_prop:s0
persist.sys. u:object_r:system_prop:s0
persist.service. u:object_r:system_prop:s0
persist.security. u:object_r:system_prop:s0
selinux. u:object_r:system_prop:s0
vold. u:object_r:vold_prop:s0
crypto. u:object_r:vold_prop:s0
ctl.dumpstate u:object_r:ctl_dumpstate_prop:s0
ctl.ril-daemon u:object_r:ctl_rildaemon_prop:s0
ctl. u:object_r:ctl_default_prop:s0

* u:object_r:default_prop:s0



D. Middleware MAC policy

This appendix shows an excerpt from the exter-
nal/sepolicy/mac permissions.xml configuration used for
the install-time MAC mechanism and to assign seinfo tags
to apps. The signature values and permission names have
been abbreviated for readability. The signatures are hex-
encoded X.509 certificates.

Values for the seinfo string and Android permissions can
be specified for all packages with a given signature via a
signer stanza, or may be refined on a per-package basis
for specific packages via a package stanza. Allowed An-
droid permissions can be specified via a whitelist (allow-
permission) or via a blacklist (deny-permission) but not
both. A given signature or package can be allowed all per-
missions it requests without any constraints by specifying
allow-all. The default tag is used for any app that does not
match any other stanza. A setool program can be used to
help generate policy stanzas from a set of Android pack-
ages.

<!-- Platform dev key with AOSP -->
<signer signature="...1b357" >

<allow-all />
<seinfo value="platform" />

</signer>

<!-- release dev key in AOSP -->
<signer signature="...e684d" >
<seinfo value="release" />
<deny-permission name="BRICK" />
<deny-permission name="READ_LOGS" />
<deny-permission name="READ_HISTORY_BOOKMARKS" />
<deny-permission name="WRITE_HISTORY_BOOKMARKS" />
<package name="com.android.browser" >

<allow-permission name="ACCESS_COARSE_LOCATION"/>
<allow-permission name="ACCESS_DOWNLOAD_MANAGER"/>
<allow-permission name="ACCESS_FINE_LOCATION"/>
<allow-permission name="ACCESS_NETWORK_STATE"/>
<allow-permission name="ACCESS_WIFI_STATE"/>
<allow-permission name="GET_ACCOUNTS"/>
<allow-permission name="INTERNET" />
<allow-permission name="MANAGE_ACCOUNTS" />
<allow-permission name="NFC" />
<allow-permission name="READ_CONTACTS" />
<allow-permission name="READ_EXTERNAL_STORAGE" />
<allow-permission name="READ_PROFILE" />
<allow-permission name="READ_SYNC_SETTINGS" />
<allow-permission name="SEND_DOWNLOAD_COMPLETED_INTENTS" />
<allow-permission name="SET_WALLPAPER" />
<allow-permission name="USE_CREDENTIALS"/>
<allow-permission name="WAKE_LOCK"/>
<allow-permission name="WRITE_EXTERNAL_STORAGE" />
<allow-permission name="WRITE_SETTINGS" />
<allow-permission name="WRITE_SYNC_SETTINGS" />
<allow-permission name="READ_HISTORY_BOOKMARKS"/>
<allow-permission name="WRITE_HISTORY_BOOKMARKS"/>
<allow-permission name="INSTALL_SHORTCUT"/>
<seinfo value="release" />

</package>
</signer>

<!-- All other keys -->
<default>
<seinfo value="default" />
<deny-permission name="ACCESS_COARSE_LOCATION" />
<deny-permission name="ACCESS_FINE_LOCATION" />
<deny-permission name="AUTHENTICATE_ACCOUNTS" />
<deny-permission name="CALL_PHONE" />
<deny-permission name="CAMERA" />
<deny-permission name="READ_LOGS" />
<deny-permission name="WRITE_EXTERNAL_STORAGE" />

</default>


