SOURCE/ i

NIl
CISCO

TdLOS

FreeSentry: protecting against use-
after-free vulnerabilities due to
dangling pointers

Yves Younan, Senior Research Engineer al

B
Sourcefire is now part of Cisco. CISCO

Talos Security Intelligence and Research Group, Cisco

Overview

= |[ntroduction
= FreeSentry approach
= Evaluation

= Conclusion

SOURGE

Introduction

= Programs in C/C++: memory error vulnerabilities

= Mitigations make exploitation harder or sometimes
impossible

s Use-after-free vulnerabilities are now some of the most
important vulnerabilities

= Most exploited vulnerability for Windows Vista and 7.
= Most common memory error in Internet Explorer

= Use-after-free occurs when a pointer exists to memory
that has been freed and is accessed

Sourcefire isnow partof Cisco. CISCO 3

Use after free

= (struct A *) malloc(16);
P=(obj)ectA (16)

> integer1
: integer2
integer3
integer4
---- P
free(p);
R
n .
e
- P

q = (struct B *) malloc(16);
reused: object B

» function_ptr1
function_ptr2

char_array

- P
" q
p->integer1 = value;

\

Sourcefire isnow partof Cisco. €CISCO 4

Approach

= Link objects back to pointers

— When the object is freed, invalidate pointers
= Pointer creation or modification

— Register address of pointer as referring to object
— Memory allocation

— Assign labels to object, to reflect object bounds
= When object is freed

— Check if pointer is still pointing to the object

e |f so, invalidate pointer

e |f the program dereferences the pointer, it crashes

: e,
Sourcefire is now part of Cisco. CISCO 5

Approach

= Does not change pointer representation
= This means it works with unprotected code
= Allows developers to opt-out of functions:

= malloced/freed memory will still be tracked/
invalidated

= pointers in functions that have opted-out are not
tracked

= allows developers to improve performance by opting
out if a function is guaranteed to be safe

: e,
Sourcefire isnow partof Cisco. CISCO 6

Memory layout

SOURGE

......

........

Label lookup table

Labell

Label2

Label2

Label2

Label2

Label3

Label4

Label4

Label4

Label4

A \4

Object lookup table = obj next --- obj next
Label 1 ptr to reginfo : obj prev <--- obj prev
--------- > ptrto reginfo P ptr next & ptr next
Label 3 ptr to reginfo ptr prev < -- ptr prev
Label 4 ptr to reginfo pointer address o pointer address
Label 5 ptr to reginfo object label Lo object label
Pointer registration + + Pointer registration
_ information Lo information
Pointer lookup table b
ptr to reginfo obj next -
ptr to reginfo : obj prev -
ptr to reginfo f--------------- ' ptr next < .
ptr to reginfo ptrprev = ----
ptr to reginfo pointer address
object label

e,
Sourcefire isnow partof Cisco. CISCO 7

Approach: basic example

int main() { int main() {

SOURGE

char *a, *b; int i;
a = malloc(20);

char *a, *b; int i;
a = malloc(20);

b = a+5; regptr(&a);

free(a); b =a+5;

b[2] ='c’; regptr(&b);
free(a);

a = malloc(20); b[2] = 'C";

for (i = 0; i<5; i++)

b = a+i; a = malloc(20);
free(a); regptr(&a);
*b ="‘ch for (i = 0; i<5; i++)
b = a+i;
regptr(&b);
free(a);
*b ="C’;

aear)n,
Sourcefire isnow partof Cisco. CISCO

Freeing memory

= When memory is freed

= Lookup the label of the object, use that label to index
the object lookup table, retrieve the ptr reg info

= Contains pointer address and the stored object label
= |f the stored label == label of the object being freed,
= Check if the pointer still points to the object

= |f so, invalidate the pointer, continue with next
pointer

: e,
Sourcefire isnow partof Cisco. CISCO 9

Reallocing memory

= Realloc can return different memory from the memory
being modified
= Any call to realloc should invalidate all pointers
= This will break many programs
= Turns out most programs are not well written
= |nstead, we only invalidate when the memory has
moved

= |f used as a testing tool, behavior should be set to
always invalidate

SOURGE

Pointer arithmetic

= Simply increasing or decreasing is ighored as we assume
objects remain in bounds

= |f a pointer points out-of-bounds, it will not be
invalidated:

= Unprotected code could have modified the pointer
to point to an adjacent object

= |nvalidating would break the program

SOURGE

Pointer arithmetic

char main() {
char *a, *b;
int difference;
a = malloc(100);
b=a+8;
free(a);
difference = b - a;

J

= Not entirely clear if this is valid C code:

= Cstandard: It is valid to subtract 2 pointers if they both
refer to the same object

= However, memory has been freed and pointers are not
dereferenced, do they still refer to the same object?

SOURGE

Pointer arithmetic

= Problem:

= |f pointers are invalidated by setting them to NULL or 3GB
+unique, then subtraction will fail
= Solution:

= |nvalidate pointers by setting first 2 bits: causes pointers to be
above 3GB (thus invalid)

= However the arithmetic will still work

= This causes a small incompatibility in Linux: a pointer above and
below 0x40000000 or 0x80000000

= Unlikely to occur, requires: memory allocated across boundary, 1

pointer above and 1 below, a free of that memory and then a
subtraction of those 2 pointers

SOURGE

Pointers copied as different types

= Limitation

= |f an object contains a pointer that is not copied as a
pointer, we can’t track the pointer

= For example:

= memcpy: copies memory as void type from one
location to the other, results in pointer being missed

= Solution

= Allow programmer to manually register a pointer if
desired

SOURGE

Optimizations

= Call graph analysis
= Examine functions called by functions
= Until we hit a leaf function or a library call

= Provide models for often used libraries: libc, libm,
openssl: indicate if library function calls free or not)

= First optimization: remove tracking for local variable,
if no calls to free and no address of variable is taken

SOURGE

Optimizations

= Second optimization: Loop optimization

= |f no calls to free or unexpected exits from the loop
(i.e. returns)

= Registration for simple pointer assignments (no
arithmetic or dereferencing on the left-hand side) can
be moved out of loop

= Pointers are still tracked, but since they are
overwritten every loop iteration, the registration only
happens after the loop is done

SOURGE

Performance overhead

4.5
3.5
2.5
1.5

0.5

CIL FreeSentry Dynamic FreeSentry Dynamic+Stack

Sourcefire isnow partof Cisco. €CISCO

Performance overhead servers

1.4

1.2

0.8
0.6
0.4

0.2

openssh apache nginx proftpd Geometric
mean

CIL FreeSentry Dynamic FreeSentry Dynamic+Stack

Sourcefire isnow partof Cisco. CISCO 1 8

Performance study

= Gap performs computations in groups
= |t contains 71k lines of code

= Profiling it shows 2 most heavily used functions are
NewBag and Prodint

= NewBag is an allocation function, calls malloc/free:
150 lines

= ProdIntis 174 lines and returns the product of 2
Integers

SOURGE

Performance study

= Default run of gap has an overhead of 104.28%

= Opting out of these 2 functions (304 lines of code) drops
overhead to 33.42%

= Opting out of NewBag means the pointers in NewBag
aren’t tracked, however functions that call NewBag will
have the memory that NewBag allocates labelled and
invalidated and will have their pointers tracked

= Number of calls to our tracking function drops from 2.3
billion to 1.3 billion

SOURGE

Security evaluation

= C programs with public exploits
= When run, crashes when trying to access freed memory

CVE ID Description Result

CVE-2003-0015 Double free vulnerability in CVS <=1.1.4 Protected

Double free vulnerability in CVS

CVE-2004-0416 1 19 x1.12.8and 1.11.%-1.11.16 Protectea
CVE-2007-1521 Double free vulnerability in PHP < 4.4.7 Protected
and <5.2.2
Double free vulnerability in session
-2007- P
CVE-2007-1522 extension in PHP 5.2.0 and 5.2.1 rotected
CVE-2007-1711 Double free vulnerability in PHP 4.4.5 Protected

and 4.4.6

: e,
Sourcefire isnow partof Cisco. €CISCO 21

Security evaluation

= Found previously unknown bug in benchmarks: perlbmk:

= use-after-free due to realloced memory being moved
to a new location and a stale pointer being used

= Bug privately reported in ClamAV 0.98.4 by Damien
Millescamps with sample which triggers a double free
(CVE-2014-9050).

= Compiling with FreeSentry prevents the double free
= Fixed in version 0.98.5

: e,
Sourcefire isnow partof Cisco. CISCO 22

Conclusion

= Use-after-frees are an important vulnerability
= Few mitigations exist that protect against it

= FreeSentry provides protection at a moderate cost with
easy deployment

= Provides flexibility for programmer to improve
performance

= For programs with high 1/0O, overhead is low

= Can also be used as a testing tool

- e,
SOUHCE Sourcefire is nc Cisco. CISCO 23 /

