
High Accuracy Attack Provenance via Binary-based Execution Partition

Kyu Hyung Lee Xiangyu Zhang Dongyan Xu

Department of Computer Science and CERIAS, Purdue University, West Lafayette, IN 47907, USA

{kyuhlee,xyzhang,dxu}@cs.purdue.edu

Abstract—An important aspect of cyber attack forensics is to
understand the provenance of suspicious events, as it discloses
the root cause and ramifications of cyber attacks. Traditionally,
this is done by analyzing audit log. However, the presence of
long running programs makes a live process receiving a large
volume of inputs and produce many outputs and each output
may be causally related to all the preceding inputs, leading
to dependence explosion and making attack investigations
almost infeasible. We observe that a long running execution
can be partitioned into individual units by monitoring the
execution of the program’s event-handling loops, with each
iteration corresponding to the processing of an independent
input/request. We reverse engineer such loops from application
binaries. We also reverse engineer instructions that could
cause workflows between units. Detecting such a workflow is
critical to disclosing causality between units. We then perform
selective logging for unit boundaries and unit dependences.
Our experiments show that our technique, called BEEP, has
negligible runtime overhead (< 1.4%) and low space overhead
(12.28% on average). It is effective in capturing the minimal
causal graph for every attack case we have studied, without
any dependence explosion.

I. INTRODUCTION

Acquiring attack provenance is an important capability in

cyber attack investigation. For example, given a symptom

of an attack (e.g., a malicious process detected), we want to

determine the “entry point” of the attack, such as viewing

a malicious URL or opening an email attachment, that

ultimately leads to the detected symptom. Such capability

is helpful to attack attribution and future attack prevention.

Upon detecting an attack, it is also important to understand

its ramifications, that is, what damage has been caused on

the victim system. Both require attack provenance informa-

tion. However, achieving accuracy in attack provenance has

been proved challenging. For example, assume a malware

program first gets into the victim system through opening a

social-engineered email. It then lurks in the system for weeks

performing stealthy actions such as installing key loggers,

profiling the victim machine and/or user, and setting up a

backdoor. This attack is not detected until one month later

when the attacker tries to remotely log in through the back-

door to harvest the collected information. Unfortunately, by

this time, the trace-back from the symptom to the entry

point will be difficult, even if the corresponding log entries

still exist, because a causality analysis may conservatively

indicate numerous causal chains – formed by causal relations

between log entries – to the backdoor process. Even if email

access is identified as the initial step of the attack, it is still

difficult to pin-point the culprit email.

Most causal analysis techniques use logging to record

important events during system execution and then correlate

these events during investigation. The logging of events can

be at the network (e.g. messages being sent or received),

OS (e.g. system calls), or program (e.g. memory reads and

writes) level. However, many existing logging techniques

are too coarse-grained by attributing events to individual

processes. For example, system call logging-based tech-

niques (e.g., [18], [15]) treat processes as subjects and files,

sockets, and other passive entities as objects. A system call

will create a causal relation/edge between a subject and

an object (e.g., a process reading a file), or between two

subjects (e.g., a process spawning a child process.) We argue

that, for root cause analysis, the granularity of “process” is

too coarse and will suffer from the dependence explosion

problem [19], [12], [17]: a subject (i.e., process) is causally

related to all the objects it has accessed so far, making it

difficult to identify the small subset of objects that are truly

relevant to an attack. In Section II we will present such

a real case where a web browser process has dependences

with numerous external connections while only one of them

is malicious.

The dependence explosion problem is mainly caused by

the non-trivial lifetime and iterative input/output processing

of processes. For example, a server process may accept and

respond to a large number of requests during its lifetime,

whereas an email client process may send/receive a large

number of emails during its lifetime. Theoretically, an output

activity of a process may be causally related to all preceding

inputs to the same process. Unfortunately, for off-the-shelf

applications, especially those that come without source code,

automatically determining the real causality is highly chal-

lenging.

In this paper, we present a new scheme for efficient,

dependence explosion-free logging for binary programs,

called BEEP1. BEEP is based on a new, finer-grain type

of subjects, called units. More specifically, a unit is a

segment of execution of a process that processes a specific

object (e.g., an email message, URL, or request). And

a process is “partitioned” into multiple units. BEEP also

involves the identification of a small set of critical memory

1It stands for “Binary-based ExEcution Partition”.

dependences that denote high-level causality between units.

With subjects being units instead of processes, a subject is

likely to be causally related to one or a very few objects

(processed by that unit), which will significantly mitigate

the dependence explosion hence improving the accuracy of

log-based attack provenance. Furthermore, the identification

of units is performed automatically without source code and

with very small instrumentation overhead.

BEEP is based on the following key observation: The ex-

ecution of a wide range of applications (both server-side and

client-side) is dominated by a small number of loops (with

large number of iterations for each loop) – for example,

loops that receive and dispatch input events and loops in

worker threads that process individual tasks. Each iteration

of such a loop can be considered a semantically autonomous

unit as it often operates on an individual input object. As

such, BEEP works by reverse engineering such loops from

a binary program as well as dependences between iterations

of such loops.

Our contributions are summarized as follows.

• We propose to reduce the granularity of executing sub-

jects for log-based attack provenance analysis. Instead

of having processes as subjects, BEEP partitions the

execution of a process into individual units for effective

dependence explosion mitigation.

• We perform an empirical study to illustrate that process-

based logging leads to dependence explosion, as well

as to confirm the existence of units during the execution

of many programs.

• We propose novel techniques to reverse engineer critical

loops whose iterations denote the natural boundaries

for units, and memory access instructions that induce

causal workflows between units. Application binaries

are then instrumented at these places to log such events.

• We propose a log analysis algorithm that can cohesively

reason about both the system log and our log to

construct precise causal dependence graph for an attack.

• We have built a prototype that successfully instruments

a set of commonly used Linux applications for more

accurate attack investigation. We evaluate the perfor-

mance of these applications and our results show that

the runtime overhead is trivial (< 1.4%) and the space

overhead is low (12.28% on average). We also conduct

three case studies that emulate different real attack

scenarios to illustrate the effectiveness of BEEP, under

which the causal graphs are on average 40.93 times

smaller than those generated by a standard system call-

based audit system.

II. MOTIVATING EXAMPLE : BACKTRACKING A TROJAN

ATTACK

In this section, we present a concrete, realistic attack

scenario to motivate BEEP. This attack involves the pine

email client and the firefox web browser. A number of

other processes such as procmail, bash, sendmail are also

involved. We compare the causal graphs generated by ana-

lyzing the traditional system call log and by BEEP.

Attack Scenario: Suppose a user has the habit of using

pine to access e-mails and firefox to browse the web. He has

kept these two processes alive while using his computer. In a

duration of 29 minutes, he has visited 11 different web sites

and received/viewed 14 emails. Among the set of emails,

there is a phishing email that contains a malicious URL.

The user has clicked the URL to open a remote malicious

page. Consequently, a file is downloaded to his computer and

executed. The file is a backdoor trojan named blackhole [2].

Upon execution, blackhole opens a backdoor port that can

be used for denial of service attacks, installing additional

trojans and stealing private information.

Forensic Analysis: The system administrator of the ma-

chine by accident detects that a strange process (i.e. the

trojan) is running in the background and wants to backtrack

to the entry point of the attack. However, the opening

of the culprit email and visiting of the malicious URL

happened in the past and hence the current state of the

system does not provide any obvious hint on the attack

entry point. She then applies one of the existing host attack

investigation techniques [18], [12] that detects dependences

between processes, files, and sockets by analyzing the audit

log that records system calls and signals.

Causal analysis of the audit log results in a causal graph

as illustrated in Fig. 1(a), in which ovals, diamonds, and

boxes represent processes, sockets, and files, respectively.

An edge denotes a system call event that causally correlates

two entities and the arrow indicates direction of information

flow. For example, the path from process bash to process

blackhole (via file blackhole) at the bottom of the figure

represents that the bash shell opens the binary file of

blackhole and spawns a process from it. The edge from

process firefox to the binary file means that the file is created

by the browser.

Now the administrator knows that the malicious binary

comes from firefox. However, she wants more specific infor-

mation about the source of the malicious file. Unfortunately,

from the graph, she only observes that firefox has received

inputs from more than 200 sources as the process has

been running for quite some time. Each of the diamonds

connected to firefox denotes that the browser has visited

web pages through a socket. In fact, the graph contains 225

different connections. Any of them could be the source of the

malicious file whereas the malware is actually from the link

through y.y.y.y. Observe that the browser is also causally

connected to the pine process. When the user clicked the

phishing link in the email, pine spawned a firefox process,

which does nothing but forwarding the link to the existing

long running firefox process.

Assume the administrator is able to track back to the

sendmail

x.x.x.x:53935

bash

gconfd-2

firefox

/home/xxx/Downloads/blackhole

y.y.y.y:80

.. 200 more sockets

pine

Maildir/new/

1334796762.15819_0

dbus-launch

sendmail

sendmail

procmail

sendmail

sendmail

procmail

sendmail sendmail

sendmail

procmail

sendmail

procmail

sendmail

sendmail

procmail

sendmail

sendmail

procmail

sendmail

sendmail

procmail

sendmail

sendmail

procmail

sendmail

sendmail

procmail

sendmail

sendmail

procmail

sendmail

sendmail

procmail

sendmail

sendmail

procmail

sendmail

sendmail

procmail

sendmail

sendmail

procmail

firefox

firefox

/home/xxx/Downloads/blackhole

x.x.x.x:113

(a) Graph generated from syscall log. It is a much smaller reduced version. The original graph contains 200 more communication channels connected
to firefox.

sendmailx.x.x.x:53935
bash

firefox /home/xxx/Downloads/blackhole

127.0.0.1:6011

y.y.y.y:80

localhost:/var/run/dbus/0x2F

pine

Maildir/new/1334796762.15819_0

firefox

firefox
sendmailx.x.x.x:113

75.75.75.75:53

sendmail

procmail

/home/xxx/Downloads/blackhole

(b) Generated graph by fine-grained forensic analyzer

Figure 1. Back-tracking an attack: diamond, box, and oval represent communication channel (e.g. socket), file and process, respectively.

pine process. She again faces the difficulty of identifying

which email has caused the creation of the firefox process.

The small boxes connected to the pine node denote in-

dividual emails, each of which is generated from a path

of “sendmail→sendmail →sendmail →procmail”, meaning

that initially the sendmail daemon receives an incoming

mail request, and then it (transitively) spawns two sendmail

processes and a procmail process to handle the request and

deliver the message. There are many such paths, among

which there is only one for the malicious email.

The second row of Table I shows the graph statistics.

Existing Heuristics: Other researchers have also observed

this problem. In existing efforts [18], [12], [19], simple

heuristics have been proposed to mitigate the problem, such

as using timestamps to approximate causality and using a

white list to preclude unnecessary dependences. However,

the asynchronous design of long running programs, parallel

tasks, and delay in user interactions render timestamps inef-

fective in many cases. Defining a white list often demands

judicious human efforts and may lead to false negatives.

For example, to detect which connection in firefox causes

the creation of the malicious file, one could detect the socket

read/writes events that are close to the file write event

along the time dimension. Unfortunately, firefox is a multi-

threaded program that allows opening multiple tabs to show

different web pages at the same time. The reads and writes

from/to sockets in different threads interleave. In particular,

the closest connection was a connection to Google, not the

malicious connection. Furthermore, file writes are conducted

in an asynchronous way in firefox to improve responsiveness.

Specifically, when a thread (corresponding to a tab) wants

to perform a file write, it posts this request to a work queue.

The request is later dequeued and processed by an idle thread

specialized in file writing. In other words, there may be

substantial delay between the event of viewing the page and

the file write. In fact, there are activities in 21 different non-

process # file # com. channel # edge #

Linux audit 51 15 251 354
File Offset [26] 51 15 251 354

Socket Interval [12] 50 14 39 145

BEEP 10 2 6 23

Table I
COMPARISON OF CAUSAL GRAPHS VIA FOUR APPROACHES.

malicious connections between these two events in our case

study.

Another possible heuristic is to treat a thread as an au-

tonomous subject. However, in firefox, unless the workflow

between the page viewing thread and the file write thread is

tracked, the connection between the file and the malicious

URL cannot be properly established. Also, large programs

such as firefox and apache make heavy use of thread pools

such that events in the same thread may not be causally

related as a thread may be used/reused to process multiple

independent input requests.

In [26], file offsets are logged additionally to distinguish

processes that operate on different segments of a file. Only

the processes that operate on the same file segment are

considered causally related. In our example, such a technique

is not able to reduce any false dependencies because partial

file accesses did not happen. For example, when the user

reads an email message, pine always reads the entire file.

Firefox and bash also access the blackhole file as a whole.

The third row of Table I shows the statistics of the file offset

approach.

TASER [12] separates an execution to segments bounded

by two consecutive socket reads to reduce false depen-

dences. Subjects/objects falling into different segments are

not considered as causally related. However, it does not

work for programs that are not network oriented (e.g.

an editor). Furthermore, a segment in their notion is not

semantically autonomous and hence the technique may have

false negatives. In the firefox case, the technique misses

the causality between the file write and the socket read

as they are performed in different threads. The fourth row

of Table I shows the statistics of this approach. It reduces

more than 200 dependencies, mainly from firefox. However,

the resulting causal graph is still quite large because it is

not able to achieve reduction from pine as pine reads from

email files instead of sockets. As a result, all emails are

considered causally related and hence all the corresponding

socket reads by the sendmail processes. It also undesirably

removes key dependencies such that the root cause email is

not even reachable from the symptom.

Overview of Our Approach: We propose BEEP to

facilitate more accurate causality analysis with a finer-

grain subject: the unit. BEEP dynamically partitions the

execution of a process into autonomous execution segments

called units. A unit is essentially an iteration of an event

processing loop. For a program driven by external events, its

execution is dominated by such iterations and the functions

directly/indirectly invoked by the iterations. On the other

hand, units are not completely independent. So we detect

causality between units by observing memory dependences.

For example, in firefox, the processing of an event, such

as a connection opening event, page loading event, or page

rendering event, is carried out by an iteration of a loop. An

iteration (i.e., unit) may further post more continuation tasks

in a work queue which are handled by other loop iterations

(i.e., units.)

To help identifying units, BEEP first automatically de-

tects the event processing loops in the firefox binary and

the instructions that cause dependences between units by

running the binary on a set of training runs. Then, it

instruments the binary at the identified instructions to log

unit boundaries and unit dependences during production

runs. A causal graph is generated by analyzing both the

standard audit log and our log. In the generated causal

graph, a process is decomposed into many autonomous units

with the corresponding partitioning of the objects (e.g.,

files, sockets) accessed by each unit, hence avoiding the

dependence explosion as demonstrated earlier in the section.

Fig. 1(b) shows the graph generated by BEEP-induced

log. In the graph, an oval represents a division of a process

composed of a unit or a set of inter-dependent units. This

causal graph accurately captures the minimal causal path

between the root cause – the initial phishing email – to the

symptom – the back door process. Observe that the three

sockets connected to sendmail processes include the two

connections that deliver the phishing email2 and the one to

the name server (75.75.75.75). The two sockets connected to

the firefox process denote the local address (127.0.0.1) used

for receiving the link from the firefox process spawned by

pine, and the malicious web site (y.y.y.y:80), respectively.

Observe that the phishing email is precisely pinpointed (the

file between procmail and pine). The fifth row of Table I

shows the statistics of BEEP.

The observation is that BEEP is much more accurate as

it precisely captures the attack causal path. In the following

sections, we further discuss the loop-based unit concept and

technical details.

III. DESIGN PATTERNS OF LONG RUNNING PROGRAMS

A key concept in BEEP is execution units derived from

loop iterations. In this section, we conduct a study of the

design patterns of (relatively) long running programs to

illustrate the generality of the unit concept and explain the

intuitions behind it.

A. Unit

Short running programs unlikely cause dependence explo-

sion as their entire execution is usually a cohesive semantic

unit. In contrast, long running programs often process many

independent inputs during their lifetime. Hence it is undesir-

able to use a single node to represent a long running process

as in traditional causal analysis techniques because that’d

force causal relations from different independent inputs to

be undesirably related. Instead, we should partition it into

autonomous sub-executions corresponding to independent

inputs. The essence of BEEP is to leverage top-level event

handling loops to perform such partitioning.

To identify the program structure and characteristics of

long running programs, we study a large pool of popular

open-source programs. We collect a list of 94 long run-

ning Linux applications in different categories, including 51

server programs in 10 categories and 43 UI programs in

12 categories. These applications are written in various lan-

guages (C, C++, Java, Python, Perl or Tcl). We summarize

the results in Table II. Column 2 presents the category and

column 3 shows the number of applications we collect for

each category. Column 4 presents the number of applications

with top level event loops. For example, in the 13 web

server applications we study, all of them have their execution

dominated by event loops.

Overall, all of the 94 applications have the loop-based,

event-processing structure. In most cases, we observe that

the event processing loop is inside the application code. In

some case, we find that the event loop can reside in special

libraries. For example, 12 of the UI programs use event

2The two connections have the same IP but different ports.

337 int main(..) {
..

1063 [UNIT] for(; ;) {
..

1081 w3mFuncList[..].func(..);

..

1110 mouse active();

..

1144 c=getch();

..

1178 } // for end

1179} // main function end

[main.c]

1093 void server accept loop(..) {
..

1118 [UNIT] for(; ;) {
..

1168 newsock=accept(..);

..

1241 if((pid=fork()) == 0) {
1242 //Child process handles the request

..

1264 break; // child done

1265 } // if end, parent stays in loop

..

1304 } // for end

1305} // server accept loop function end

[sshd.c]

593 static void *listener thread(..) {
..

631 [UNIT] while(1) {
..

742 rv=accept func(..);

..

768 ap queue push(..);

..

798 } // while end

..

810 } // listener thread function end

[server/mpm/worker/worker.c]

820 static void *worker thread(..) {
..

842 [UNIT] while(!workers may exit) {
..

862 ap queue pop(..);

..

894 process socket(..);

..

899 } //while end

..

906 } // worker thread function end

[server/mpm/worker/worker.c]

(a) W3M-0.5.2 (b) sshd-5.9 (c) Apache-2.2.21 Listener thread (d) Apache-2.2.21 Worker thread

Figure 2. Event Processing Loop Examples

Category
Total Loop structured

Applications Applications

Servers

Web server 13 13
Mail server 8 8
FTP server 6 6

SSHD server 2 2
DNS server 9 9

Database server 4 4
Proxy server 2 2
Media server 5 5

Directory server 3 3
Version control server 2 2
Remote desktop server 2 2

Web browser 5 5
E-mail client 5 5
FTP client 5 5

Office 2 2
Text Editor 3 3

UI Image tool 4 4
Programs Audio player 2 2

Video player 4 4
P2P program 6 6

Messenger 2 2
File manager 2 2
Shell program 3 3

Table II
PROGRAMMING STRUCTURE OF LONG RUNNING APPLICATIONS

processing library such as GTK+, QT or KDE, and the main

loop is located inside these libraries.

Through this study, we observe that a long running

program is most likely driven by external events such as

remote requests, keyboard and mouse inputs. The execution

of such a program is dominated by event processing loop(s)

and the functions that are directly/indirectly invoked by the

loop body. For further investigation, we reduce our sample

set and study more detailed structure of the selected long

running programs. We pick target programs based on their

popularity and category. Table III shows the programs we

select.

In Fig. 2, we show the event handling loops from three

representative applications that are single-process, multi-

process, and multi-threaded, respectively. A loop with the

[UNIT] annotation denotes that it is an event processing

loop. Fig. 2 (a) shows the request handling loop of W3M,

a text-based web browser. W3M is a single-process appli-

cation: The main process receives and also handles input

requests. At line 1063, W3M begins an infinite loop and each

iteration handles a single user request. At lines 1110 and

1144, W3M receives user inputs from mouse and keyboard

and processes the request at line 1081. The next request

cannot be processed until the current one is done. Fig. 2

(b) shows a multi-process application sshd, the SSH daemon

program. Sshd starts a loop at line 1118 and receives network

requests at line 1168. Then it spawns a child process by

calling fork() at line 1241. The spawned child process

handles the received request and then terminates. After the

parent process forks the child, it immediately starts the

next iteration to receive the next request. Fig. 2 (c) and

(d) show the event processing loops from Apache, a web

server program. Apache is a multi-threaded application and

it creates several threads to handle simultaneous requests.

Apache creates two different classes of threads, listeners and

workers. A listener thread receives a network request and

then pushes the connection information into a queue. Worker

threads keep checking the queue. Whenever the queue is not

empty, a worker thread dequeues the connection information

and handles the request. Fig. 2 (c) shows the code snippet

of a listener thread and (d) shows a worker thread.

In all three applications, one iteration of an event loop

always initiates a semantically independent sub-execution. In

case (a), an iteration precisely corresponds to an independent

sub-execution. In case (b), since the child process does not

have event loops, its entire execution can be considered

as one unit, which is causally induced by the iteration of

the event loop in the main process. In other words, by

treating an event loop iteration as a unit and the child process

another unit and correlating them through the spawn event,

we can isolate the independent sub-executions. In case (c),

an iteration of the listener thread’s event loop causes the

execution of another iteration in the worker thread’s event

loop. Again, by treating the top-level event loop iterations (in

the two threads) as units and correlating them through queue

operations, we can isolate the independent sub-executions.

In fact, our study on the set of applications listed in

Table III shows that all of them follow one of the three afore-

mentioned patterns. Note that these applications represent a

set of commonly used programs that could be long running.

This strongly supports our idea of treating top-level event

loop iterations (or the entire execution in the absence of any

event loop) as units to isolate independent sub-executions

and the input/output data they process.

Applications Type Unit dependence

Servers

Sshd-5.9 multi-process Fork, Socket

Sendmail-8.12.11 multi-process Fork, Socket

Proftpd-1.3.4 multi-process Fork, Socket

Apache-2.2.21 multi-thread Memory, Socket

Cherokee-1.2.1 multi-thread Socket

Wget-1.13 single No

W3m-0.5.2 single Socket

Pine-4.64 single File

UI MidnightCommand-4.6.1 single File

Programs Vim-7.3 single Memory, File

Bash-4.2 multi-process Fork, Pipe

Firefox-11 multi-thread Memory, Socket

Yafc-1.1.1 single Socket

Transmission-2.6 multi-thread Memory, Socket

Table III
APPLICATION DESCRIPTION

B. Inter-Unit Dependence

From previous discussion, we know that a unit alone may

not correspond to a sub-execution handling an independent

input, such as in the last two cases in Fig. 2. Instead, a few

inter-dependent units together constitute an autonomous sub-

execution. It is hence critical to detect dependences between

units.

We further study the set of applications in Table III and

observe the patterns that can induce dependences between

units. As shown in the last column of the table, one popular

pattern is through system-level events, such as file/socket

reads and writes and process forking. These dependences can

be easily detected from a standard audit log. For complex

applications, such as apache, firefox, and vim, dependences

caused by memory accesses (i.e. one unit writes to some

memory and another unit reads it) are critical to detecting

inter-unit dependences. For example, a listener thread in

apache writes connection information to a queue, which is a

data structure in memory, and a worker thread reads it from

the queue memory. We also observe that the memory foot-

print of the queue is small and the queue is heavily reused by

many threads. Hence, page-level memory dependence detec-

tion as in [20] cannot disambiguate the dependencies belong

to different autonomous sub-executions. Hence, we need to

instrument the memory access instructions corresponding to

enqueue and dequeue operations to detect the dependences.

In vim, files being edited are loaded to memory buffers and

these buffers serve as the communication channels between

different iterations of the event loop.

Another important observation is that besides the depen-

dences denoting high-level workflow, there are also a large

volume of low level dependences that cross unit boundaries

including those caused by memory management, caching,

and statistics collection. They are not interesting from the

causal analysis perspective. We will discuss details of de-

tecting inter-unit workflow dependences and precluding low

level dependences of no analysis interest in Section IV-B.

IV. IDENTIFYING UNIT LOOPS AND UNIT DEPENDENCES

Ideally, we would like to have source code and program-

mer annotations about units and unit dependences. However

in practice, since programs on a system usually come from

vastly diverse sources, it is very difficult to enforce the

availability of such annotations or even the source code. In

cases that we have the source code, it is still very difficult

to identify units and unit dependences statically because

the task entails a lot of static analysis that are hard to

achieve good precision. For example, it is very challenging

to statically identify program dependences representing high

level workflow. A conservative approximation will result in

a lot of unnecessary instrumentation, leading to high runtime

overhead. Hence in this paper, we propose dynamic analysis

to detect unit and unit dependences without source code.

In the remainder of this section, we present these analysis

and discuss why dynamic analysis is an appropriate design

choice due to the nature of units and unit dependences.

A. Reverse Engineering Unit Loops

In this section, we describe a technique to detect loops

from application binaries that can produce units at runtime,

called unit loops. We leverage two observations: (1) such

loops (e.g. event handling loops) are most likely top level

loops, that is, loops that are not nested in any other loops;

(2) their loop body must make some system calls to receive

inputs or produce outputs. Due to the difficulty of static

binary analysis, we use a number of training runs to detect

unit loops. For instance, it is difficult to statically determine

whether a loop in a function is a top level loop as the

function may be the target of some indirect function call

inside another loop.

void main(..) {
 while(..)
 // Argument handling
 ..
 while(..)
 // Memory pool initialize
 ..
 while(..)
 // Event process
 ..
 while(..)
 // Free allocated memory

234 main(..) {
 ..
1341 while(1) {
1342 if(next_screen == SCREEN_FUN_NULL)
1343 main_menu_screen();
1344 else
1345 mail_index_screen();
1346 } // while end
1347 } // main function end

 [pine/pine.c]

1498 while(1) {
 // Event process
1983 } // while end
 [pine/pine.c]

735 while(1) {
 // Event process
1543 } // while end
 [pine/mailidx.c]

(a) Top level loops (b) Second-level event processing loops (Pine-4.64)

Figure 3. Loops in applications.

We cannot simply treat all top level loops as unit loops.

Applications tend to have other top level loops for program

initialization (e.g. argument parsing) and finalization. Fig. 3

(a) shows a typical design pattern for the applications we

have studied. The key characteristic is that unit loops must

interact with external environment. Most unit loops receive

inputs. Unit loops that retrieve and process tasks from a work

queue may not receive inputs, but they produce outputs.

In some cases, top level loops are not sufficient as

event handling loops may nest inside other loops. Pine

is such an example. Fig. 3 (b) shows that a top level

loop at line 1341 calls either main_menu_screen()

or mail_index_screen() depending on if the next

screen that needs to be displayed is the main menu

or the email index. Both main_menu_screen() and

mail_index_screen() have their own event processing

loop at line 1498 of pine.c and line 735 of mailidx.c,

respectively. When the user stays in the mail index screen

and browses e-mail messages, the execution stays in the loop

at line 735. Pine starts a new iteration of the top level loop

at line 1341 when the user exits from the mail index screen.

Similarly, execution stays in the loop at line 1498 when the

user stays in the main menu.

while (1) {

 /* in mail_index_screen () */

 while (1) {

 read_file (…);

 write_file (…);

 …

 while (1) {

 read_file (…);

 write_file (…);

 …

1341

735
Maildir/new/yyy

mail.200

 1st layer unit

2nd layer unit

735
Maildir/new/xxx

mail.199

Figure 4. Two layers of units in pine. The 1st layer node represents an iter-
ation of the main loop, in which the loop inside mail_index_screen()
iterates multiple times. The two second layer nodes represent two consec-
utive iterations of the inner loop.

If we only consider the top level loop as the unit loop and

miss the second level loops, spurious causal dependences

will be introduced. Consider the partial causal graph in

Fig. 4 for pine. There is a file read and a file write in each

iteration of the inner loop. If the second layer units are not

identified, all the iterations of the inner loop together are

denoted by a single first layer node. Since each outgoing

edge is considered causally dependent on all the incoming

edges of the same node, the file write in the second iteration

is undesirably dependent on the file reads in both iterations.

With the second layer units, we can precisely attribute the

file write to only the file read within the same iteration.

To tolerate such cases, our training system is configurable,

allowing the user to specify the number of loop nesting

layers to be considered. In this paper, we set it to 2, meaning

that we look for unit loops in both the top level loops and

those that directly nest in the top level loops. It is sufficient

for the applications we consider.

In the training phase, our technique first constructs control

flow graphs and call graphs for subject binaries using PE-

BIL [21], to identify loop heads and exits. Then we perform

dynamic instrumentation using PIN [23] to log the beginning

and ending of each iteration of all loops and system calls. We

analyze the generated training log to filter out those loops

that nest too deep or do not involve input/output syscalls.

The remaining loops are considered as unit loops. Details

are elided. Note that imprecision in static graph construction

does not affect our technique as we rely on dynamic analysis

to detect loop nesting and system calls.

The second to fourth columns of Table IV show the

numbers of loops, high level loops, and unit loops in the

applications we consider. Observe that despite the large

number of loops, our technique can detect a very small

number of unit loops. With the nesting configuration of 2,

we identify three unit loops from Pine as discussed earlier.

Apache has two different unit loops, one for the listener

thread and the other the worker thread. Firefox has nine unit

loops, one for each different type of thread.

Discussion. BEEP’s unit loop detection is through dynamic

analysis and heuristics. Hence, it is theoretically incomplete

and unsound. However, incompleteness and unsoundness

does not cause problems for us in practice. First of all, it is

very unlikely for BEEP to miss the first layer event loops as

applications rely on their event loops to operate. In contrast,

we may miss unit loops in the lower layers if the configured

number is too small. The effect of missing lower layer unit

loops is illustrated by Fig. 4, which is undesirable unification

of dependences. However, due to the modular design of

most existing software, it is unlikely that developers put

their event loops or dominant operation loops deep inside

other loops. Nesting level of 2 is the maximum we have

encountered.

In the presence of unsoundness, we may detect loops

that should not be considered as unit loops. For example in

Fig. 4, assume the second file write is indeed causally depen-

dent on both file reads, it is hence not necessary to have the

second layer units. However, despite the redundancy, having

the second layer units does not affect the correctness of the

causal graph as in the later cross-unit dependence analysis

phase, we will detect the causal dependence between the two

second layer units so that we are able to correlate the file

write to both file reads. Since our technique is very light-

weight, the overhead caused by redundancy may not matter.

These arguments are supported by our empirical results in

Section VII.

B. Reverse Engineering Inter-Unit Dependences

From our previous discussion in Section III-B, capturing

inter-unit dependence is important to isolating semantically

independent sub-executions constituted by multiple units.

Since dependence caused by system level events can be

easily detected from audit log, We in this section focus on

reverse engineering inter-unit dependence through memory.

Workflow Dependence vs. Low Level Dependence. In

practice, there are lots of memory dependences crossing

unit boundaries. Only some of them are helpful in sep-

arating units belonging to semantically independent sub-

executions. We call them workflow dependences or high

level dependences. Other cross-unit dependences are not part

of the workflow, but rather caused by low level behavior

such as logging and memory management. They usually

induce arbitrary dependences between units. Sometimes, all

units are inter-connected by such dependences. Hence, the

challenge lies in how to distinguish these two types of

dependences.

In the following, we first use examples to illustrate these

two types of dependences. We then determine the unique

characteristics of workflow dependences. Finally, we present

a dynamic analysis to reverse engineer such dependences.

socket_A = accept();
mem_write(element_A);
push_queue(element_A);

element_A = pop_queue();
mem_read(element_A);
update(log_buf);

socket_B = accept();
mem_write(element_B);
push_queue(element_B);

socket_C = accept();
mem_write(element_C);
push_queue(element_C);

element_B = pop_queue();
mem_read(element_B);
update(log_buf);

element_C = pop_queue();
mem_read(element_C);
update(log_buf);

[UNIT2-1]

[UNIT2-2]

[UNIT2-3]

[UNIT1-1]

[UNIT1-2]

[UNIT1-3]

<Listener thread> <Worker thread>

Figure 5. High level and low level memory dependences in apache.
[UNIT1-2] means the second unit instance from loop 1.

Apache and firefox record each request processed in its

lifetime. After a request is handled, they write the request

information to a memory buffer which is flushed periodi-

cally. We observe that log buffer updates cause dependences

between most units in the process. In particular, there is a

metadata structure for the buffer that maintains the current

space occupied by messages, the number of messages, etc.

Each update has to first read the data structure written in the

last update, and write to it afterwards.

Fig. 5 shows a number of units in an Apache execution

and their memory accesses. In this example, we observe two

kinds of memory dependences. One is through the queue

data structure (solid arrows) and the other is through the

log buffer (dotted arrows). Observe that the first type of

dependences capture the causality between units that handle

the same request, and thus workflow dependences. The

second type correlates all units in a worker thread regardless

of the request, and thus low level dependences.

Our study of other applications in Table III show that low

level dependences may have various forms. For instance,

a program using object pools tends not to directly allocate

an object from heap, but rather from a pool, and returns

it to the pool after using it. Hence, dependences can be

induced between units through the metadata structure of the

pool regardless of the input. A program that needs to report

its own execution status constantly updates some global

statistical variables, leading to low level dependences. We

summarize the characteristics of workflow dependences as

follows.

• Two units that have workflow dependence often share a

common heap object, called the workflow object. This

object is often closely tied with the common input that

the two units are processing. It is a heap object instead

of a global or stack object because the number of inputs

varies a lot at runtime, demanding different numbers of

such objects. In Fig. 5, memory structure element_A

is a workflow object containing request information and

it is shared by [UNIT1-1] and [UNIT2-1].

• Units spawned from the same loop have unique work-

flow objects. In particular, the various units from the

same loop correspond to different inputs and hence

should operate on different workflow objects. In con-

trast, data structures causing low level dependences,

such as the log buffer in apache, are not exclusively

owned by any unit or subsets of units, and they can

be accessed by any units. In Fig. 5, the three units

from the same event loop in the listener thread operate

on three different workflow objects, denoting three

different input requests.

Reverse Engineering Algorithm. Based on the character-

istics of workflow dependences, we devise the following

dynamic analysis to reverse engineer the instructions that

can produce workflow dependences at runtime. They will

be instrumented for production runs.

1) We instrument libc memory allocation functions to
detect all heap objects and their sizes.

2) We instrument all memory accesses to check if an
access targets on any of the allocated heap object. If
so, we log the access.

3) We instrument all the unit loops identified in the
previous phase to log the begin and the end of a unit.
Essentially, we log each instance of a unit loop head.
The execution between two consecutive instances of
the loop head denotes a unit.

4) We then associate all the heap objects to the units
in which they are accessed. For a heap access in-
struction inside a unit loop, if it accesses unique
heap objects in different units and these objects
cause inter-unit dependences, we consider it a unit
dependence inducing instruction. In other words, if
an instruction ever accesses the same heap object in
multiple units, it is excluded; if the object accessed by
an instruction can never cause cross-unit dependence,
it is excluded.

[Allocated memory lists]
1. 0x10001 - 0x20000 // element_A
2. 0x20001 - 0x30000 // element_B
3. 0x30001 - 0x40000 // log_buf
4. 0x40001 - 0x50000 // etc

0x10 : Read - 0x30001
0x11 : Read - 0x10001
0x12 : Write - 0x30001
0x13 : Write - 0x40001

[UNIT2-1]

0x1 : Read - 0x30001
0x2 : Write - 0x20001
0x3 : Write - 0x30001

[UNIT1-2]
0x1 : Read - 0x30001
0x2 : Write - 0x10001
0x3 : Write - 0x30001

[UNIT1-1]

[UNIT2-2]

0x10 : Read - 0x30001
0x11 : Read - 0x20001
0x12 : Write - 0x30001
0x13 : Write - 0x40001

Figure 6. Training log example of apache. Allocated heap objects on the
left; the access log by units on the right.

Fig. 6 shows a simplified training log of Apache. In

this example, four different heap regions are allocated, two

for the elements storing input requests, one for the log

buffer, and the other (etc) is used internally for statistics

collection. Our algorithm determines that instructions 0x1,

0x10, and 0x12-13 are excluded as multiple units from the

same loop access the same object. In contrast, instructions

0x2 and 0x11 are identified as workflow dependences related

instructions.

Optimization. Our algorithm may identify multiple instruc-

tions that cause workflow dependences on the same heap

object. For example, multiple fields of a request data struc-

ture in Apache are defined by different instructions in a unit

of the listener thread, and then used by a worker thread unit.

Although these field accesses are by different instructions

and with different addresses, they access the same allocated

region and cause the same workflow dependence between

the same two units. Hence, we can select one representative

field access and ignore the others. In particular, if a set of

accesses of the same object always appear together, we select

the first one.

Columns 5-7 in Table IV present the results of memory

dependences. The fifth column shows the number of memory

instructions accessing heap objects that can cause depen-

dences across unit boundaries, including both workflow and

low level dependences. The sixth column shows the instruc-

tions causing workflow dependences and the last column

shows the number after the optimization. They are the ones

that get instrumented.

Applications

of loops # of memory instructions

total 1 and 2 syscall total high after

level included level opt.

Sshd-5.9 1,079 29 1 0 0 0

Sendmail-8.12.11 798 61 1 0 0 0

Proftpd-1.3.4 812 86 1 0 0 0

Apache-2.2.21 1,294 31 2 67 31 2

Cherokee-1.2.1 7 3 1 0 0 0

Wget-1.13 519 32 1 96 0 0

W3m-0.5.2 1,471 121 1 0 0 0

Pine-4.64 5,513 155 3 6 0 0

MC-4.6.1 1,215 153 1 0 0 0

Vim-7.3 4,359 292 1 412 6 6

Bash-4.2 1,840 179 1 38 0 0

Firefox-11 25,564 1,863 9 671 12 2

Yafc-1.1.1 469 7 1 0 0 0

Transmission-2.6 1,117 10 2 14 4 2

Table IV
IDENTIFIED UNIT LOOPS AND INTER-UNIT MEMORY DEPENDENCES.

while (1) {

 x = malloc(…)

 x.url= …;

 if (use_ssl) {

 x.url = …;

 x.ssl = …;

 }

 enqueue (x);

1

2

3

4

5

6

7

8

UNIT1_1

while (1) {

 x = dequeue()

 … = x.url;

 if (use_ssl) {

 ...(x.ssl);

 }

11

12

13

14

15

16P

UNIT2_1

P

T

Figure 7. Missing dependences in training runs. During training, use_ssl
is never set. The memory dep with a ‘T’ label is the workflow dep detected
in training. The deps with a ‘P’ label are those happening in production
runs.

Discussion. As we detect workflow dependence inducing in-

structions through training runs, depending on the coverage

we may not detect the complete set of such instructions and

hence we may theoretically miss workflow dependences at

runtime. However this is unlikely in practice. The reason is

that workflow dependences denote how a program works at

a very high level so that they are very stable. For instance,

Apache’s workflow is that a request is received by the

listener thread and put in a work queue. It is later dequeued

and processed by the worker thread. This workflow does not

change with different inputs. Therefore, as long as we are

able to instrument at least one of the many memory writes

of the workflow object in the listener thread, and one of the

many memory reads of the workflow object in the worker

thread, we can detect the workflow dependence.

Consider an example in Fig. 7, abstracted from Apache.

Assume in the training runs, the variable use_ssl is never

set. So the dependence between lines 3 and 13 is the only

workflow observed and only instructions 3 and 13 are instru-

mented. Assume during production runs, variable use_ssl

is set. Hence the real memory dependences become 13→ 5

and 15→ 6. However, as we instrument lines 3 and 13,

we log a write to x.url at 3 and later a read of x.url

at 13. Our log analysis concludes that there is a memory

dependence between 13 and 3, which does not precisely

reflect the true memory dependence, but sufficiently reflect

the workflow. If in the training runs, use_ssl is always

set, both instructions 3 and 5 will get instrumented as

both access a heap object unique to an iteration and the

object causes inter-unit dependences (Rule 4 of the reverse

engineering algorithm). As such, even when use_ssl is not

set in a production run, the same workflow can be detected

nonetheless.

This illustrates the detection of workflow dependence is

not by accident, as x.url is such an important field that

it must be written by the first unit and read by the second

unit, in both training and production runs. In Section VII-C,

we will show that different coverage of training runs have

little impact on the effectiveness of BEEP.

In the worst scenario, if the entire workflow is not

covered by any training runs, our technique is unlikely

effective. However, since our training runs are the regular

use cases provided by the user, we argue that the technique is

sufficiently effective for the particular user. Also improving

coverage of training runs is an orthogonal challenge that we

can leverage other researchers’ solutions to mitigate [7], [5].

We leave it as our future work.

We may also fail to exclude some low level memory

accesses if they happen to demonstrate the same character-

istics as workflow dependences in training. This may lead

to bogus inter-unit dependences. In practice, we rarely find

such problems. From Table IV, we can reduce to a small

set of instructions during training, indicating the criteria we

use are distinctive enough.

rule instruction instrumentation

Rentry entry of unit loop l 1 nesting++;

Rhead head of unit loop l kill(UNIT, l, inst(l)++, nesting) 2;

Rexit exit of unit loop l nesting- -;

Rwrt memory write to a 3 kill(MEM WRT, a);

Rrd memory read from a 3 kill(MEM RD, a);
1Loop entry is before the first iteration.
2It is implemented by multiple kill() calls that take 2 args.
3These are reads/writes that may cause workflow deps.

Table V
LOGGING INSTRUMENTATION. UNIT, MEM WRT, AND MEM RD

ARE NEW SYSCALL IDS FOR OUR ANALYSIS.

V. LOGGING INSTRUMENTATION AND LOG ANALYSIS

Through the training phase, we reverse engineer the unit

loops and instructions that could induce inter-unit memory

dependences. In the next step, we instrument the applications

accordingly to collect runtime log. Attack investigation is

performed by co-analyzing the audit log and the additional

log generated by BEEP.

Logging Instrumentation. To enable easy log analysis,
we leverage the existing audit system to store our log.

Specifically, we instrument an application binary at the

instructions of interest such that special system calls are

triggered. The system calls are then captured and logged

by the audit system. The detailed instrumentation rules

are presented in Table V. Specifically, the nesting level is

increased by one before entering the first iteration of a unit

loop (rule Rentry) and decreased when exiting the loop (rule

Rexit). A unit event is emitted upon each instance of a unit

loop head instruction (rule Rhead), containing the id of the

loop, the instance, and the nesting level. Note that loop

entries and exits are statically identified, regardless of the

coverage of training runs. We rely on the underlying binary

instrumentation tool PEBIL [21] to achieve this goal. In

some extremal cases (e.g. strange loop structures), PEBIL

may miss some loop entries or exits. The consequence

is that we may coalesce multiple units into one, losing

precision. We have not encountered such cases in practice.

In the generated log, a unit is delimited by two consecutive

unit events of the same loop. Note that the audit system

automatically annotates each kill signal it receives with the

id of the signaling process.

Log Analysis. We develop an algorithm to analyze the en-

hanced audit log to generate a causal graph. This algorithm

is applied when the user observes a symptom and wants to

identify its root cause. It is undesirable to expose the user to

units or memory dependences because these are application

specific artifacts. Therefore, our design goal is to have a

precise causal graph at the system level, that is, the graph is

composed of system level entities such as files, sockets, and

processes. However, a process node does not represent the

entire process, but rather just a sub-execution constituted by

the relevant units, i.e. all the units that are reverse-reachable

from the symptom through inter-unit dependences. All the

Algorithm 1 Log Analysis Algorithm

Input: L - the audit log
n - the nesting level considered.
ec - symptom event.

Output: G - the generated causal graph.

Def: memUse - memory uses that look for definitions.
sysOb j - system objects relevant to the symptom.
unitRel[u] - if unit u is relevant.
curUnit[pid] - the current unit of process pid.

1: memUse ← {}
2: sysOb j ← { the system objects of ec }
3: for each event e ∈ L in reverse order, starting from ec do
4: if e is unit event UNIT(pide, uide, inste, ne) then
5: if ne ≡ n then
6: curUnit[pide] ← (uide, inste)

7: if e is mem write in pid to a ∧ a ∈ memUse then
8: memUse ← memUse - {a}
9: unitRel[curUnit[pid]] ← true

10: if e is sys event in pid on s ∧ s ∈ sysOb j then
11: unitRel[curUnit[pid]] ← true
12: G ← G + edge (pid, e, s)

13: if e is mem read in pid to a ∧ unitRel[curUnit[pid]] then
14: memUse ← memUse ∪ {a}

15: if e is sys event in pid on s ∧ unitRel[curUnit[pid]] then
16: sysOb j ← sysOb j ∪ {s}
17: G ← G + edge (pid, e, s)

system calls occur in those units are connected to the process

node.

Furthermore, recall that depending on the configuration,

we may have nesting units. Our algorithm allows the user

to generate causal graphs at different nesting levels. For

example, if two layers of units are logged, the user can

choose to generate a causal graph with the first layer units

only (less precise but concise) or the second layer units

(more precise but larger).

Algorithm 1 describes the process. It takes as input the

log file, a symptom event (e.g. a file or a process), and the

level of units to be considered, and generates the causal

graph relevant to the symptom. Initially, it populates the

sysObj set with the system object(s) of the symptom event

(line 2). Any events in the past that operate on the same

object(s) have dependence with the symptom event. The

main body of the algorithm traverses the logged events in

the reverse order, starting from the symptom event. If it

encounters a unit event, it updates the current unit if the

nesting level is equivalent to the specified value (lines 4-6).

For example, if the specified level is one, all the second layer

units are ignored. Note that they must be nesting in some first

layer unit. All of them are considered part of the first layer

unit. In lines 7-9, if a memory dependence is detected, the

current unit is considered relevant. Similarly in lines 10-12,

if a system level dependence is detected, the current unit

is considered relevant and an edge is added to the causal

graph. After the current unit is determined relevant, all the

preceding memory reads and system objects are put into the

memory use set and the system object set to look for further

dependences (lines 13-17).

1

2

3

4

5

6

7

8

9

10

11

12

SOCK_RD 135, x.x.x.x, 80

MEM_WRT 135, 0x401030

UNIT 135, 1,2,1

SOCK_RD 135, y.y.y.y, 1020

MEM_WRT 135, 0x400360

UNIT 135, 1,3,1

FILE_RD 273, “hosts”, …

MEM_RD 135, 0x400360

FORK 135, 399

UNIT 135, 2, 1, 1

SOCK_RD 273, z.z.z.z, 8080

FILE_WRT 399, “keylog”, ...

399

keylog

135

y.y.y.y:1020

4. sock_rd

9. fork

12. file_wrt

symptom ec

(a) enhanced audit log (b) causal graph

Figure 8. Log analysis example. The first value of an event is process id.
The events of different processes have different shades. The line numbers
of relevant events are highlighted. Event line numbers in the same unit are
boxed. “Unit 135,2,1,1” denotes the 1st instance of unit loop 2 in process
135, and nesting level 1.

Fig. 8 presents an example. The symptom is the last file

write event of process 399. It is dependent on the fork event

at line 9, which is in a unit of loop 2 in process 135. The unit

is marked relevant, entailing the memory read at line 8 being

inserted to the memory use set to look for its definition,

which is found at line 5, making the enclosing unit relevant

and the socket read in the unit at line 4 being added to the

graph. Observe the events in the first unit are not relevant

although it is in the same process 135. Also observe that

units from different processes may interleave.

While the aforementioned algorithm traverses the log

backward to identify all the events leading to a symptom,

a similar algorithm is also developed to perform a forward

traversal to identify all the events that are caused by a root

cause. This is particularly beneficial in understanding the

ramifications of an attack. The details are omitted.

VI. IMPLEMENTATION

We have implemented a BEEP prototype composed of

the training, instrumentation, and log analysis components.

The training analysis is implemented on PIN [23], instru-

mentation is through a binary rewriting tool PEBIL [21].

Log analysis is implemented in C++. Both the backward

and forward log analysis algorithms are implemented.

In Linux, syscall clone() is used for spawning both a

process and a thread. On one hand, this allows individual

threads across processes have unique ids. Consequently, we

can attribute an event to its thread through the unique pid and

then to its unit. On the other hand, we need to distinguish a

thread from a process to detect memory dependences across

threads. Note that threads in the same process share the same

virtual space so that when we match a memory use with

a definition, we need to ensure the corresponding threads

belong to the same process; we should not match a use with

a definition in a different process. We parse the argument of

a clone syscall and see if CLONE_THREAD or CLONE_VM

is set. If either one is set, the child is a thread, otherwise a

process.

VII. EVALUATION

Part of the experimental results have been presented in

previous sections. In this section, we present the time and

space overhead and two additional case studies. For training

runs, we use 1-3 executions for each application. They are

the most common use cases of those applications.

The training overhead is about 10x-200x. Next we focus

on reporting the more interesting logging overhead.

A. Logging Overhead

In this experiment, we measure execution time of in-

dividual applications. For server programs, we use test

inputs provided with the program if available, random inputs

otherwise. For UI programs with batch mode support, such

as vim or W3M, we use scripts to feed inputs. For firefox,

we use the SunSpider browser benchmarking tool [3]. It is

difficult to measure runtime for programs such as pine and

bash because they are highly interactive without batch mode

support. We hence preclude them in the time overhead study.

Fig. 9 shows the logging overhead of BEEP under dif-

ferent conditions. The “Audit Off” bars show the overhead

of BEEP over the execution of the original binaries without

turning on the Linux audit system. The “Audit On” bars

show the overhead of BEEP over the execution of the

original binaries with the Linux audit system running. In

the later case, the baseline includes the running time of the

Linux audit operations.

In most cases, the overhead is less than 1%.

0.0%

0.2%

0.4%

0.6%

0.8%

1.0%

1.2%

1.4%

Apache Vim Firefox Wget Cherokee W3m Proftpd Yafc Transmission

T
im

e
 O

v
e

rh
e

a
d

(%
)

Audit Off Audit On

Figure 9. Runtime overhead.

Table VI shows space overhead. It is measured over

executions of about one minute. Note that since we use batch

mode, the executions are highly intensive. “Original” log

means the audit log without our technique. Observe that our

technique has small space overhead for most of applications

except firefox and apache. Firefox and apache have relatively

high space overhead because a single request from the

user or network is handled by multiple units from multiple

threads and each of them logs units and also memory writes

and reads.

App Execution Log size(MB) Space
time(sec) Original Instrumented overhead(%)

Apache 58.48 0.227 0.278 22.4%

Vim 59.95 85.75 89.4 4.2%

Firefox 95.1 46.12 63.25 37.1%

Cherokee 61.01 1.1 1.126 2.2%

W3M 58.92 26.88 28.39 5.6%

Proftpd 58.65 0.54 0.56 2.3%

Wget 60.37 17.47 17.48 0.6%

Yafc 59.16 7.29 7.41 1.6%

Transmission 60.51 4.92 5.37 9.1%

Pine - 5.62 6.21 10.5%

Bash - 0.63 0.64 0.6%

MC - 1.56 1.67 6.9%

Sshd - 2.2 2.22 0.8%

Sendmail - 0.214 0.22 2.8%

Table VI
SPACE OVERHEAD

101MB

700MB

Our LogTotal Log

Figure 10. Accumulated log size from one-day execution.

Scalability. To shed some light on the scalability of BEEP,

we conduct the following experiment. We created a VM

image with all the instrumented applications and installed

it on a (non-author) user’s laptop. He used the system for

24 hours with 8 hours sleep time. We then analyze his

log. Fig. 10 shows the log size changes over time. Observe

that the log generated by our technique is consistently a

small portion of the whole audit log. The growth is linear.

Finally, about 700MB log was generated with 100MB from

our technique. Fig. 11 shows the breakdown for individual

applications. Observe that a program that generates a lot of

audit log may not generate a lot of fine-grained log through

BEEP, such as bash, and vice versa (e.g. firefox).

Systematic Evaluation of Effectiveness. In this experiment,

we randomly select 100 files accessed in the 24-hour exper-

iment, backtrack from these files, and compare the causal

(b) Our log (101MB)(a) Total log (700MB)

Figure 11. Log size of applications.

process # file # com. channel # edge #

Linux audit 95.29 188.31 201.12 785.98
BEEP 7.19 18.08 10.86 67.29

Table VII
CASUAL GRAPH COMPARISON FOR 100 FILES.

graphs generated by BEEP and standard system call based

techniques. We observe dependence explosion (> 10 times

difference in graph size) in 74 out of the 100 files. Table VII

compares the averages. Observe that the causal graphs by

BEEP are on average 13.5 times smaller.

B. Case Studies

We have shown one case study in Section II. In this

section we show two more case studies to demonstrate the

effectiveness of BEEP.

Understanding Attack Ramifications. During the 24 hours

scalability study, we have another colleague using the of-

fensive BackTrack Linux VM [1] on a different machine

to attack the machine with the audit system running at the

13th hour. BackTrack provides a set of pre-installed hacking

tools.

We provide the IP address of the “victim” machine to the

(emulated) “attacker.” The “attacker” first used a scanning

tool to scan all the open ports and the application versions on

the “victim” machine and was able to find that the Proftpd

ftp server that has opened port 21 has a vulnerability. He

used another tool to exploit the vulnerability and acquired

a root shell. He then installed a backdoor in the “victim”

machine and made another connection to the backdoor to

collect system and user information. After that he modified

.bash history file to remove the footprints of the attack.

At the end of the 24-hour period, the user of the “victim”

machine was notified of the backdoor program. He first per-

formed a backward causal analysis using both the standard

audit log and the enhanced log. Both generate a concise

causal graph that precisely identifies the root cause. Audit

log works well in this case as none of the processes along

the path from the exploit to the back door process is long

running, and hence no explosion.

The user also wanted to understand the ramifications of

the attack, namely to identify the objects and processes

that get compromised by the attack. This can be done by

generating a causal graph involving all the events reachable

from the root cause through dependences. This time, the

Linux audit log leads to dependence explosion, whereas

BEEP produces the precise causal graph. Fig. 12(a) shows

the graph generated by Linux audit log. It contains 348

processes and 512 files, including three bash sessions which

the user connected to after the attack. Fig. 12(b) shows the

graph generated by BEEP and it only shows 4 processes

and 1 file, clearly identifying that the .bash history file gets

compromised by someone sneaking in through the back

door (i.e. sh→ bash). The reason of the explosion is that

ksmd

sh

bash vi .bash_history

bash

g++

cc1plus

g++

cat

cat vim

vim

firefox
firefox

firefox

bash

309 nodes
765 edges

bash 551 nodes
1271 edges

ksmd sh

bash

vi .bash_history

 (b) Generated graph by fine-grained forensic analyzer

(a) Graph generated from syscall log. It is a much smaller reduced version.

Figure 12. Identifying Attack Ramification.

whenever the user logged into the system, the corresponding

bash process is tainted because it first reads the compro-

mised .bash history file. Then all child processes of the

bash process also get tainted and all objects accessed by

these processes are also included in the graph. In contrast,

BEEP partitions a bash execution into units and there is no

workflow from the unit that reads the .bash history to the

units that spawn child processes.

The file-offset approach [26] does not reduce any false

dependences because bash reads the whole .bash history file

when it executes. The socket interval technique [12] does

not work because firefox is tainted from the beginning of

its execution and then all the following socket accesses are

also tainted. Table VIII compares the statistics of the four

techniques.

Using timestamps to approximate causal relation hardly

works here as the bash processes are long running. Preclud-

ing .bash history from the white list and thus avoiding track-

ing dependences through it may prevent the explosion, but

that would lead to missing the malicious action of modifying

the file. Also, there are many other such configuration files

and log files. The system administrator has to decide which

ones should be precluded. It is in general not safe to do so

either as the attacker can intentionally use configuration/log

files as their communication channels.

process # file # com. channel # edge #

Linux audit 348 512 0 2,135
File Offset [26] 348 512 0 2,135

Socket Interval [12] 348 512 0 2,135
BEEP 4 1 0 4

Table VIII
CASUAL GRAPH COMPARISON.

Information Theft. In this case study, we emulate the

following scenario: an employee executes vim editor and

opens three secret files (secret 1, secret 2 and secret 3) and

two other html files(index.html and secret.html) on a server

in his company. He copies secret information from secret 1

file and pastes it to secret.html file. Then he modifies the

index.html file to generate a link to the secret.html file. After

he gets home, he starts a web-browser on his home system

and connects to the company’s server to download the secret

file. Note that the company server is set up in such a way that

direct copying secret files is forbidden, but viewing them is

allowed by users from the company’s physical LAN.

Later, the company finds out some of the important in-

formation is leaked and the administrator tries to investigate

how the secret was stolen and who shall be held responsible.

She constructs a casual graph related to the three secret

files. Fig. 13(a) shows the graph generated by the existing

techniques. This graph indicates all three secret files are read

by vim and two html files are written from the same vim

process. Then those html files are read by the httpd web

server daemon. The web server has served requests from 38

connections since the html files are read. From this graph,

the only conclusion we can draw is that maybe all three

secret files are leaked and the destination can be any of the

38 connections.

Neither the file-offset or the socket-interval approach

reduces any false dependence. When the employee executes

vim and opens a file, vim first reads the entire file and then

generates a swap file. Also when he modifies the part of

the html file, vim does not directly modify the original file,

instead it modifies the corresponding swap file and renames

it to the original file name when he saves modifications.

That means even though the employee reads a part of the

secret file and modifies a part of the html file, vim reads and

writes entire files internally. The socket interval technique

does not work because the index.html file is tainted and all

the corresponding socket accesses are tainted.

One simple heuristic is to find the last secret file read

that happens right before the write to the html file based on

timestamps. However the user opens all three secret files

in the beginning of vim execution and performs edits in

arbitrary order. The two html files are written only when

the user indicates so. In this case, the closest read is from

secret 3 which is not leaked. Another heuristic is that the

administrator manually inspects the secret files and the html

files to find the secret source and the sink by comparing

their contents. However, the audit system cannot afford

logging contents (e.g. packets that the web server has sent).

Moreover, a smart attacker can apply packer or compressor

vim

secret_1 secret_2 secret_3

.secret_1.swp .secret_2.swp .secret_3.swp /htdocs/secret.html /htdocs/index.html

/htdocs/.secret.html.swp

/htdocs/.index.html.swp

.viminfo.tmp

httpd

vim .secret_1.swp

htdocs/.secret.html.swp

htdocs/secret.html

secret_1

httpd x.x.x.x

 (b) Generated graph by fine-grained forensic analyzer

(a) Generated graph by previous forensic analyzer

Figure 13. Information stealing.

to encode the stolen content.

Fig. 13(b) shows the graph generated by BEEP. It pre-

cisely pinpoints the insider’s home machine IP and the

secret that gets leaked. BEEP is able to detect all necessary

workflows between units including the one between the vim

unit that copies the content and the unit that pastes it. The

secret.html file is only read by one unit in httpd and sent

to an external IP through another unit. Table IX shows the

comparison.

process # file # com. channel # edge #

Linux audit 2 11 38 51
File Offset [26] 2 11 38 51

Socket Interval [12] 2 11 38 51
BEEP 2 4 1 6

Table IX
CAUSAL GRAPH COMPARISON.

C. Impact of Training Coverage

In this experiment, we study the effect of training run

coverage. For each program, we create three test suites.

Training #1 is the universal suite, containing the common

use cases. Training #2 is a subset of training #1, we

randomly select 30%∼50% of the test cases from training

#1 so it covers a smaller portion of the code. Training #3

is a subset of training #2 in which we randomly include

30%∼50% from training #2. For example, in the apache

case, we acquire a real-world web request log for 3 days

and we write a script to regenerate the workload and use

them as training #1. We randomly select a one-day log for

training #2 and also select a five-hour log for training #3.

Table X shows the function and instruction coverage of each

training set. Observe that code coverage are quite different

for the three sets of each program.

Applications

Training # 1 Training # 2 Training # 3
Coverage Coverage Coverage

Fnc Ins Fnc Ins Fnc Ins

Apache 74.1% 48.2% 51.3% 30.9% 39.4% 20.7%

Vim 60.7% 47.4% 48.2% 31.7% 29.6% 16.4%

Transmission 59.6% 41.5% 51.4% 32.1% 39.8% 21.3%

W3m 64.2% 50.4% 58.7% 43.7% 41.8% 29.0%

Pine 52.1% 27.4% 29.6% 18.4% 21.8% 11.1%

Table X
EFFECT OF TRAINING.

We first verify correctness of unit loop detection and

observe that all three training sets of each application

correctly find the same unit loops.

Then we detect inter-unit workflow dependences using the

different training sets. W3m and Pine do not have any work-

flow dependence and our technique correctly identify that for

all the training sets. In cases of Apache and Transmission,

inter-unit dependence detection results from all the three sets

are the same. All of them correctly identify the same set of

memory instructions which may cause dependences across

units. In Vim, the detected instruction set by training #1 is

different from that by training #2. Training #2 and #3 have

the same result. However the two sets both access the same

heap objects and both of them can be used to correctly detect

inter-unit dependences in all scenarios we have evaluated.

From this study, we observe that training run coverage

has little effect on BEEP.

VIII. RELATED WORKS

Coarse-grained Logging. Our technique follows the line

of work in tracking system-level dependence for forensic

analysis including backward tracking to identify the source

of an attack [18], [15], [4], [11] and forward tracking to

detect the effect of an attack [12], [19], [17], [31], [25],

[9]. Our contribution is to complement these techniques by

partitioning an execution to autonomous units that handle

independent inputs to avoid dependence explosion.

Some existing efforts try to mitigate the dependence

explosion problem with system level techniques. In [20],

page level memory dependences are detected and logged

in addition to syscall logging. While it provides better

precision, it is not generally effective due to its limitation

to the page level granularity and its unawareness of the

semantics of those dependences. In [26], file offsets are

logged additionally for file related syscalls such that file

dependences can be better disambiguated. However, it is

only limited to file dependences.

Whole System Replay. To allow forensic analysis and to

roll back a victim system after an attack, system level

replay techniques have been proposed in the past [17], [8].

These techniques regularly create checkpoints and record

non-deterministic factors in system-wide execution such as

packets from remote sites, inputs from users, and hardware

signals so that the whole system can be replayed from a

checkpoint. During replay, the part that is affected by the

attack can be skipped [17]. BEEP can complement these

techniques by providing better accuracy in causality analysis

and supporting the replay of benign units of a tainted

process.

Combination of Coarse-grained Logging and Instruc-

tion Logging. Techniques have been proposed to detect

causality between system calls by checking if there are

instruction level dependences between system calls [29].

These techniques require instrumenting a lot of instructions

as they do not distinguish low level and workflow memory

dependences. Furthermore, causal relations induced by low

level dependences – thus of no forensic importance – are

in-distinguishable from the important ones. In comparison,

the introduction of units allows us to define workflow

dependences. According to our results, detecting workflow

dependences requires very little instrumentation and pro-

vides high accuracy.

Magpie [6] monitors kernel and application level events

to extract control flow and system resource usage of an input

request in a server. Then Magpie uses application specific

schema to identify correlated events from both applications

and kernel. Magpie needs predefined event schema for each

application, whereas BEEP only requires a few training runs.

The instrumentation in BEEP is also more lightweight than

Magpie.

In our previous work [22], we proposed an execution

reduction technique that aims to faithfully replay a failure

with a reduced log. Similar to BEEP, our previous work

focused on reducing loop iterations (also called units.)

However, the previous technique requires source code and

manual annotations to define the loops to reduce; whereas

BEEP only requires binary programs for automatic unit

loop identification. To achieve faithful replay, our previous

technique has to consider all memory dependences without

distinguishing low level and workflow dependences. The

entailed instrumentation is much more heavy-weight than

BEEP.

Fredrikson et. al. [10] proposed a technique allowing users

to specify the granularity of logging and analysis, and define

the notion of event causality. Despite its flexibility, it needs

a lot of human user involvement.

Information Flow. Digital forensics systems [24], [27], [30]

monitor and log flow of requests from network to detect and

analyze malware. Panorama [30] tracks information flow at

the memory operation level. It needs special hardware or

the overhead would be too high. VPath [27] uses a virtual

machine monitor to watch thread and network activities to

detect causalities. It can provide precise information flow

with low overhead if the pre-defined activity patterns are

accurate. PassV2 [24] is a provenance aware storage system

allowing propagation of metadata to the attached system

to track information flow. Dynamic data flow tracking

(DFT)/taint analysis is a class of techniques to track fine-

grained propagation of relevant data [16], [14], [25] on the

fly, to prevent information leak or zero-day attacks. BEEP

is more light weight compared to these techniques.

Finally, BEEP can be integrated with low-overhead and

trusted auditing systems [13], [28] to achieve better perfor-

mance and attack resilience.

IX. DISCUSSION

In this section, we discuss the limitations of BEEP. First,

the current implementation of BEEP has the same level of

trustworthiness as the Linux audit system. Both have to trust

the operating system, which makes them vulnerable to kernel

level attacks. If an intruder compromises the kernel, he/she

can disable the audit daemon or delete audit logs to erase

evidence of the attack. However, this is not a fundamental

limitation of BEEP, as BEEP can be ported to the hypervisor

level and hence kept out of the reach of kernel level attacks.

Second, a remote attacker may intrude the system via

some non-kernel level attacks and acquire the privileges to

tamper with the binaries instrumented by BEEP. In this case,

BEEP will be able to at least precisely record the initial

intrusion. All events after the initial intrusion should be

marked as untrusted.

Third, a legal user of the system with BEEP installed

may try to attack BEEP. However, unless the user has the

privileges to tamper with the instrumented executables, all

he/she can do is to generate bogus events such as fake KILL

signals using his/her own programs. Such behavior can be

detected as each event is tagged with the process id and

hence BEEP knows these signals are from an executable

that has not been instrumented.

Fourth, while BEEP has preprocessed a set of commonly

used applications, a user can choose to install new appli-

cations. In this scenario, since the applications have not

been trained and instrumented by BEEP, unit-level logging

cannot be achieved and BEEP has to fallback to process level

logging provided by the audit system. Consequently, we may

coalesce multiple units into one and lose precision. However,

the precision of the already instrumented applications is not

affected. We anticipate BEEP will constantly remind the user

that he/she should train the newly installed applications as

soon as possible.

Fifth, BEEP still requires user involvement. BEEP asks

the user to provide regular use cases as training inputs. The

user is also supposed to apply BEEP to each long running

application in his/her system. In the future, we anticipate

the whole process can be fully automated by logging and

analyzing regular system execution automatically.

Finally, BEEP is not capable of processing obfuscated

binaries due to the difficulty of binary instrumentation. For

such programs, BEEP will treat the whole process as a unit

and degrade to a regular audit system.

X. CONCLUSION

We develop BEEP, a highly accurate attack provenance

tracing technique enabled by a novel selective fine-grained

logging method. It partitions a long running process to

multiple autonomous units that handle independent input

data. Such units are delimited by iterations of high level

input event dispatch loops. BEEP automatically reverse-

engineers such loops and the instructions that can cause

workflows between units. It then instruments the binary to

log unit boundaries and workflow dependences. Together

with the regular audit log, BEEP-generated log enables

identifying precise causality between a root cause (i.e. an

attack) and its symptoms, avoiding the dependence explosion

problem with regular audit logs. We demonstrate that BEEP

achieves this with negligible runtime overhead and low space

overhead.

XI. ACKNOWLEDGMENT

We would like to thank our shepherd, Zhichun Li, and the

anonymous reviewers for their insightful comments. This

research has been supported by DARPA under Contract

12011593. Any opinions, findings, and conclusions in this

paper are those of the authors only and do not necessarily

reflect the views of DARPA.

REFERENCES

[1] http://www.backtrack-linux.org/.

[2] http://www.microsoft.com/security/portal/threat/encyclopedia/
entry.aspx?name=backdoor/linux/blackhole.

[3] http://www.webkit.org/perf/sunspider/sunspider.html.

[4] P. Ammann, S. Jajodia, and P. Liu. Recovery from malicious
transactions. IEEE Transactions on Knowledge and Data
Engineering.

[5] D. Babić, L. Martignoni, S. McCamant, and D. Song.
Statically-directed dynamic automated test generation. In
ISSTA’11.

[6] P. Barham, A. Donnelly, R. Isaacs, and R. Mortier. Using
magpie for request extraction and workload modelling. In
OSDI’04.

[7] C. Cadar, D. Dunbar, and D. Engler. Klee: unassisted
and automatic generation of high-coverage tests for complex
systems programs. In OSDI’08.

[8] R. Chandra, T. Kim, M. Shah, N. Narula, and N. Zeldovich.
Intrusion recovery for database-backed web applications. In
SOSP’11.

[9] J. Chow, B. Pfaff, T. Garfinkel, K. Christopher, and M. Rosen-
blum. Understanding data lifetime via whole system simula-
tion. In SSYM’04.

[10] M. Fredrikson, M. Christodorescu, J. Giffin, and S. Jhas. A
declarative framework for intrusion analysis. In Advances in
Information Security. Springer US, 2010.

[11] A. Goel, W.-c. Feng, W.-c. Feng, and D. Maier. Automatic
high-performance reconstruction and recovery. Computer
Network, Volume 7, 2007

[12] A. Goel, K. Po, K. Farhadi, Z. Li, and E. de Lara. The taser
intrusion recovery system. In SOSP’05.

[13] M. Jakobsson and A. Juels. Server-side detection of malware
infection. In NSPW’09.

[14] K. Jee, G. Portokalidis, V. P. Kemerlis, S. Ghosh, D. I. August,
and A. D. Keromytis. A general approach for effciently
accelerating software-based dynamic data flow tracking on
commodity hardware. In NSDI’12.

[15] X. Jiang, A. Walters, D. Xu, E. H. Spafford, F. Buchholz, and
Y.-M. Wang. Provenance-aware tracing of worm break-in and
contaminations: A process coloring approach. In ICDCS’06.

[16] V. P. Kemerlis, G. Portokalidis, K. Jee, and A. D. Keromytis.
libdft: practical dynamic data flow tracking for commodity
systems. In VEE’12.

[17] T. Kim, X. Wang, N. Zeldovich, and M. F. Kaashoek. In-
trusion recovery using selective re-execution. In OSDI’10.

[18] S. T. King and P. M. Chen. Backtracking intrusions. In
SOSP’03.

[19] S. T. King, Z. M. Mao, D. G. Lucchetti, and P. M. Chen.
Enriching intrusion alerts through multi-host causality. In
NDSS’05.

[20] S. Krishnan, K. Z. Snow, and F. Monrose. Trail of bytes:
efficient support for forensic analysis. In CCS’10.

[21] M. Laurenzano, M. Tikir, L. Carrington, and A. Snavely.
Pebil: Efficient static binary instrumentation for linux. In
ISPASS’10.

[22] K. H. Lee, Y. Zheng, N. Sumner, and X. Zhang. Toward
generating reducible replay logs. In PLDI’11.

[23] C. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney,
S. Wallace, V. Reddi, and K. Hazelwood. Pin: building
customized program analysis tools with dynamic instrumen-
tation. In PLDI’05.

[24] K.-K. Muniswamy-Reddy, U. Braun, D. A. Holland,
P. Macko, D. Maclean, D. Margo, M. Seltzer, and R. Smogor.
Layering in provenance systems. In USENIX Annual techni-
cal conference, 2009.

[25] J. Newsome and D. X. Song. Dynamic taint analysis for
automatic detection, analysis, and signature generation of
exploits on commodity software. In NDSS’05.

[26] S. Sitaraman and S. Venkatesan. Forensic analysis of file
system intrusions using improved backtracking. In IWIA’05.

[27] B. C. Tak, C. Tang, C. Zhang, S. Govindan, B. Urgaonkar, and
R. N. Chang. Vpath: precise discovery of request processing
paths from black-box observations of thread and network
activities. In USENIX Annual technical conference, 2009.

[28] A. Vasudevan, N. Qu, and A. Perrig. Xtrec: Secure real-
time execution trace recording on commodity platforms. In
HICSS’11.

[29] X. Wang, Y.-C. Jhi, S. Zhu, and P. Liu. Behavior based
software theft detection. In CCS’09.

[30] H. Yin, D. Song, M. Egele, C. Kruegel, and E. Kirda.
Panorama: capturing system-wide information flow for mal-
ware detection and analysis. In CCS’07.

[31] N. Zhu and T. Chiueh. Design, implementation, and evalua-
tion of repairable file service. In DSN’03.

