
Screenmilker: How to Milk Your Android Screen for
Secrets

Chia-Chi Lin1, Hongyang Li1, Xiaoyong Zhou2, XiaoFeng Wang2

1Department of Computer Science, University of Illinois at Urbana-Champaign
2School of Informatics and Computing, Indiana University at Bloomington

{lin36, hli52}@illinois.edu, {zhou, xw7}@indiana.edu

Abstract—With the rapid increase in Android device pop-
ularity, the capabilities that the diverse user base demands
from Android have significantly exceeded its original design. As
a result, people have to seek ways to obtain the permissions
not directly offered to ordinary users. A typical way to do
that is using the Android Debug Bridge (ADB), a developer
tool that has been granted permissions to use critical system
resources. Apps adopting this solution have combined tens of
millions of downloads on Google Play. However, we found that
such ADB-level capabilities are not well guarded by Android.
A prominent example we investigated is the apps that perform
programmatic screenshots, a much-needed capability Android
fails to support. We found that all such apps in the market
inadvertently expose this ADB capability to any party with the
INTERNET permission on the same device. With this exposure,
a malicious app can be built to stealthily and intelligently collect
sensitive user data through screenshots. To understand the threat,
we built Screenmilker, an app that can detect the right moment
to monitor the screen and pick up a user’s password when she is
typing in real time. We show that this can be done efficiently by
leveraging the unique design of smartphone user interfaces and
its public resources. Such an understanding also informs Android
developers how to protect this screenshot capability, should they
consider providing an interface to let third-party developers use
it in the future, and more generally the security risks of the
ADB workaround, a standard technique gaining popularity in
app development. Based on the understanding, we present a
mitigation mechanism that controls the exposure of the ADB
capabilities only to authorized apps.

I. INTRODUCTION

With the progress in Android smartphone and tablet tech-
nologies comes the rapid expansion of their application mar-
kets. Until October 2012, already about 700,000 applications
(app for short) have been built for Android, with 25 billion
of downloads reported by Google Play [1]. This surge of
new apps puts tremendous pressure on Android’s security
protection: malicious apps have been reported [2] and security
vulnerabilities are found on Android [3]. Fortunately, so far
Android has fared well, with less 0.5% of malicious apps dis-
covered on its market [4], thanks to its security-sensitive design

that confines individual apps within their own sandboxes and
mediates their access to critical system resources through a
permission mechanism.

ADB-based workaround. However, app developers continue
to push the envelope, coming up with new apps that challenge
the limits of Android security design. Increasingly, they are
unhappy with the resources provided by Android APIs and
strive to acquire new capabilities that enable the apps to
do what ordinary Android users cannot do, such as wireless
tethering, system backup, new font adding and others. One way
to get such capabilities is through phone rooting, which allows
a user to attain the root privilege of her device. The problem
is that rooting a smartphone typically voids its warranty and
could also damage the device [5].

Given the risks of rooting phones, increasingly, people
are seeking its “no-root” alternatives. The most widely used
workaround for this purpose is based on the Android Debug
Bridge (ADB): one can connect her smartphone to a PC to
launch the ADB and through it further invoke a service running
with its privilege on her phone. An app can then communicate
with this service process to acquire the resources the Android
APIs do not provide, even after the phone is unhooked from
the PC. Note that this approach is completely legal and also
pretty convenient to use with assistance of proper instructions
and installation scripts [6] (see the video demos provided by
app developers for such screenshot and USB tethering apps [7],
[8]). Actually, many apps, such as sync and backup [9], USB
tethering [10], screenshot apps [6], [11], etc., have been using
this “no-root” technique. Those apps have already accumulated
tens of millions of downloads on Google Play and gleaned
acclaimed reviews (see [12], [6], with reviews posted as
recently as this July). However, this workaround escalates a
normal app’s privileges and exposes the ADB-level resources.
Until now, its security and privacy implications are less clear
to the app developers, and apparently also to the Android
designers. To better understand this potentially security-critical
issue, we performed the first study on it through an in-depth
analysis of Android screenshot tools, a prominent example of
such ADB-based apps.

Android screenshot. Screenshot is a highly useful functional-
ity that Android falls short of. Until Android 4.0 (the Ice Cream
Sandwich release), ordinary users cannot take screenshots of
their phones at all. Even though the newer versions of Android
let the users do that by holding down the Power and Volume-
Down buttons, it still does not provide any API to allow an
app to programmatically get the images of other apps. Given

Permission to freely reproduce all or part of this paper for noncommercial
purposes is granted provided that copies bear this notice and the full citation
on the first page. Reproduction for commercial purposes is strictly prohibited
without the prior written consent of the Internet Society, the first-named author
(for reproduction of an entire paper only), and the author’s employer if the
paper was prepared within the scope of employment.
NDSS ’14, 23-26 February 2014, San Diego, CA, USA
Copyright 2014 Internet Society, ISBN 1-891562-35-5
http://dx.doi.org/

http://dx.doi.org/10.14722/ndss.2014.23049

the demand of programmatic screen capture (e.g., extracting
only part of the screen, triggering this function using other
mechanisms than manual clicking on those two buttons) and
the fact that still over 60% of Android distributions in use
today are older than 4.0 [13], both app developers and phone
users have to resort to the ADB-based workaround in the
case that they do not want to root their phones. Indeed, all
“no-root” screenshot tools on the market, such as Screenshot
Free [11], Screenshot UX [6], etc., are built upon the ADB.
They are extensively used by Android users [6], [11], having
been downloaded for millions of times (Section II).

These tools rely on an ADB-level server to take screen-
shots, according to the parameters set by a client typically
running as an ordinary Android app. Since Android does not
support the Inter-Process Communication (IPC) between an
app and a background native server, these two parties have to
talk to each other through the TCP sockets opened on the same
device, a standard replacement for the IPC on Android [14].
Although this local-socket channel plays an important role
in Android design (which has been extensively used by OS
processes such as Zygote [14]), it has not been mediated
at all. As a result, it opens a new venue to the attack that
has not been considered in the Android security model: we
found in our research that not only the screenshot client, but
any app with the INTERNET permission can connect to the
local server and command it to take screenshots. Note that
this problem is not limited to the screenshot apps, as other
ADB-based apps can have the same vulnerability (Section II).
Even more importantly, given that both the ADB workaround
and the local-socket channel are pretty standard techniques, in
the absence of in-depth understanding of their security risks,
their further utilizations by the app developers and the Android
designers are almost certain to bring in even more serious
security hazards.

Screenmilker. In this paper, we describe our design and
implementation of a malicious app, called Screenmilker, that
intelligently and stealthily collects user secrets through this
ADB channel, using nothing but its INTERNET permission.
The objective of our study is to understand how serious the
problem can be: once an ADB-level capability has been leaked
out to an unauthorized app, the app can immediately leverage
other public Android resources at its disposal to come up with
a practical attack. This asks for a serious effort to control ADB-
level services and their interactions with other Android apps
(through the local socket connections). Also, our technique
can inform Android developers how the screenshot capability
should be managed once they consider providing an API for
it in the future: otherwise, one who gets the permission to use
such an API can do something completely unexpected.

Actually, simply getting the screenshot capability does not
make collection of confidential user data trivial, particularly
when you want to do it stealthily and with a minimum set of
permissions. Screenshots are large, at least 8 Kbytes with an
800 ⇥ 480 resolution (Section III). If the adversary does not
know when to take them and has to continually take many shots
for a long time, her app may end up consuming a significant
portion of the SD storage space (which needs a permission to
write on) and a large network bandwidth for delivering images.
Also, analysis of images locally using OCR (optical character
recognition) tools requires a lot of CPU/memory/storage re-

sources. Such activities can easily arouse a smartphone user’s
suspicion and get caught by malware detection.

Our development of Screenmilker, however, shows that
there are plenty of resources already on the phone the ma-
licious app can utilize to make those activities go unnoticed.
Specifically, we can use side-channel information leaked by
Android and image fingerprinting to identify the right moment
for taking a shot, for example, when the user is entering
her password. The content of the screenshot images can also
be efficiently analyzed using the features of smartphone user
interfaces, which enables the malicious apps to “milk” sensi-
tive information from these images in a real-time manner. We
implemented a screenshot keylogger that can continuously and
accurately pick up the password the user types without being
noticed. Our design does not use the SD storage at all and
only sends a very small amount of data across the Internet to
the malware owner. We further developed a simple mitigation
and offer suggestions to the Android developers on how to
mediate the access to the ADB capabilities and the local-socket
channel, as well as how to control the programmatic screenshot
interface once they decide to provide one in the future. A demo
of our malware is posted online [15].1

Contributions. We summarize the contributions of the paper
as follows:

• Understanding of the security risks of the ADB workaround
and the local-socket channel. We preliminarily studied the
practice to utilize the ADB-level capabilities to enrich the
functionalities of Android apps, a legitimate, extensively used
yet completely unregulated approach. This approach has been
used to implement assorted apps, e.g., sync and backup [9],
USB tethering [10], and screenshot apps [6], [11]. Our research
reveals the security risks of this approach (using screenshot
apps as an example), particularly the standard local-socket
channel it uses to communicate with ordinary apps, and
explores the ways to mitigate the risks and manage the channel
(which has also been widely utilized for other inter-process
communication on Android [14]).

• New techniques for targeted, stealthy and real-time collection
of sensitive information from screenshots. We developed new
techniques that utilize Android public resources and its unique
interface design to make our malware stealthy and effective.
Our study demonstrates that the threat of information collec-
tion from screenshots is realistic and serious.

• Implementation and evaluation. We implemented our tech-
nique [15] and evaluated its effectiveness.

Roadmap. The rest of the paper is organized as follows:
Section II analyzes the existing screenshot apps on Android;
Section III elaborates our design and evaluation of our screen-
shot malware; Section IV reports our experimental study on the
malware; Section V describes the mitigation of the threat and
suggestions for the Android developers; Section VI compares
our work with prior related research; Section VII concludes
the paper and discusses future research.

1We do not trace the visitor.

2

II. PROGRAMMATIC SCREENSHOT
ON ANDROID

Whether it is a developer showing her app’s user interfaces
on Google Play, or a blogger presenting a tutorial on her blog,
screenshots are one of the most powerful visual aids to demon-
strate one’s innovative idea on how to use smartphones. This
important capability, however, has not been well supported
by Android: as discussed before, Android users cannot take
screenshots on 1.X to 3.X, which are still running on most
Android phones in the market [13]. From 4.0, the capability is
provided but can only be used through holding on the Power
and Volume-Down buttons. There is still no programmable
interface that allows users to customize the way to utilize this
capability. As a result, for most of the people who do not have
proper devices to accommodate the latest Android versions
or are looking for advanced screenshot functionalities (e.g.,
consecutive shots or screenshot-taking triggered by events),
they have to find a workaround to do that.

To get the programmatic screenshot capability, an app
needs to have a signature-level permission from the system,
which, in this case, requires the app to be signed by Android
development team [16], a condition considered to be unrealistic
for most third-party app developers. In the absence of such a
permission, those developers have to resort to two standard
workarounds: (i) requiring users to root their phones; (ii)
leveraging an Android native executable as a proxy to access
ADB’s capabilities. Rooting the phone is oftentimes not an
option since it can invalidate a user’s manufacturer warranty
and also could damage the phone [5]. Hence, as long as ADB
has the capability that a particular app needs, majority of the
developers opt for the latter workaround. Indeed, this is the
case for screenshot apps.

In the rest of this section, we first provide an overview
of ADB’s capabilities, and describe the standard approach for
apps to obtain these capabilities though a proxy. Then we
detail a common vulnerability that we found on these apps,
and present a measurement study on today’s screenshot apps
to demonstrate its prevalence.

Android permission and ADB workaround. ADB is a
command-line development tool that allows developers to
communicate to Android devices connected to a development
system (e.g., a PC). For this purpose, it has a set of unique
capabilities specified under the Android permission system,
which we briefly survey as follows. Android protects system
resources with permissions, which apps need to request before
they can access a specific resource in a controlled way.
Depending on the risk implication of each permission, Android
assigns it a protection level so as to handle it differently
from those in other levels. More specifically, most permissions
have either the normal level or the dangerous level. Those
in the normal level are considered to be risk-free (e.g., the
permission to set an alarm), and are therefore automatically
granted to requesting apps. On the other hand, permissions
in the dangerous level can bring in security risks (e.g., the
permissions to open network sockets), which the system only
gives them to apps under the user’s explicit consents (e.g.,
asking the user to press a confirmation button whenever the
permission is requested).

For the permissions with the highest risk implications (e.g.,

TABLE I. EXAMPLES OF THE SIGNATURE-LEVEL PERMISSIONS
GRANTED TO ADB IN ANDROID 4.1.1. THE FULL SET OF ADB’S

PERMISSIONS CAN BE FOUND IN /etc/permissions/platform.xml
IN EACH SYSTEM.

Permission Description

BACKUP Control backup and restore pro-
cess

CHANGE CONFIGURATION Modify the configuration
DELETE PACKAGES Delete packages
DEVICE POWER Access low-level power manage-

ment
GET DETAILED TASKS Get full detailed information about

tasks
INJECT EVENTS Inject user events to any window
INSTALL PACKAGES Install packages
READ FRAME BUFFER Take screenshots

that for accessing the frame buffer), Android classifies them
into the signature level. Such permissions are only given to
the apps signed by a trusted party (like the Android developer
team). For this purpose, Android maintains a database of
trusted certificates from such parties. Most third-party app
developers are not among them and therefore their apps do
not have this level of permissions.

On the other hand, some of the signature-level permissions
are valuable to users. Examples here include the one for modi-
fying the configuration, that for controlling the backup process,
and, of course, the permission for taking screenshots. An
Android user who wants to use the resources such permissions
guard can only do so through a default access mechanism,
which is not open to third-party apps: for example, modifying
system configuration needs to go through a system app and
screenshots can only be taken through the Power and Volume-
Down button combination. Some signature-level permissions
considered to be useful to app development are given to ADB.
Table I illustrates a few such examples for Android 4.1.1.

Among those default access mechanisms, ADB turns out
to be probably the only one that the developer can use to
programmatically access some signature-level resources. This
system tool can run Android native executables, which can
be leveraged to create a proxy for her third-party app to
attain the desired signature-level permissions. Actually, such a
treatment is the standard workaround for developing apps that
need such permissions. It is also considered to be legitimate,
given the fact that apps using this approach have already
accumulated tens of millions of downloads on Google Play
and no objections have been heard from Google. Given its
popularity among the app developers, the security implication
of the workaround, however, has never been well understood.
Our study shows that this approach indeed brings in serious
security risks, which could lead to devastating consequences
if the developers are not aware about them.

What can go wrong. The ADB workaround consists of
two steps: (i) run a customized Android native executable
through ADB to acquire the desired permissions; (ii) establish
a communication channel between the executable and a third-
party app to access protected resources with the permissions.
We here elaborate each of these steps.

3

As a development tool, ADB allows the developer to start a
remote shell in the target Android device connected to a devel-
opment PC. Through the shell, she can execute programs with
ADB’s signature-level permissions. Specifically, the developer
first packs all methods that require signature-level permissions
along with a front-end that communicates with a third-party,
unprivileged app into an Android native executable, connects
the target Android device to the development PC, and then
triggers the executable through the ADB shell command. Once
the executable is operating, the developer can disconnect the
device from the machine, and the unprivileged app can use
the front-end to call the packed methods, so as to access the
resources protected by signature-level permissions. To simplify
this process and make such a two-part app easy to use,
the developers usually implement a script that automatically
carries out the necessary actions. Such a script can even include
the ADB binary to avoid having the user configure the Android
SDK (see the video demo [7], [8]). Therefore, a user only
needs to execute the script once per reboot and then she can
run the unprivileged app to get signature-level permissions.
This kind of apps are actually extremely popular among
users, due to the additional features they provide. With proper
instructions, the popularity of the apps such as Screenshot
UX [6] and No Root Screenshot It [12] has demonstrated that
users are able and willing to set up the ADB workaround to
obtain the additional features.

A tricky issue here is the communication between the
ADB-level proxy and the unprivileged app. Android blocks
the system-wide Inter-Process Call (the System V IPC)2 and
instead restricts the IPC channel to delivering intents among
the apps running in Java Virtual Machines (JVM)3. As a
result, the interactions between a native executable and an
unprivileged app need to go through other channels. Typically,
this happens through local network sockets: the proxy opens
a network service and the app makes TCP connections locally
to exchange data with the proxy. This channel has been
extensively used on Android (e.g., the Zygote process) [14].

Such communication, however, can be very problematic.
What we discovered in our research is that Android does
not protect communication channels other than the IPC, and
as a result, there is no access control on the local-socket
channel at all. Specifically, unlike the IPC, where developers
can leverage the permission model to ensure that a process
can only talk to an authorized party, when it comes to the
local socket, developers have to implement their own security
mechanism to prevent unauthorized access to the channel.
Unfortunately, we found that existing security implementations
in those apps are incompetent in this perspective, and routinely
expose signature-level permissions to unauthorized apps.4

Android screenshot apps. To understand the pervasiveness
of the ADB workaround and its security implications, we
thoroughly studied the Android screenshot apps, a promi-

2The details are documented in bionic/libc/docs/SYSV-IPC.TXT in the
Android source.

3Although Android allows a native-code library to use the IPC channel, it
blocks parts of the JNI interface to prevent a native executable to access the
channel.

4Note that the recent addition of the USB debug whitelist in Android 4.2.2
doesn’t address this issue, since ADB here is used to launch a legitimate
executable the user intends to run from her PC.

TABLE II. LIST OF ALL NO-ROOT SCREENSHOT APPS ON GOOGLE
PLAY. THE LIST WAS COMPILED IN FEBRUARY, 2013. ALL APPS USE ADB
TO GAIN THE SIGNATURE-LEVEL PERMISSION AND ARE VULNERABLE TO

SCREENMILKER’S ATTACK.

App Name Total Installs

Screen Capture – No Rooting 2.2 1,000,000 – 5,000,000
Screenshot Free 1,000,000 – 5,000,000
Screenshot UX Trail 1,000,000 – 5,000,000
No Root Screenshot It 100,000 – 500,000
Screenshot and Draw Trail 100,000 – 500,000
Screenshot Ultimate 100,000 – 500,000
ShakeShot Trail 100,000 – 500,000
NoRoot Screenshot Lite 50,000 – 100,000

nent example of third-party apps that need signature-level
permissions. As mentioned earlier, we focused our study on
no-root apps. Table II describes 8 such apps on Google
Play. They are widely used and well received by the users
despite their seemingly complicated installation procedures,
particularly when they come with a clear guidance or scripts
that help the users conveniently set them up on the phones [8].
Prominent examples here are Screenshot UX and No Root
Screenshot, both of which glean acclaimed reviews as recently
as this July (with average scores 4.4 and 4.3 stars out of 5,
respectively) [12], [6].

In our research, we installed and checked each of those
apps to analyze how it obtains the capability of screenshot tak-
ing. We found that all these apps utilize the ADB workaround
to obtain the necessary permission. This finding shows that
such a workaround has become a standard approach to get
signature-level permissions without rooting.

In addition, as shown in Table II, these apps have millions
of total installs, as reported by Google Play, despite the
extra effort required to set them up (installation of Android
SDK, etc.,), although the automated installation scripts from
developers have vastly simplified this process. We believe
this popularity is due to the unavailability of the screenshot
capability prior to Android 4.0 and the advanced screenshot
features these apps provide.

Finally, we analyzed the communication channel each of
these apps uses to coordinate its ADB proxy and unprivileged
component, particularly the access control they enforce on
such a channel. All these apps turn out to rely on local
network sockets for the communication, and, unfortunately,
have literally no protection on the channel at all. As a result,
once the ADB proxy is activated, any app can request a
service from it to take screenshots at anytime, without any
restrictions. To demonstrate that such vulnerability can be
practically exploited, we utilized tcpflow [17], a flow analyzing
tool, to reverse-engineer these apps’ custom communication
protocols. Based upon the knowledge about the protocol
format, we further built a malicious app that talks to the
ADB proxy and commands it to take screenshots. The security
risk here is severe, since if one of these screenshot apps is
running on an Android device, all other apps that have the
INTERNET permission immediately acquire the capability to
take screenshots without the user’s consent. In Section III, we
show that with this capability exposure, the malicious app can

4

Fig. 1. The size of screenshots with an 800 ⇥ 480 resolution in the JPEG
format. The size increases from 8 to 130 Kbytes as the quality increases. Since
the size difference between colored and gray-scale screenshots is negligible,
we only present the result of colored screenshots.

be made so effective that it can accurately identify and extract
sensitive user data on the screen at an exceedingly low cost.

Generality of the problem. Our preliminary work, as reported
in the paper, focuses on screenshot apps. However, the underly-
ing problem, the security implications of the ADB workaround
and its related local-socket channel, are much more generic.
Actually, we found that in a similar way, sync and backup
apps [9] and USB tethering apps [10] also inadvertently expose
their ADB capabilities to unauthorized apps, which could lead
to disclosure of sensitive user data or circumvention of Android
firewall protection, although the whole issue needs further
investigation. More specifically, backup apps send request
to an ADB proxy (through the local-socket channel) that is
capable of backing up the phone user’s data to SD cards or
online storage services. However, without proper protection,
an unauthorized app with only the INTERNET permission
can leverage this proxy to store private user information (e.g.,
contact, SMS, etc.) to the SD card and then gets access to it
in the background. For the USB tethering apps, they utilize an
ADB proxy to forward their TCP packets to the Internet. A
risk here is that a malicious app will also have the access to the
proxy (through the local-socket channel) to sneak out its data,
avoiding the inspections by the firewall apps (e.g., Android
Firewall [18], DroidWall [19]) on the phone. This indicates
that serious efforts need to be made on Android to regulate
the use of the ADB workaround and the local-socket channel.

III. DESIGN AND IMPLEMENTATION

Even with the screenshot capability, it is still challenging
for a malicious app to stealthily collect confidential user data,
due to the size of screenshots. Figure 1 illustrates the image
sizes with an 800 ⇥ 480 resolution in the JPEG format.
We adjust the parameter of the Java image API to create
screenshots of different qualities. As a result, the average size
varies from 8 to 130 KB.

Given this image size, a malicious app cannot afford to
randomly take screenshots, hoping that some of them happen
to contain sensitive user data. Consider an ordinary user’s
3G/4G data plan, which is typically 2 GB per month. To keep a
low profile from data-usage monitoring, the app clearly cannot
use a significant portion of this limit. Suppose that it spends 5%
of the limit on sending screenshots to its owner. All together,
the app can take about 26 shots (130-Kbyte images) per day.

If it does not know when to take the screenshots, the chance of
getting the right information is rather low. Furthermore, high-
value information such as password typically does not show
up on the screen. To get it, the app needs to repeatedly take
screenshots when the smartphone user is typing. Under the
constraint of upload bandwidth for today’s 3G/4G network,
which is typically about 2 Mbps, only 2 screenshots can be
sent out every second. This is often insufficient to catch up
with the user’s typing speed. Alternatively, the malicious app
has to temporarily keep those images on SD card, which needs
a permission and therefore may raise suspicion, making the
attack less likely to succeed.

However, we show in this section that Android has already
made a lot of resources available, which enables a carefully
designed malicious app to grab high-value user data in an
almost invisible way. In our research, we built Screenmilker,
an example of such apps to understand how the attack can
be done. Screenmilker can masquerade as any legitimate app
that needs the INTERNET permission. Once installed, it can
detect the presence of the ADB proxy, which it can use to take
screenshots. During its operation, the malware monitors other
apps’ activities, intelligently determining when sensitive user
data is on the screen before taking screenshots. In addition,
Screenmilker employs a lightweight data-analysis mechanism
to extract a very small set of sensitive user data from the
screenshots in real time. This capability allows it to pick up
whatever the user types even when the content cannot be
directly observed from the screen (e.g., when the password
is being entered), and still maintain its stealthiness. What
Screenmilker can do strongly suggests that any future attempt
to offer the programmatic screenshot interface needs to be well
thought-out, to prevent it from being abused by the party that
has this permission.

A. Overview

Adversary model. In our research, we consider an adversary
who can disguise Screenmilker into another genuine app to
trick users to install it on their devices. The malicious app only
needs the INTERNET permission, which is requested by a vast
majority of apps, due to the need of retrieving advertisements
from the Web [20]. We assume that the target device has one
of such no-root screenshot apps installed, which, however, is
not known to Screenmilker a priori. Also, we assume that the
device owner pays attention to mobile-data usage and utilizes
other tools to discover the problematic behaviors of the apps
on her phone, such as taking a large amount of SD-card space,
memory and CPU resources.

Architectural overview. Figure 2 depicts the architecture
of Screenmilker. The app consists of two main components:
(i) the runtime situation detection component that identifies
the right moment to take screenshots; (ii) the real-time data
extraction component that analyzes the screenshot to collect
the most valuable personal data.

Screenmilker is designed to effectively collect sensitive
user data while maintaining its stealthiness. To this end,
Screenmilker adopts a targeting strategy to control its use
of CPU, memory, and network resources: it performs a
lightweight surveillance on a set of apps that operate on high-
value data, such as banking apps, and only takes screenshots

5

Runtime
Situation
Detection

Real-Time
Data

Extraction

Screenshot
Android Native

Executable

/proc/PID/stat

Internet

Screenmilker App

Fig. 2. The architecture of Screenmilker. Screenmilker probes
/proc/PID/stat to detect target apps’ activities. When the target
apps are active, Screenmilker takes screenshots and extracts confi-
dential user data. Then, it sends the extracted data to the adversary
through the Internet.

when these apps are active and also in a state where such confi-
dential data is being displayed on the screen. This surveillance
is performed by the runtime situation detection component,
which leverages Android pubic information, the target apps’
CPU, memory and network activities and the fingerprints
extracted from the current screen image to determine whether
those apps are operating in the foreground and whether they
are in the right states. Once the picture-taking moment is
detected, it notifies the real-time data extraction component
to milk confidential user data from the screen.

The data extraction component calls the ADB proxy to
take screenshots and performs a lightweight analysis on the
images. The objective here is to milk a small set of high-
value data out of those images in real time. The original
screenshot images can then be thrown away to limit network
and memory consumption . For this purpose, Screenmilker is
designed to take advantage of the unique way that smartphones
display content, which is typically well-formatted and rather
predictable. For example, the positions of digits on a phone
number and alphabets on contacts can be relatively easy to
determine on the screen, and their fonts are pretty standard
(Figure 7). Therefore, our app can recognize their content
through a highly efficient approach. What is more challenging
here is to obtain passwords, which often do not show up in
plain text on the screen. To address this issue, we show that
the data extraction component can be used as a keylogger
that efficiently recovers a user’s password from the screenshots
when she types on the Android soft keyboard.

B. Runtime Situation Detection

Before it starts collecting a user’s secrets from her smart-
phone, Screenmilker needs to figure out what it can do on the
phone and what is the best time to do that. More specifically,
its situation detection component makes sure that the malware
can access the screenshot capability on the phone, through
an ADB-based proxy. Then, the component tries to determine
whether target apps are present and if so, puts them under
surveillance, detecting whether they are running in the fore-
ground and also at the right program state where confidential
user data is on display. Here we show how this can be done.

Detecting the screenshot proxy. Screenmilker employs a mul-
titude of mechanisms to detect the exposure of the screenshot
capability. It carries a database for the package names and
other features of the screenshot apps listed in Table II, and after

it is installed, it uses the public API PackageManager to get
the list of apps also on the phone. From the list, Screenmilker
can identify those screenshot apps and other target apps (dis-
cussed later). Furthermore, whether they are currently running
can be known through the Linux command PS, which provides
detailed information about all active processes. Note that using
this command does not need any permission. Alternatively, the
malware can simply check the TCP ports the ADB proxies of
these screenshot apps use: since these proxies always listen
on fixed ports, Screenmilker can probe these ports and once
connected continue to request a screenshot. In this way, the
malware can acquire the screenshot capability if it has been
exposed.

Monitoring target apps. In the same way, Screenmilker iden-
tifies the presence of its target apps (such as banking, health-
care apps, etc.) through PackageManager and the timings
when they are executed by running PS periodically. Moreover,
the PS command also returns the process ID (PID) of the
target app. This information enables Screenmilker to locate
the process statistic files of the app under /proc/PID/stat,
which includes the app’s memory and CPU usage information.
Such data can then be used to infer the app’s current state: for
example, when the user starts entering her password.

Specifically, to find out when a target app is receiving
user inputs, Screenmilker checks whether the app is run-
ning in the foreground (discussed later), and if so, starts
a continuous monitoring on the default soft keyboard app
(com.google.android.inputmetohd.latin). After
retrieving the keyboard app’s PID using PS, Screenmilker
reads the corresponding /proc/PID/stat file once every
100 ms to detect the change of the app’s CPU usage.5 In our
research, we found that the accumulated user CPU time for
the keyboard app is a good indicator of whether a key is being
pressed on the soft keyboard. Hence, whenever Screenmilker
observes that the accumulated user CPU time increases, it
concludes that the app is at the state receiving the user’s typing
inputs, and therefore moves on to take shots to capture her
keystrokes (Section III-C). Similarly, information such as the
timing when the user is making a call can also be inferred
from the change of accumulated user CPU time, once the user
is pressing an individual’s name on her contact list.

Detecting display states. Screenshots can only get the content
displayed in the foreground of a smartphone’s screen. This
requires Screenmilker to take the right picture at the right
time. To this end, our design uses a strategy that periodically
grabs screenshots (see Section III-C) whenever the target app
is found to be running, and quickly checks each image using
a fingerprint for the app’s user interface (UI).

The first step to check the image is to determine the
orientation of the phone. This can be easily done by calling
the Android API getRotation under the Display class.
The API can be invoked by the party without any permission.
They return the degrees of the rotation (0, 90, 180 or 270)
from the phone’s natural orientation, which are used to get the
position of the phone (landscape or portrait).

5We monitor the accumulated user CPU time, which is the 16th field in the
/proc/PID/stat file.

6

Screenmilker
fingerprints the

title bar region of
an app’s UI

Fig. 3. An example of fingerprinting the PayPal login UI. Screenmilker
calculates the CRC32 value of the title bar region, and then looks up the hash
table to determine if the user is trying to log in.

Fig. 4. The keystroke animation of the default soft keyboard in Android
4.1.1. When a key is pressed, the color of the button turns blue, and a pop-up
appears above the key. Then, the color of the button returns back to gray.
Finally, the pop-up disappears.

Based on the orientation information, Screenmilker takes
a shot from the screen and then quickly extracts part of the
image to search a set of fingerprints for target apps’ activities
of interest. For example, if the adversary wants to collect user’s
PayPal password, he can instruct Screenmilker to start taking
screenshots when the user is logging into her PayPal account.

Specifically, we implemented a lightweight image finger-
printing technique, which builds a hash table to map the
CRC32 value of the title bar region of an app’s UI to
an Android activity. After taking a screenshot, Screenmilker
quickly calculates the CRC32 value of that bar region on the
image (which is extracted according to the orientation of the
phone) and looks up the hash table to decide whether the target
app is running in foreground and also in the state of performing
an activity of interest. Figure 3 illustrates an example of how a
screenshot of PayPal and the CPU usage of the soft keyboard
are used together to fingerprint the user’s login activity.

C. Real-time Data Extraction

Screenmilker uses the real-time data extraction component
to efficiently collect confidential user data from screenshots
and deliver it to the malware owner. This is achieved through
a very lightweight manner in which only a small amount of
CPU/memory resources (compared with that of an ordinary,
legitimate app) and a negligible amount of mobile data are
consumed during the analysis. Here we show how this can
be done through two examples: an image-based keylogger for
gathering passwords and a technique for picking up a phone
user’s contacts.

The high-level idea. The most direct way to collect confi-
dential user data (e.g., search terms, emails, instant messages,
etc.) from screenshots is to take pictures and run an OCR
tool on them to extract valuable content. To do this, the

malware needs to either continually stream the pictures to
the adversary’s server for analysis, or to run OCR locally
on the phone. However, neither of these options is practical:
the former, as discussed before, will end up consuming too
much user network data and become easy to detect; the latter
requires installation of a large software component and uses
a significant amount of CPU/memory resources, making its
behavior conspicuous.6 In our research, we found that these
technical challenges can actually be overcome by the malware
author, who can find a much simpler solution to make those
malicious activities almost invisible.

More specifically, what we discovered is that the unique
features of smartphone’s UI offer a shortcut to highly efficient
content analysis. As discussed before, an app’s UI is typically
simple and stable across different devices, as long as those
devices are running the same Android version, which can
be found out, without any permission, from the Android
API android.os.Build.VERSION. Given the size of a
smartphone’s screen (from the public API getRealSize),
its display feature (from getMetrics, also a public API)
and its orientation, the positions of the content on the screen,
as displayed by the target app, are pretty much determined.
For example, each contact shown by Android’s “Contact” app
(com.android.contacts) sits at a fixed position when
the app is activated and can only be moved up and down
through scrolling. As another example, every key’s position
on the soft keyboard’s image is completely predictable. Lever-
aging this observation, our approach runs a high-performance
checksum (CRC32) to fingerprint some predictable positions
on a screenshot to recover the content of interest.

Real-time keystroke analysis. To get what a user types, we
can simply grab the screenshot to analyze the image content
within a text-box. This approach, however, turns out to be
less effective in practice: the positions of the text being edited
on the screen are quite dynamic and less predictable. More
importantly, for high-value inputs, particularly passwords, their
content is typically covered, as illustrated in Figure 3. A more
reliable source that we can get such information from is the
whole typing process, a sequence of screenshots that record
the dynamics of the soft keyboard.

To get these images, Screenmilker repeatedly takes screen-
shots from the screen once the user is found to enter high-value
inputs into a target app (which is identified using the situation
detection technique elaborated in Section III-B). Our current
implementation can achieve a speed of 6 shots per second with-
out incurring noticeable performance impacts (Section IV). To
avoid consuming too much resource, Screenmilker does not
store these images, nor does it stream them out of the system.
Instead, it performs a highly efficient analysis on them based
on the features of the soft keyboard to get the value of each
key between shots.

The soft keyboard is one of the main input methods on
Android devices. It is a service utilized by most Android apps
that handle user inputs. Once activated, the app displays a
keyboard on the screen and provides a set of UI techniques
to assist user’s typing. More specifically, it highlights every

6For example, the popular Android OCR library, tess-two, requires more
than 30 MB additional storage for its associated files, and takes around 400
ms to extract private information from a contact list screenshot.

7

Stripes above
each row of

keys The uppercase
indicator key

Fig. 5. Screenmilker uniquely determines the key’s content with the stripes
right above each row of keys and the uppercase indicator key.

pressed key by changing the color of its button and popping
up a block to amplify the content of the key. Once the letter
is entered, the color of the button first fades away and then
the pop-up disappears. This input process, as it happens on
Android 4.1.1, is illustrated in Figure 4. Screenmilker leverages
the features of the animation to build a classification model that
maps the screenshots to different key values.

As discussed above, our idea is to fingerprint the image of
each keystroke using a checksum calculated on a minimum set
of image features that characterize the key. The challenge here
is that the content of the images changes during the animation,
making this fingerprinting difficult. To address this issue, we
need to find out a relatively stable part of the image that is
also associated with the key. The most suitable candidate here
is the pop-up block, which is the first to show up and the last
to disappear. Also its color and other features keep unchanged
in the process. Therefore, our strategy is to fingerprint the
position of this box. Specifically, we look at the stripes right
above each row of keys, as illustrated in Figure 5. When a key
is pressed, some of these stripes overlap with the pop-up block,
which results in changes of color at some positions on them.
These positions are deterministically related to the key being
entered, thereby uniquely characterizing the key.7 Also their
colors, lengths and shapes are stable throughout the presence
of the pop-up block, which, as illustrated in Figure 4, lasts for
the longest duration during the whole key-entering process.
This gives Screenmilker the best opportunity to get the key.

The content of the soft keyboard can be switched be-
tween different character sets, including lowercase alphabets,
uppercase alphabets, and signs-and-numbers. The state of the
keyboard in terms of the selected letter set is visually marked
by the uppercase indicator key and the character set indicator
key (see Figure 5). This state, together with the position of the
key, uniquely determines the key’s content. Our implementa-
tion of Screenmilker fingerprints the state using the uppercase
indicator key: when it is highlighted, the keyboard is using
uppercase letters; when it is not, the keyboard accommodates
lowercase letters; when its content is changed to another
symbol, what is in use is the sign-and-number set.

Altogether, Screenmilker identifies a key from the stripes
carved out from the top of each key row and the uppercase
indicator key cropped from the keyboard image. These image
fragments are then used to calculate a CRC32 value for
recovering the content of the key. For this purpose, we built
a hash table into Screenmilker, which maps precomputed

7For some early Android versions, such as 2.X, when a key on the first
row is pressed, the stripe on top of the row does not overlap with the pop-up
block. This issue can be addressed by widening the stripe to include part of
the keys, which captures the color change happening to the one being pressed
in a same way.

checksum values of these features to their corresponding key.
This table is very small: each CRC32 has 4 bytes and all
letters, numbers and symbols together take 114 keys; only
456 bytes are needed to keep these values. Also, the hash
computation and table look-up are extremely efficient (see
Section IV), which enables our app to work as a capable
keylogger that collects the user’s keystroke inputs in real time
(see our demo [15]). Figure 6 summarizes the workflow of this
keystroke-extraction approach.

Real-time contact collection. The fingerprinting approach
discussed above can also be applied to infer other well-format
sensitive data from the smartphone screen. In our research, we
implemented a technique to recover the phone user’s contacts
from a screenshot image. Again, Screenmilker first detects
the operation of the “Contact” app through PS and further
fingerprints its UI to detect its presence in the foreground.
Then, our malware quickly analyzes the screenshot image to
extract the contact information. Specifically, as illustrated in
Figure 7, the horizontal position of each contact is fixed once
the screen’s orientation, display feature and size are known.
The tricky part is its vertical position, which changes when
the user scrolls up and down the list on the screen. To get
the positions of the contacts, our approach picks up a vertical
line of pixels from the screenshot image, which intersects with
all horizontal partition lines for individual contacts (Figure 7).
By inspecting the color of individual pixels on the vertical
line, Screenmilker obtains the vertical position of each contact,
between two neighboring partition lines. The start position of
the contact’s text is then identified.

The rest part of the analysis is rather straightforward.
Screenmilker inspects the image fragment cropped from the
position of a contact, and further segments the image into
individual character blocks, according to the space between
these characters. For each block, it calculates its CRC32 value
and then maps the value to the content of the character using a
precomputed hash table. This technique is also used to analyze
the screenshot image taken when the user is making a call.
From the image, our malware locates the name and phone
number of the party in the call, whose positions are fixed. The
above technique is then run on the image fragment with the
name and the number to extract the information.

Discussion. The real-time analysis technique utilized by
Screenmilker is highly efficient and effective. However, what
it can do is still limited by the capability of screenshot taking
on Android. Particularly, although Screenmilker can accurately
detect the key being entered when the screenshot is taken in
the duration of a keystroke animation, it may not work well
under some circumstances. For example, a user may press
keys in a rate higher than the rate of picture taking that the
Android native executable supports. In this case, Screenmilker
may only recover part of the user’s inputs. To address this
issue, Screenmilker can leverage a dictionary to reconstruct
the inputs. Moreover, in the situations where the user types
in the same input multiple times (e.g., entering a password),
Screenmilker can aggregate what are learnt from multiple
rounds of the input entering to piece together the input content.
For example, in our implementation, we let Screenmilker count
the number of displayed password dots to infer the positions
of the extracted keystrokes and make up for the missing letters

8

Extract CRC32

222054093

Lookup

CRC32 Value Keystroke

222054093 a

8599545 b

4181574192 c
…

…

Fig. 6. The real-time keystroke extraction workflow. Screenmilker first extract the essential features from the soft keyboard screenshot. It then calculates the
CRC32 value of these features and looks up the hash table to determine the keystroke.

Screenmilker
inspects the

color of
individual pixels
on the vertical

line

Fig. 7. Screenmilker inspects the color of individual pixels on the vertical
line to obtain the vertical position of each contact.

in one round with the letters learnt from other rounds.8

Screenmilker analyzes the keystroke animation of soft key-
boards (Figure 4) to extract user inputs, and is capable of doing
so on various soft keyboards with different color schemes and
layouts. To handle keyboards with different color schemes,
Screenmilker can distinguish the text and background colors of
the keys by examining pixels at specific locations (e.g., the text
and corner regions of a key), and convert the cropped image
(Figure 5) into a black-and-white image before calculating the
checksum. This enables Screenmilker to handle soft keyboards
with different color schemes using the same hash table. To
deal with keyboards with different layouts, Screenmilker can
build a hash table for each target soft keyboard, and utilize the
same fingerprinting technique to determine which one is in use.
Since the size of a hash table is small (456 bytes for the default
Android US keyboard), the adversary is able to include a wide
range of popular keyboards without significantly increasing
memory consumption. An exception here is the soft keyboards
with unconventional animations (e.g., Swype Keyboard [21]).
Extraction of keystrokes from them needs new technique,
which we leave as future work.

IV. EVALUATION

In this section, we present our evaluation study on Screen-
milker, which aims at understanding the effectiveness and

8The same technique enables Screenmilker to handle long-pressed
backspace key. In addition, we use a similar technique to detect the location
of the cursor, which allows Screenmilker to deal with insertions in the middle
of a password.

stealthiness of the malware in collecting sensitive user data.
All our experiments were performed on Nexus 4G Android
phones (single-core, 1 GHz, ARM Cortex-A8 CPU, and 512
MB RAM) with Android 4.1.1 (kernel version 3.0.31).

A. Effectiveness

App monitoring. We first examined whether Screenmilker
can identify the moment when a key is being pressed on
the soft keyboard. For this purpose, we conducted ten 10-
minute typing sessions, during which Screenmilker probed the
/proc/PID/stat file every 100 ms to determine whether a
key was being pressed. The result of each probe was recorded
and was later compared with the ground truth collected through
the API TextWatcher during the experiment. The study
shows that Screenmilker can accurately determine the key
press event with a 3.79% false positive rate and a 2.71% false
negative rate.

Display detecting. Then, we studied whether Screenmilker
can accurately determine which target app is running in the
foreground. To this end, we set five banking apps, American
Express US, Citi Mobile, Chase Mobile, PayPal, and Wells
Fargo Mobile, as the targets and instructed our malware to
monitor their operations, together with other unrelated top 50
free apps in Google Play. The experimental results demonstrate
that the hash fingerprint of the app’s title bar can not only
always correctly identify a target app, but also unambiguously
differentiate the login screen from other screens of the app.

Keystroke logging. As described in Section III-C, the rate
at which Screenmilker can take screenshots is limited by the
capability of the ADB proxy. Our experiment reveals that all
the native executables found in Google Play (Table II) need
an average of 160 ms to take a screenshot (6 screenshots per
second). As a result, Screenmilker might only capture part of
the user’s keystroke inputs.

To understand how effective this key logging can be, we
measured its capture ratio, i.e., the ratio of keystrokes that
Screenmilker was able to get when a user was typing 100 keys
consecutively. During this experiment, the rate of screenshots
(shots per second) was adjusted from 1 to 5 to examine its
impact on the capture ratio.

Figure 8a illustrates the result. The capture ratio increases
from 0.27 to 0.76 as the screenshot rate goes up from 1

9

(a)

(b)

(c)

Fig. 8. (a) The capture ratio of Screenmilker to log a single keystroke. (b) The number of rounds for Screenmilker to extract an entire password. (c) The soft
keyboard response time when Screenmilker is active.

TABLE III. THE AVERAGE NUMBER OF ROUNDS FOR SCREENMILKER
TO EXTRACT AN ENTIRE PASSWORD FROM FIVE BANKING APPS.

App Average Number of Rounds

American Express US 2.625
Citi Mobile 2.525
Chase Mobile 2.325
PayPal 2.75
Wells Fargo Mobile 2.45

to 5. As mentioned in Section III-C, this ratio is sufficient
for a practical attack, such as password collection, when
the adversary incorporates the dictionary attacks or combines
multiple observations of the user typing the same content, such
as her password.

Password extraction. Finally, we combined all the compo-
nents and evaluated Screenmilker’s effectiveness in password
extraction. Here, we examined how many observations Screen-
milker needs to identify an entire password. Specifically, we
assigned unique 10-character passwords to five banking apps,
American Express US, Citi Mobile, Chase Mobile, PayPal, and
Wells Fargo Mobile. Since these banking apps do not store user
passwords for security reasons, they are the perfect target for
the password lifting. In the experiment, we ran Screenmilker
to extract 40 passwords from each target app during multiple
rounds of password entering9, in the presence of other running
apps that served as background noise. Our purpose here
is to understand the number of rounds our malware needs
before it can successfully identify a whole password. What
we found in our study is that whenever Screenmilker caught
the moment when a password character was being entered,
it always accurately determined the content of the character.
However, it could miss some typing moments and therefore
had to wait for the user typing the password again to pick up
the characters falling through the cracks. Figure 8b illustrates
the experimental results: that is, the number of rounds for
obtaining a complete password. As we can see here, most of
the time (around 60%), our approach got the right password
within 2 rounds, and it always did so within 5 rounds.

We further evaluated the effectiveness of Screenmilker
9Through fingerprinting the target app (Section III-B), Screenmilker knows

exactly when the user is typing her password to the same app again (Sec-
tion III-C).

in password extraction by examining the average number of
rounds that our malware needs to get a complete password
from each of the five banking apps. From the results summa-
rized in Table III, we can observe that even when different apps
use distinct interfaces for entering passwords, Screenmilker is
agnostic to these interface designs and performs equally well
on each app.

Contact collection. We evaluated the effectiveness of our
approach in collecting other sensitive user data. In this case,
we ran Screenmilker when browsing a contact list on Android.
The malware successfully detected the operation of the contact
app, took a screenshot, and further extracted the text content
of the contacts on the list. The data collected was found to be
identical to what was on the list.

B. Stealthiness

To avoid being detected, Screenmilker is designed to mini-
mize its resource consumption so as to reduce its CPU, mem-
ory, and network footprints. To understand the effectiveness
of this design, we measured its stealthiness in the following
ways. First, we analyzed the performance overhead perceived
by the smartphone user, in terms of the system’s response time
when Screenmilker is active. Then, we systematically assessed
Screenmilker’s usages of CPU, memory, and power resources.

Response time. To understand Screenmilker’s impact on the
system and user interactions, we recorded the response time
when the user pressed a key on the soft keyboard until the
moment that the system displayed the key on the screen. This
time interval was measured through the API TextWatcher.
The response time is related to the user’s perception of
anomaly in the system and therefore needs to be limited to
keep the malware stealthy.

The result of our study is reported in Figure 8c. As we
can see here, such response delays are rather minor. With the
screenshot rate going up from 0 (the benchmark, when the
malware was not active) to 5, the response time, as observed
by the user, moves from 1.717 to 3.332 ms. Given such a small
difference, merely 1.615 ms increase in the response time, we
believe that the impact of our malware should go unnoticed
by the user.

Resource consumption. We further conducted a series of
experiments to check whether the presence of the malware can

10

TABLE IV. THE AVERAGE EXECUTION TIME OF EACH DATA
EXTRACTION FUNCTION IN SCREENMILKER. THE FUNCTIONS IN BOLD

TEXT ARE IMPLEMENTED BY SCREENMILKER, WHILE THE SCREENSHOT
FUNCTION IS PROVIDED BY THE ADB PROXY.

Extraction Function Time [ms]

General Initialize the hash table [one time] 1.389
Take a screenshot 161.314

Keystroke
extraction

Fingerprint the image features 0.388
Lookup the hash table 0.220

Contact
collection

Obtain position of the text 3.018
Segment and map the text 2.916

be detected by inspecting system resource usages. Specifically,
we looked into the CPU usage of Screenmilker in terms of
execution times for individual malware components. In the
experiment, each component was invoked 10,000 times to mea-
sure its average execution time. As described in Section III-B,
the situation detection component operates once every 100 ms
to find out the currently running apps. We observed that at
each time the component was invoked, it took less than 1 ms
to finish its job. This brings in about 1% CPU overhead, which
is negligible.

On the other hand, data extraction takes a longer time.
Particularly, to recover password inputs, the malware needs to
repeatedly take screenshots, which can have a relatively large
impact on system performance. However, this component is
only activated when the target app is found to operate in the
foreground. Our experiment shows that Screenmilker needs
1.389 ms to initialize its hash table (a one-time cost), and
then an average of 161.922 ms to grab and analyze each
screenshot. Table IV provides the breakdowns of this execution
time: most of it has been spent on taking the screenshot, which
is determined by the implementation of the ADB proxy in
different screenshot apps; analysis on the images to extract
each key only needs an additional 0.608 ms. This level of
resource consumption will not cause observable performance
degradation, as revealed in our measurement of response time.
Similarly, to recover the phone user’s contacts only requires
an additional 5.934 ms.

We further evaluated the memory usage of Screenmilker,
comparing them with what was incurred by popular, legitimate
apps, such as Clock, Calculator, Google Talk, and others (see
Table V). During those apps’ normal operations (e.g., playing
music through Pandora Internet Radio, surfing the Web through
a browser), their memory consumption was monitored by PS
over a 5-minute period. In this period, we collected their usage
data every 10 seconds, which was averaged at the end of the
study. The results are presented in Table V.

As we can see from the table, when compared to popular
apps, Screenmilker does not consume memory resources in any
conspicuous way. Its memory usage is similar to those of the
Clock and Calculator apps, at around 290 KB. Other popular
apps such as the browser and Temple Run 2 need almost 50%
more memory.

Finally, we ran PowerTutor [22] to examine the CPU and

TABLE V. THE AVERAGE MEMORY USAGES OF SCREENMILKER
COMPARED TO POPULAR APPS. SCREENMILKER USED RELATIVELY LOW

AMOUNT OF MEMORY. WE EMPLOYED PS TO GATHER THE RESULT.

App Memory [Kbyte]

Screenmilker [situation detection] 286.308
Clock 294.072
Screenmilker [contact collection] 295.279
Screenmilker [keystroke extraction] 295.364
Calculator 295.464
Google Talk 310.844
Instagram 326.244
Pandora Internet Radio 356.332
Facebook 365.384
Browser 391.912
Temple Run 2 436.712

TABLE VI. THE AVERAGE POWER USAGES OF SCREENMILKER
COMPARED TO POPULAR APPS. SCREENMILKER USED VERY SMALL

AMOUNT OF POWER. WE LEVERAGED POWERTUTOR TO MEASURE THE
CPU AND WI-FI POWER CONSUMPTIONS OF EACH APP.

App Power [mW]

Screenmilker [situation detection] 4.1
Screenmilker [contact collection] 8.3
Google Talk 47.8
Clock 52.1
Calculator 91.8
Screenmilker [keystroke extraction] 101.6
Instagram 155.8
Pandora Internet Radio 213.5
Browser 252.1
Facebook 374.8
Temple Run 2 529.2

Wi-Fi power consumptions of each of these apps.10 Our mea-
surements were averaged over the data collected during a 5-
minute period (once per 10 seconds), as illustrated in Table VI.
Compared to those popular apps, Screenmilker consumed a
very small amount of power. The situation component used
only 4.1 mW, while the keystroke extraction component took
101.6 mW and the contact collection component consumed
8.3 mW. This level of power consumption is very moderate,
in comparison with other apps, e.g., 155.8 mW for Instagram,
529.2 mW for Temple Run 2.

V. MITIGATION AND SUGGESTIONS

The ADB workaround has become the standard way for
third-party apps to acquire signature-level permissions. This
approach, however, also brings in serious security risks: with-
out proper regulation, it could expose signature-level system
capabilities (illustrated in Table I) to unauthorized apps, as
in the case of screenshot apps. Note that simply removing
signature-level permissions from ADB or disallowing com-
munications through local network sockets is completely im-

10Although PowerTutor is not able to measure accurate power usages on
newer devices, it is still useful for comparing relative power consumptions
which is sufficient for our purpose.

11

practical, since both ADB and local sockets are fundamental
to Android design. ADB is the main Android development
tool, which requires access to system resources protected by
signature-level permissions to assist the developers in building
apps. Local network socket is the major inter-process commu-
nication channel that native executables are able to utilize. In
fact, many crucial system processes such as the Zygote process
use local network sockets to communicate with others [14].

To mitigate this security risk, the app developers can cer-
tainly build authentication and access control into their apps,
should they decide to utilize this ADB-based workaround, to
prevent signature-level capabilities from getting into the wrong
hand. However, given the importance of these capabilities, An-
droid system-level protection should also be in place to ensure
that security mediation on them will never be bypassed. As
a first step toward this end, we describe here our preliminary
design and implementation that controls the communication
between the ADB proxy and a third-party app.

In addition, the design of Screenmilker demonstrates what
a malicious party can do once it acquires a signature-level
capability like screenshot. This indicates that any attempt to
make such capabilities available to the third party (through
Android APIs) should be well thought-out, an issue also
discussed in the section.

Mediation of ADB resource exposure. A first step to pre-
vent exposure of signature-level capabilities is to mediate the
communication between the ADB proxy and its unprivileged
app client. Although the security-enhanced Android version
(SEAndroid [14]) can support such finer-grained access con-
trol, the prospect of its extensive deployment is still less clear,
given the complexity in configuring its security policies, which
impeded the wide adoption of SELinux it is built upon. In
our research, we implemented a simple protection mechanism,
which utilizes Linux iptables to control the interaction
between a screenshot app’s ADB proxy and its unprivileged
component. Specifically, we set rules through iptables to
control local-socket communication. An app by default is not
allowed to make TCP connections to a server running on the
same device. When a screenshot app is being installed on the
device, it is supposed to explicitly ask for a new permission
(which requires only a few lines of change to existing apps’
manifests) for communicating with a local server through a
specific port. Once the permission is granted by the user, a new
service we built adds an iptables rule that binds the app’s
UID to a local TCP port specified, thereby allowing the app
to talk to its ADB proxy. Other unauthorized apps still cannot
make any local connections. In our research, we implemented
this approach and evaluated its efficacy as well as efficiency.
When configuring the system to simultaneously mediate up to
20 apps that require to access local TCP ports, we did not
observe any malfunction and noticeable delay compared with
the situation that the protection was not present. Although
the performance of iptables is known to degrade as the
number of rules increases, studies have shown that it is able
to simultaneously support hundreds of apps [23], which is
more than enough for most Android users. In addition, when
adopting alternatives to iptables such as nf-HiPAC [24] or
IP Sets [25], our design is able to mediate thousands of apps
simultaneously. Note that this protection mechanism addresses
not only the security risks in the screenshot apps, but also those

that come with sync and backup, USB tethering apps and any
other apps built upon the ADB workaround or insecure use of
the local socket channel.

Interface suggestions. Given the strong demand for the pro-
grammatic screenshot capability (Section II), it is possible
that Android might consider releasing an official interface to
provide such a service in the future. Of course this capability is
highly risky and needs a well thought-out protection to strike a
careful balance between utility and user privacy. This effort can
certainly benefit from the understanding of what Screenmilker
can do. Here are some preliminary thoughts.

To avoid malware stealthily collecting confidential user
data through the interface, Android should notify the user
when an app takes a screenshot. This can be done through
a system notification or visual and sound effects. An-
droid can also issue different permissions to limit the
screenshot rate, such as LOW_RATE_SCREENSHOT and
HIGH_RATE_SCREENSHOT. Clearly, those allowed to take
shots at a high speed are more likely to get access to the
user’s confidential information. Finally, Android can block the
screenshot entirely when the user is working on confidential
data. A way to do that is to let the user get into a privacy
mode in which screenshots are not allowed. Also, an app
being installed can also indicate that its operation should not
be monitored, through its manifest.

VI. RELATED WORK

Information leaks from smartphone have been extensively
studied in prior research. As a prominent example, there is
a line of prior work on how to infer sensitive user data
through the accelerometer. Such work demonstrates what a
malicious app can do once it obtains accelerometer readings.
Examples include TouchLogger [26] and ACCessory [27] that
work on keystroke inference, ACComplice [28] that identifies
the trajectory of the user who is driving, and TapPrints [29]
that recovers the positions on screen one taps from motion
sensor data. A human subject study has also been reported
to understand whether these attacks pose a credible threat to
the smartphone users [30]. The side channels studied in these
approaches all involve complex machine learning algorithms.
Screenmilker, on the other hand, does not rely on such sensor-
based side channels and is designed to work efficiently and
stealthily on the phone.

Physical side channels such as oily residues left on the
touch screen and reflection of the screen from nearby objects
could also be exploited by attackers to extract private informa-
tion from the victim’s phone [31], [32]. Those attacks generally
begin with the attacker taking a photo of the victim’s phone
screen, which is followed by image processing to analyze the
fingerprints and infer confidential user information. They all
require the attacker to be geographically close to the victim and
able to take a photo of the victim’s screen. The same constraint
is also applied to the attacks like iSpy [33] that records a
video of the victim’s mobile device screen reflected from
nearby objects such as victim’s sunglasses, and automatically
reconstructs the texts typed on the virtual keyboard of the
victim’s device through machine learning techniques.

Prior research also investigates how sensory malware with
permissions to access camera or microphone can stealthily

12

collect user data and make a surprise use of it to get
confidential user information. An example is Stealthy Video
Capturer [34] that allows the attacker to automatically activate
the built-in camera on 3G smartphones and take videos without
victim’s notice. It performs situation detection on Windows
OS by explicitly claiming permissions to get access to related
APIs. Another example, Soundcomber [35], utilizes micro-
phones to record calls to interactive voice response systems,
and then leverages voice recognition algorithms to retrieve
credit card information. Compared to these prior approaches,
Screenmilker only requires INTERNET permission and gets
the screenshot capability from other apps. It processes the
information collected and identifies its situations without using
any other system permissions.

VII. CONCLUSION AND FUTURE WORK

The ADB workaround has become the standard way to
obtain signature-level permissions from an unrooted Android
device. This workaround usually involves using local network
sockets to establish communication between a native exe-
cutable and a JVM-level app. Android, however, lacks access
control on this channel. As a result, implementations of the
workaround can oftentimes be exploited by an adversary to
gain unauthorized signature-level permissions.

In this paper, we studied Android screenshot apps, a
prominent example of the third-party apps that need signature-
level permissions. We found that all the screenshot apps in
Google Play employ the ADB workaround, and unfortunately,
all of them fail to prevent unauthorized access from malicious
apps. We further designed and implemented Screenmilker to
demonstrate that through lightweight situation detection and
data extraction, a malicious app can effectively and stealthily
gather confidential information. To mitigate the security risk
of the ADB workaround, we propose solutions to mediate the
access to signature-level capabilities through ADB. In addition,
we offer suggestions on the design of a secure programmatic
screenshot API.

Our research is a first step towards understanding the
security risks that could lead to exposing signature-level per-
missions. Further studies on this issue are certainly important.
As examples, here we sketch two possible future directions.

Access policies for local network sockets. Local network
socket is the main communication channel for many Android
system processes (e.g., Zygote) and is the source for several
notable vulnerabilities (e.g., CVE-2011-3918 and CVE-2012-
2217). Thus, developing proper security policies for each
process to access this resource and building a system to enforce
these policies will greatly enhance the level of security for
Android devices. These policies need to accommodate the
requirements from different processes. For example, some
processes ask for fast response time, while others demand
high throughput. In addition, the enforcement system has to
minimize its overhead. How to achieve these goals is a valuable
research direction to pursue.

New screenshot APIs. Design of secure screenshot APIs is
another important and challenging direction. Screenshot apps
are extremely popular among Android users as demonstrated in
Table II. Further development of these apps can be made easy

once Android decides to provide screenshot APIs. However,
those APIs, if used improperly, could pose threats to the
privacy of the phone user. How to balance security and
programmability is an essential question to be answered.

Protection of other communication channels. Although ma-
jority of the apps use local network sockets (a standard inter-
process communication mechanism used in Android) to com-
municate with ADB proxies when demanding signature-level
permissions, other communication channels may also be used
for this purpose. For example, the app and the ADB proxy can
read from and write to designated files to exchange requests
and results. Due to the limited communication bandwidth, this
approach probably will not be suitable for screenshot apps, but
it is a viable alternative for backup and USB tethering apps.
Since these additional communication channels pose the same
threat to the Android security model as local network sockets
do, strategies for effective meditation on them also needs to
be investigated.

Countering stealthy attacks. One way to thwart private
information extraction is to force the adversary to use more
resources, making its malicious activities easier to detect by the
user. Screenmilker presents a powerful yet lightweight attack
that simple defense attempts such as randomizing the keyboard
location or layout will not hinder the extraction process. More
specifically, Screenmilker can employ the same strategy used
for extracting contact list information to identify some features
of the keyboard and then locate it on the screen, even when
it is randomly placed. Thus, a more complicated defense
mechanism is needed, e.g., a CAPTCHA-like procedure to
obscure the keys. Developing such a system to make the
lightweight attacks harder to succeed while still preserving the
phone’s usability is an important research direction.

ACKNOWLEDGEMENTS

We would like to thank anonymous reviewers for their
insightful comments and valuable feedback. The authors
with Indiana University are supported in part by the NSF
CNS-1017782, CNS-1117106, and CNS-1223495. Hongyang
Li is supported by Department of Energy Award Number
DEOE0000097.

REFERENCES

[1] Inside Mobile Apps, “Android reaches 25 billion app downloads,
675,000 total apps available,” http://www.insidemobileapps.com/2012/
09/26/android-reaches-25-billion-app-downloads-675000-total-apps-
available/, 2012.

[2] The Next Web, “In one year, Android malware up 580%, 23
of the top 500 apps on Google Play deemed “high risk”,” http:
//thenextweb.com/google/2012/10/25/in-one-year-android-malware-
up-580-23-of-the-top-500-on-google-play-deemed-high-risk/, 2012.

[3] CVE Details, “CVE security vulnerability database,” http:
//www.cvedetails.com/vulnerability-list/vendor id-1224/product id-
19997/Google-Android.html, 2013.

[4] F-Secure, “Q3 2012 mobile threat report,” http://www.f-secure.com/
weblog/archives/00002454.html, 2012.

[5] BullGuard, “The risk of rooting your Android phone,”
http://www.bullguard.com/bullguard-security-center/mobile-
security/mobile-threats/android-rooting-risks.aspx, 2013.

[6] SmartUX, “Screenshot UX,” https://play.google.com/store/apps/details?
id=com.liveov.shotux, 2012.

13

http://www.insidemobileapps.com/2012/09/26/android-reaches-25-billion-app-downloads-675000-total-apps-available/
http://www.insidemobileapps.com/2012/09/26/android-reaches-25-billion-app-downloads-675000-total-apps-available/
http://www.insidemobileapps.com/2012/09/26/android-reaches-25-billion-app-downloads-675000-total-apps-available/
http://thenextweb.com/google/2012/10/25/in-one-year-android-malware-up-580-23-of-the-top-500-on-google-play-deemed-high-risk/
http://thenextweb.com/google/2012/10/25/in-one-year-android-malware-up-580-23-of-the-top-500-on-google-play-deemed-high-risk/
http://thenextweb.com/google/2012/10/25/in-one-year-android-malware-up-580-23-of-the-top-500-on-google-play-deemed-high-risk/
http://www.cvedetails.com/vulnerability-list/vendor_id-1224/product_id-19997/Google-Android.html
http://www.cvedetails.com/vulnerability-list/vendor_id-1224/product_id-19997/Google-Android.html
http://www.cvedetails.com/vulnerability-list/vendor_id-1224/product_id-19997/Google-Android.html
http://www.f-secure.com/weblog/archives/00002454.html
http://www.f-secure.com/weblog/archives/00002454.html
http://www.bullguard.com/bullguard-security-center/mobile-security/mobile-threats/android-rooting-risks.aspx
http://www.bullguard.com/bullguard-security-center/mobile-security/mobile-threats/android-rooting-risks.aspx
https://play.google.com/store/apps/details?id=com.liveov.shotux
https://play.google.com/store/apps/details?id=com.liveov.shotux

[7] ClockworkMod, “How to get free tethering on any phone with
ClockworkMod Tether (no root),” http://www.youtube.com/watch?v=
R1Pc4RlieA0, 2013.

[8] E. Kim, ““no root screenshot it” for android,” http://www.youtube.com/
watch?v=zbbnu1JoyII, 2013.

[9] ClockworkMod, “Helium,” https://play.google.com/store/apps/details?
id=com.koushikdutta.backup, 2013.

[10] ——, “ClockworkMod Tether,” https://play.google.com/store/apps/
details?id=com.koushikdutta.tether, 2013.

[11] Wise Shark Software, “Screenshot Free,” https://play.google.com/store/
apps/details?id=com.androidscreenshotapptool.free, 2011.

[12] E. Kim, “No root screenshot it,” https://play.google.com/store/apps/
details?id=com.edwardkim.android.screenshotitfullnoroot, 2013.

[13] B. Levine, “Jelly bean now on 40% of android devices, google says,”
http://www.newsfactor.com/news/Jelly-Bean-on-40--of-Android-
Devices/story.xhtml?story id=00200072XCA0, 2013.

[14] S. Smalley and R. Craig, “Security Enhanced (SE) Android: Bringing
flexible mac to android,” in Proceedings of the 20th Annual Network and
Distributed System Security Symposium, ser. NDSS ’13. San Diego,
CA, USA: The Internet Society, 2013.

[15] Anonymous, “Screenmilker demo,” https://sites.google.com/site/
screenmilker, 2013.

[16] Android Development Team, “Permission elements,” http://developer.
android.com/guide/topics/manifest/permission-element.html, 2013.

[17] S. Garfinkel, “tcpflow,” http://github.com/simsong/tcpflow/, 2013.
[18] jtschohl, “Android Firewall,” https://play.google.com/store/apps/details?

id=com.jtschohl.androidfirewall, 2013.
[19] Rodrigo ZR, “DroidWall,” https://play.google.com/store/apps/details?

id=com.googlecode.droidwall.free, 2011.
[20] S. Shekhar, M. Dietz, and D. S. Wallach, “AdSplit: separating smart-

phone advertising from applications,” in Proceedings of the 21st
USENIX conference on Security symposium, ser. Security ’12. Berke-
ley, CA, USA: USENIX Association, 2012, pp. 28–28.

[21] Nuance Communications, “Swype Keyboard,” https://play.google.com/
store/apps/details?id=com.nuance.swype.dtc, 2013.

[22] L. Zhang, B. Tiwana, Z. Qian, Z. Wang, R. P. Dick, Z. M. Mao,
and L. Yang, “Accurate online power estimation and automatic bat-
tery behavior based power model generation for smartphones,” in
Proceedings of the 8th IEEE/ACM/IFIP international conference on
Hardware/software codesign and system synthesis, ser. CODES/ISSS
’10. New York, NY, USA: ACM, 2010, pp. 105–114.

[23] J. Kadlecsik and G. Pasztor, “Netfilter performance testing,” Netfilter
Project, Berlin, Germany, Tech. Rep., 2004.

[24] M. Bellion and T. Heinz, “nf-hipac,” http://www.hipac.org, 2005.

[25] J. Kadlecsik, “Ip sets,” http://ipset.netfilter.org, 2013.
[26] L. Cai and H. Chen, “TouchLogger: inferring keystrokes on touch

screen from smartphone motion,” in Proceedings of the 6th USENIX
conference on Hot topics in security, ser. HotSec ’11. Berkeley, CA,
USA: USENIX Association, 2011, pp. 9–9.

[27] E. Owusu, J. Han, S. Das, A. Perrig, and J. Zhang, “ACCessory: pass-
word inference using accelerometers on smartphones,” in Proceedings
of the 12th Workshop on Mobile Computing Systems & Applications,
ser. HotMobile ’12. New York, NY, USA: ACM, 2012, pp. 9:1–9:6.

[28] J. Han, E. Owusu, L. Nguyen, A. Perrig, and J. Zhang, “ACComplice:
Location inference using accelerometers on smartphones,” in Proceed-
ings of the 4th International Conference on Communication Systems
and Networks, ser. COMSNETS ’12. New York, NY, USA: IEEE,
2012, pp. 1–9.

[29] E. Miluzzo, A. Varshavsky, S. Balakrishnan, and R. R. Choudhury,
“TapPrints: your finger taps have fingerprints,” in Proceedings of the
10th international conference on Mobile systems, applications, and
services, ser. MobiSys ’12. New York, NY, USA: ACM, 2012, pp.
323–336.

[30] L. Cai and H. Chen, “On the practicality of motion based keystroke
inference attack,” in Proceedings of the 5th international conference on
Trust and Trustworthy Computing, ser. TRUST ’12. Berlin, Heidelberg,
Germany: Springer-Verlag, 2012, pp. 273–290.

[31] A. J. Aviv, K. Gibson, E. Mossop, M. Blaze, and J. M. Smith,
“Smudge attacks on smartphone touch screens,” in Proceedings of the
4th USENIX conference on Offensive technologies, ser. WOOT ’10.
Berkeley, CA, USA: USENIX Association, 2010, pp. 1–7.

[32] Y. Zhang, P. Xia, J. Luo, Z. Ling, B. Liu, and X. Fu, “Fingerprint
attack against touch-enabled devices,” in Proceedings of the 2nd ACM
workshop on Security and privacy in smartphones and mobile devices,
ser. SPSM ’12. New York, NY, USA: ACM, 2012, pp. 57–68.

[33] R. Raguram, A. M. White, D. Goswami, F. Monrose, and J.-M. Frahm,
“iSpy: automatic reconstruction of typed input from compromising
reflections,” in Proceedings of the 18th ACM conference on Computer
and communications security, ser. CCS ’11. New York, NY, USA:
ACM, 2011, pp. 527–536.

[34] N. Xu, F. Zhang, Y. Luo, W. Jia, D. Xuan, and J. Teng, “Stealthy
Video Capturer: a new video-based spyware in 3g smartphones,” in
Proceedings of the 2nd ACM conference on Wireless network security,
ser. WiSec ’09. New York, NY, USA: ACM, 2009, pp. 69–78.

[35] R. Schlegel, K. Zhang, X. Zhou, M. Intwala, A. Kapadia, and X. Wang,
“Soundcomber: A stealthy and context-aware sound trojan for smart-
phones,” in Proceedings of the 18th Annual Network and Distributed
System Security Symposium, ser. NDSS ’11. San Diego, CA, USA:
The Internet Society, 2011, pp. 17–33.

14

http://www.youtube.com/watch?v=R1Pc4RlieA0
http://www.youtube.com/watch?v=R1Pc4RlieA0
http://www.youtube.com/watch?v=zbbnu1JoyII
http://www.youtube.com/watch?v=zbbnu1JoyII
https://play.google.com/store/apps/details?id=com.koushikdutta.backup
https://play.google.com/store/apps/details?id=com.koushikdutta.backup
https://play.google.com/store/apps/details?id=com.koushikdutta.tether
https://play.google.com/store/apps/details?id=com.koushikdutta.tether
https://play.google.com/store/apps/details?id=com.androidscreenshotapptool.free
https://play.google.com/store/apps/details?id=com.androidscreenshotapptool.free
https://play.google.com/store/apps/details?id=com.edwardkim.android.screenshotitfullnoroot
https://play.google.com/store/apps/details?id=com.edwardkim.android.screenshotitfullnoroot
http://www.newsfactor.com/news/Jelly-Bean-on-40--of-Android-Devices/story.xhtml?story_id=00200072XCA0
http://www.newsfactor.com/news/Jelly-Bean-on-40--of-Android-Devices/story.xhtml?story_id=00200072XCA0
https://sites.google.com/site/screenmilker
https://sites.google.com/site/screenmilker
http://developer.android.com/guide/topics/manifest/permission-element.html
http://developer.android.com/guide/topics/manifest/permission-element.html
http://github.com/simsong/tcpflow/
https://play.google.com/store/apps/details?id=com.jtschohl.androidfirewall
https://play.google.com/store/apps/details?id=com.jtschohl.androidfirewall
https://play.google.com/store/apps/details?id=com.googlecode.droidwall.free
https://play.google.com/store/apps/details?id=com.googlecode.droidwall.free
https://play.google.com/store/apps/details?id=com.nuance.swype.dtc
https://play.google.com/store/apps/details?id=com.nuance.swype.dtc
http://www.hipac.org
http://ipset.netfilter.org

	Introduction
	Programmatic Screenshot on Android
	Design and Implementation
	Overview
	Runtime Situation Detection
	Real-time Data Extraction

	Evaluation
	Effectiveness
	Stealthiness

	Mitigation and Suggestions
	Related Work
	Conclusion and Future Work
	References

