VTint: Protecting Virtual Function Tables’ Integrity

Chao Zhang*, Chengyu Song?, Kevin Zhijie Chen*, Zhaofeng Chen’, Dawn Song*

*University of California, Berkeley
{chaoz, kevinchn, dawnsong} @cs.berkeley.edu

Abstract—In the recent past, a number of approaches have
been proposed to protect certain types of control data in a
program, such as return addresses saved on the stack, rendering
most traditional control flow hijacking attacks ineffective. Attack-
ers, however, can bypass these defenses by launching advanced
attacks that corrupt other data, e.g., pointers indirectly used to
access code. One of the most popular targets is virtual table
pointers (vfptr), which point to virtual function tables (vtable)
consisting of virtual function pointers. Attackers can exploit vul-
nerabilities, such as use-after-free and heap overflow, to overwrite
the vtable or vfptr, causing further virtual function calls to be
hijacked (vtable hijacking). In this paper we propose a lightweight
defense solution VTint to protect binary executables against
vtable hijacking attacks. It uses binary rewriting to instrument
security checks before virtual function dispatches to validate
vtables’ integrity. Experiments show that it only introduces a
low performance overhead (less than 2%), and it can effectively
protect real-world vtable hijacking attacks.

I. INTRODUCTION

Memory corruption bugs are still one of the most critical
problems in computer security. Attackers can use these bugs to
gain unauthorized access to the program state (e.g., the code
and data in memory), or even corrupt the state, to indirectly
control the program counter and hijack the control-flow to
execute malicious code.

In the last decades, pointers to code (i.e., control data),
such as return addresses, exception handlers and function
pointers, are the most common targets to corrupt. Many
defense solutions are proposed and deployed to defeat these
control data corruption attacks, e.g., StackGuard [8] for return
address, SafeSEH [27] for exception handlers. More gener-
ally, DEP (Data Execution Prevention [2]) or W@X prevents
writable memory from being executed, and prevents executable
memory from being written, making code corruption and code
injection attacks ineffective. ASLR (Address Space Layout
Randomization [37]) randomizes the locations of code and
data, raising the bar of code reuse attacks such as return-to-
libc [46] and ROP (Return Oriented Programming [45]).

The vtable hijacking attacks In addition to corrupting tradi-
tional control data, modern advanced attacks turn to corrupting

Permission to freely reproduce all or part of this paper for noncommercial
purposes is granted provided that copies bear this notice and the full citation
on the first page. Reproduction for commercial purposes is strictly prohibited
without the prior written consent of the Internet Society, the first-named author
(for reproduction of an entire paper only), and the author’s employer if the
paper was prepared within the scope of employment.

NDSS 15, 8-11 February 2015, San Diego, CA, USA

Copyright 2015 Internet Society, ISBN 1-891562-38-X
http://dx.doi.org/10.14722/ndss.2015.23099

Pekin g University
chenzhaofeng @pku.edu.cn

iGeorgia Institute of Technology
csong84 @gatech.edu

other data, e.g., pointers to control data, including the virtual
table pointers (vfptr). The vfptr is a hidden field of C++ objects
that have virtual functions, generated by all major compilers
(e.g., 6ecc, Visual C++ and LLVM). The vfptr points to a
table called virtual function table (vtable), consisting of virtual
function pointers associated with the object’s class.

By overwriting a vtable’s contents (i.e., vtable corruption),
or overwriting a vfptr to point to an attacker-crafted vtable
(i.e., vtable injection), or overwriting a vfptr to point to some
existing data (i.e., vtable reuse), attackers can hijack the control
flow later when a virtual function is invoked. These three types
of attacks form the well-known vtable hijacking attacks.

The vtable hijacking attacks have been increasing in pop-
ularity. Attackers can exploit vulnerabilities that can lead to
arbitrary or specific memory write, e.g., traditional buffer
overflow [42], type confusion [9, 30] and use-after-free [15],
to corrupt the vfptr or vtable, and launch the vtable hijacking
attacks. Among these vulnerabilities, the use-after-free vulner-
ability has become a major threat to applications. It accounts
for over 80% attacks against the Chrome browser [49], and
more than 50% known attacks targeted Windows 7 [25]. As
far as we know, most public known real-world exploits against
use-after-free vulnerabilities are vzable injection attacks, as this
type of attack is more reliable than the other two types.

Researchers have proposed several defenses against the
vtable hijacking attacks, such as SafeDispatch [20], a candidate
GCC extension [48, 49], and VTGuard [28] (see Section III-C
for more detail). These solutions, however, all need accurate
type and class inheritance information of target applications,
which are not available in binary executables. And thus, they
cannot protect the massive legacy applications and closed-
source applications. Moreover, these solutions either do not
offer sufficient protection against vtable hijacking attacks or
incur a high performance overhead.

The approach In this paper, we propose a novel solution
VTint to protect binary executables against vtable hijacking
attacks with a low performance overhead. In particular, we
notice that most legitimate vtables are in read-only sections be-
cause no vtables are ever modified during runtime in legitimate
programs. On the other hand, the vtable corruption attacks
require viables to be writable, and vtable injection attacks will
inject writable vtables into applications at runtime. Based on
this observation, we check whether vrables are read-only to
validate their integrity at runtime. In this way, our solution
VTint prevents writable vtables from being used in virtual
calls, and can defeat all vtable corruption and vtable injection
attacks. This solution is simple but effective, similar to the DEP
solution that prevents writable memory from being executed.

Cgource code Fwiitable séction i read-onlfy secfion rcode section i
class Sub i
class Basel { public Basel, . SIZE '
rsal void vi1() Publis Base? fake VTablo Base1 objct b VTl for Baset R et
ita - basel_a 'meCXpol.ntso to the Sub object
virtu 0 o) Basel vf10 ’
virtual void vg1); w ; call function Sub:vi2)
class Base2 { . Base2 object b2 L Base? vl mov eax, [ecx] + read vipir Sub:-Basel
virtual void vg1); virtual void vg10); 1 i mov edx, [eax+0x4] ; get vi2) from viable
. virtual void vl () viptr call edx
virtual void vg10); shellcode() base2_a Base2 vg10
inta virtual void vh10()
} inta VTable for Sub::Basel ; call function Sub:vg4)
. _ } overwritten object object Sub vit mov eax, [ecx+8] ; read viptr Sub::Base2
int main() { tten Sub s __________—-———" mov edx, [eax+0x0C] ; get vg4) from viable
Base1* bl new Basel() ——— new_viptr viptr et call edx
m hﬁewrguwbgasez() i basel_a VTable for Sub::Base2 Sub vi10
s ->vi2() L——— new_viptr viptr g Sub vg1 Sub vh1 ; call function Sub::vh6)
s->vgd() base2_a mov eax, [ecx] ; read viptr of Sub i
s —->vh6() . mov edx, [eax+0x14] ; get vh6) from viable |
retun 0 sub_a Sub vg10 Sub vh10 call edx i
’ :
(a) source code (b) object layouts (c) vtables (d) executable code

Fig. 1: The layout of C++ objects with vrables, and the executable code of virtual function dispatches. (a) is a sample code in which the
sub-class Sub inherits from two base-classes Basel and Base2. (b) shows the basic layout of the object b1 of type Basel, the object
b2 of type Base2 and the object s of type Sub. There is also an overwritten object and a fake VTable controlled by attackers,
illustrating a sample vzable hijacking attack. (c) shows the associated vtables of class Basel, Base2 and Sub. (d) shows the assemble code
(in Intel syntax) of the function main described in (a), demonstrating the process of classic object construction and virtual function dispatches.

Similar to DEP that can be bypassed by code reuse attacks,
the basic version of VTint is also vulnerable to vtable reuse
attacks. We thus introduce an extended version of VTint
that will statically insert an ID for legitimate vtables, and
dynamically check the existence of this ID before virtual
function dispatches. In this way, VTint can defeat most vtable
reuse attacks, e.g., attacks that overwrite vfptr to point to data
rather than vzables. More importantly, unlike other secret-based
solutions, VTint is resilient to information leakage attacks.
Even if attackers know this ID (e.g., by exploiting information
leakage vulnerabilities), they cannot forge a vtable in read-only
sections to bypass VTint, instead only reuse existing vtables.

We have implemented VTint as a pure binary transforma-
tion. It does not depend on source code or debug information,
instead only relies on relocation tables which are available due
to the widely deployed ASLR on Windows platforms. VTint
first disassembles target binary executables using our custom
disassembler. Then it uses binary rewriting to deploy the
mentioned security policy on the target binary, i.e., instruments
vtables with an 1D and instrument virtual function dispatches
with security checks that validate whether the target vrables
are read-only and are associated a with correct ID.

It is difficult to identify virtual function dispatches and
vtables in binaries due to the lack of type information. We
use a novel static data analysis approach to identify these
structures. Furthermore, there is no efficient solution available
to test whether a memory is read-only. We propose a new
solution that incurs a low performance overhead, based on the
Windows’ Structured Exception Handling (SEH) mechanism.
The performance overhead can be greatly reduced if the
hardware or OS provides an easy-to-use APL

This solution can be deployed individually on each binary
module (i.e., modularity support). The hardened module can
interact with unhardened module seamlessly (i.e., compatibility
support). Experiments show that the runtime performance
overhead introduced by VTint is negligible (less than 2%
on average), and the hardened binaries can defeat real-world
vtable hijacking exploits.

In summary, our VTint protection approach has the fol-
lowing key advantages:

e EHasy to enforce. The security policy of VTint is
simple and easy to enforce. Similarly to DEP, it blocks
all writable memory from being vtables, whereas DEP
forbids writable memory from being executed.

e Binary compatible. By using binary analysis and
rewriting, VTint is able to protect programs without
any source code or debug information. It also offers
modularity and backward compatibility support.

e Efficient. VTint’s performance overhead is negligi-
ble: less than 0.4% for SPEC benchmark, and less than
2% for real-world browsers.

e Effective. VTint can defeat all vrable corruption
and vtable injection attacks by enforcing the vtables’
integrity. It also defeats most vtable reuse attacks
by checking the validity of vrables. Moreover, it is
resilient to information leakage attacks.

The remainder of this paper is organized as follows: We
describe the background and problem definition in Section II
and I1I. We then give an overview of our approach and the im-
plementation details in Section IV and V. Section VI evaluates
the performance and security of VTint. Section VII discusses
the future work and Section VIII compares our approach with
the related work. Finally we conclude in Section IX.

II. BACKGROUND

vtable is a general mechanism used in programming
languages to support dynamic dispatch (or runtime method
binding) [22], e.g., C++ virtual function calls. In this section,
we briefly describe the background on how compilers use
vtable to implement C++ virtual function calls, the related
compiler calling conventions, and an important characteristic
of Windows Portable Executable (PE) file format.

A. Virtual Function Calls

Virtual function is a key mechanism to support polymor-
phism in C++. Figure | shows a sample class inheritance,
the associated object layout, and the final executable code
regarding to the virtual function dispatches.

For each class with virtual functions, depending on the
class inheritance hierarchy, the compiler will create one or
more associated virtual function tables (vtable), as shown
in Figure 1(c). In each instance of the class (i.e., object),
there will be a vfprr pointing to the corresponding vrable
(Figure 1(b)). If the sub-class has multiple base-classes, its
object may have multiple vfptr. Moreover, if virtual inheritance
is involved, the layout of objects is much more complex [22].
Unlike solutions that depend on class inheritance information,
the VTint solution is independent to the layout of objects.

Figure 1(d) shows the sample executable code of virtual
function dispatches. In general, vfptr is read out from the object
first; then the target function pointer is read out from the vtable
pointed by vfptr; and finally the target virtual function is called.

B. Calling Conventions

When compiling a function, a compiler needs to determine
the interface to this function’s caller, such as how caller
functions pass arguments to this callee, who is responsible
to clean the stack. There are many choices available for
compilers. Each choice is called a calling convention.

For virtual function calls, a hidden argument is always
passed to the callee, i.e., the pointer to the object instance
(a.k.a. this pointer). On x86-32 processors, there are two
calling conventions related to the this pointer: thiscall and
stdcall, which are adopted by major compilers including
Microsoft Visual C++ and Gcc. In the thiscall convention,
the this pointer is passed in the ECX register. In the stdcall
convention, the this pointer is the first argument of the callee,
passed by pushing on the stack. On x86-64 or ARM processors,
the this pointer is always passed in registers.

C. Relocation Tables

To support dynamic linking and ASLR, the loader may
load (i.e., relocate) an executable module’s code and data to
a different address other than the address assumed by the
compiler. As a result, the loader should update all absolute
addresses in the module at load time. Here we call the memory
blocks whose contents need to be updated at load time as
relocation slots, and call the contents as relocation entries.

The loader needs extra metadata to identify these relocation
slots. In PE format files used by Microsoft Windows, the
relocation table provides such metadata. The relocation table
records both the offsets (e.g., 021000 and 026000 in Figure 2)
of all memory pages that contain relocation slots, and the
offsets (e.g., 02102 and 0220A) of all relocation slots within
each page. The address of the relocation slot can be computed
by the base address of this executable image, the page offset,
and the slot offset. For example, the first relocation slot in this
figure is 02401102 (= 02400000 + 021000 + 02102).

Relocation entries are usually absolute addresses of code
(e.g., functions) or data (e.g., global variables). In this example,

3 i-Text :
i

O Seerne i ____ .
i [ox20A | o sub_401100 i
i i i : mov [ecx , | 0¥406500 |
(0x6000) | i vtable | i

1 . .
%—? - . — viD < | ;

X: H v 2() i 0

OX08 |~ —] ; sub_402250 j
0x50C 2900508 : v 4() : : push ebp :
_________________ i i i i

Fig. 2: A sample relocation table of Windows PE executables. The
relocation entry 0x406500 at slot 0x401102 points to a vtable; the
entry 0x402250 at slot 0x405508 points to a virtual function.

the relocation entry 02406500 is actually a pointer to a virtual
function table. Entries in this table are all function pointers.
And thus they are all relocation entries (e.g., 02402250) that
are indexed by the relocation table too.

With relocation table, we can identify all absolute addresses
in binary executables, including addresses of virtual function
tables and functions whose addresses have been taken.

Note that we focus on the PE format in this paper, however
our approach can be adapted to the Executable and Linkable
Format (ELF) files used by Unix and Unix-like systems, since
they also have a similar mechanism for relocation.

III. PROBLEM DEFINITION

In this section, we first describe our threat model, and then
describe the attacks that VTint aims to defeat, and finally
discuss some related defense solutions.

A. Threat Model

We assume attackers have the following capabilities: (1)
attackers can read arbitrary readable memory, thus they can
launch information leakage attacks and bypass secret-based
defenses such as ASLR and VTGuard; (2) attackers can write
to any writable memory, thus they can corrupt control data
such as return addresses, and pointers to control data such
as vfptr; (3) attackers cannot directly read from or write to
registers, they can only achieve this indirectly by using existing
instructions that propagate data between registers and memory.
We further assume (4) attackers can leverage multiple con-
current threads to launch time-of-check-to-time-of-use attacks.
Therefore, any writable memory content is untrusted even if it
has been checked before it is read out again.

This assumption is strong enough because it covers most
capabilities an attacker can retrieve in practice. This assump-
tion is also realistic, because real-world attackers can exploit
certain vulnerabilities to obtain these capabilities. Especially
for browsers or other applications with script engines, the
input data (e.g., JavaScript scripts) will be interpreted as code,
or it will be Just-In-Time (JIT) compiled to native code and
executed. By feeding these applications with scripts, it is
easier for attackers to trigger vulnerabilities, read and write
the program state, or create multiple threads to launch attacks.

On the defense side, we assume that (1) popular defenses
such as ASLR and DEP are deployed; (2) no legitimate control
flows in target applications will allow attackers to change the
memory protection of a specified memory region, or to map an

attacker controlled file as read-only memory. If such control
flows exist, the target applications should be re-designed to
eliminate them, otherwise none of the current defenses can
protect them from being exploited. Fortunately, we have not
found any of the applications we have tested (including the
Firefox and Chrome browsers) contain such behaviors. We
also assume that (3) other control flow transfers except for
the virtual function calls are well-protected, so they cannot
be exploited to hijack the control flow before virtual function
calls; (4) non-control-data attacks [6] that may lead to control-
flow hijacking are out of the scope of this paper. Given
these assumptions, the attackers cannot change any memory’s
protection attribute before any virtual function invocation.

On the defense side, we also assume that (1) the binary
programs are not obfuscated; (2) the programs are compiled by
major compilers that follow the traditional calling conventions,
such as GCC and Visual C++. Given these assumptions, it is
feasible to perform the needed binary analysis to recover the
necessary information for binary instrumentation, by leverag-
ing certain patterns and compiler conventions. Otherwise, it is
still an open challenge to enable the needed binary analysis.

B. VTable Hijacking Attacks

The traditional control-flow hijacking attacks can be clas-
sified into three categories: code corruption attacks, code
injection attacks and code reuse attacks. Similarly, vrable
related attacks (denoted as vrable hijacking attacks) could also
be classified into three categories: vtable corruption attacks,
vtable injection attacks and vtable reuse attacks.

1) VTable Corruption Attacks: This type of attacks directly
corrupts existing vtables’ contents (i.e., virtual function point-
ers). Once a vrable is corrupted, any further virtual function
call related to this vrable will be hijacked. This attack can
succeed if and only if the vtables are writable.

2) VTable Injection Attacks: This type of attacks injects
fake vtables into the applications, and overwrite vfptr to point
to the fake vtables. These injected vrables are in writable
sections, and attackers can control their contents. Among all
three types of vrable hijacking attacks, the vtable injection
attack is the most popular due to its high reliability.

Figure 1(b) shows a typical vtable injection attack. Attack-
ers first build a fake vrable filled with crafted function pointers;
then overwrite the vfptr in an object to point to this fake vrzable
by exploiting certain vulnerabilities, e.g., use-after-free. As a
result, any further virtual function invocation that accesses this
vfptr will be hijacked and the function specified in the fake
vtable will get executed. Advanced attack techniques such as
ROP could be used here to launch reliable attacks.

For example, attackers may first fill the fake vrable with
pointers to some ROP gadgets, such as a gadget (xchg eax,
esp; ret;). This gadget changes the stack to a memory
controlled by attackers (ie., pointed by eax), and guides
further ROP gadgets to get executed. Then, if there is a use-
after-free vulnerability in the program, attackers may try to
allocate a memory block taking the exact address as the
original freed object (e.g., object s in Figure 1(b)), in order
to overwrite the vfprr. Then, attackers can hijack the control
flow when this freed object’s virtual function is called.

Fgource code 777 rwritable séction) i read-only section !
class Base{
virtual void vi1() Base object b VTable for Base
Vot " Base vil
virual void vi10()
inta base_a
) intb bass b Base V10
class Sub public Base{ Base ID
virtual void vf1() Sub object s
virtual void vi20() vipu N VTable for Sub
inta base_a \
) o EE
void foo(Base” b) { base_b /
Int” viptr = “(int~");
nt tableiD = “(viptr + oftset); sub a Sub vi10
If(tablelD != Base::ID)
X S Base ID
- joct S:
>viog / Sub Vi1l
int main({ vipr
Base*s1 new Sub() base_a
Base*s2 new Subf() o Sub vi20
Base*b new Base() b Sub 1D
foo(s1) sub_a
(a) source code (b) object layout (c) vtables with ID

Fig. 3: The VTGuard defense solution. (a) is a sample code snippet
including a sub-class derived from the base-class. The code in bold
font is instrumented by VTGuard to match a secret cookie (i.e., ID)
in target vrable. (b) shows three objects of type Base and Sub. (c)
shows the associated vrables instrumented with the secret cookies.

3) VIable Reuse Attacks: This type of attacks also over-
writes vfptr like the vtable injection attacks. The corrupted
vfptr, however, do not point to attacker-crafted vrables, but
point to existing vrables, or other existing code or data in
memory which are not controlled by attackers.

Unlike the vzable injection attack, it is hard to reliably
launch the vrable reuse attack in practice, because there are few
existing vzables or data that can be used for attack purposes.
As far as we know, there are no publicly known vtable reuse
attacks.

C. Existing Solutions

In this section, we introduce three state-of-the-art defenses
against viable hijacking attacks and compare them with our
solution. The comparison is summarized in Table L

1) VTGuard: VTGuard [28] is a defense solution deployed
in Internet Explorer (IE) browsers. As shown in Figure 3, the
basic idea is to insert a secret cookie into each vzable. Before
each virtual function dispatch, VTGuard inserts a security
check to examine the corresponding secret cookie. If the cookie
in the vtable does not match the expected secret, a security
violation is detected and the program is terminated. This
solution can effectively mitigate certain vzable reuse attacks,
but not vtable corruption and vtable injection attacks.

TABLE I: Comparison between defense solutions against vzable
hijacking attacks, including whether they can defeat viable hijacking
attacks, whether they are resilient to information leakage attacks,
whether they support binary programs, and the performance overhead
comparison. The abbreviation SD here stands for SafeDispatch.

defense vtable hijacking info binary perf.
solution corrupt inject reuse leakage support overhead
VTGuard N N Y N N 0.5%
SD-vtable N Y Y NA N 30%
SD-method Y Y Y NA N 7%
DieHard partial partial partial NA N 8%
VTint Y Y partial Y Y 2%

VTint

i candidate i
£E e VTables recursive Viables, retumenting
n i i virtual o .
executable files function entries disassembling virtual calls PE
PEParser BitCover VRewriter

Fig. 4: Architecture of VTint. It first parses the target binary with PEParser, then disassembles the binary with BitCover, and then
finally rewrites the binary to instrument vtables and instrument virtual function dispatches with security checks using VRewriter.

For example, by launching an information leakage attack,
attackers can read the expected secret cookie from the security
check instruction before the virtual function dispatch. Then, it
can forge a vtable and put the secret cookie at the proper
location inside the fake vrable. In this way, the fake vtable can
pass the security check and the control-flow will be hijacked.

2) SafeDispatch: SafeDispatch [20] is a compiler-based
defense solution against vtable hijacking attacks. It first makes
a whole program Class Hierarchy Analysis, to infer the valid
vtable set and valid virtual function set that may be used for
each virtual function dispatch. Then it inserts security checks
before each virtual function dispatch.

There are two types of security checks that may be inserted
by SafeDispatch: method checking and vtable checking. The
first approach will check whether the target virtual function
is in a valid method set, and the second approach will check
whether the target vrable is in a valid table set.

Without runtime profile information, the average overhead
of the method checking solution is about 7%, and the vtable
checking solution’s overhead is about 30%. In addition, the
later solution cannot defeat vtable corruption attacks.

3) DieHard: DieHard [4, 34] provides a custom memory
allocator to randomize and separate the memory allocation.
In this way, it can provide a probabilistic guarantee against
vulnerabilities such as heap overflow and use-after-free, and
thus can protect vtable and vfptr from being overwritten in
some cases. Its average overhead is about 8%.

In comparison, our solution VTint directly protects bina-
ries with a low performance overhead. It can defeat all vrable
corruption and vtable injection attacks, and most vtable reuse
attacks. It is also resilient to information leakage attacks.

IV. THE VTint DESIGN

In this section, we describe the design of VTint: starting
with the security policy we deploy to defeat vtable hijacking
attacks, followed by an overview of the VTint workflow, and
finally the design of each component.

A. Security Policy

The basic security policy enforced by VTint is simple and
effective. Similar to the widely deployed DEP, it enforces that
all vtables are read-only, prohibiting vtable injection and vtable
corruption attacks. It, however, also faces a similar challenge
as DEP. Aftackers can launch vtable reuse attacks, e.g., by
overwriting the vfptr to point to existing read-only vtables or
other data or code in read-only sections, although there are no
publicly known exploits that work in this way.

Therefore VTint also enforces another security policy.
It separates vrables from other data or code in read-only
sections, and enforces that all virtual function calls’ targets are
legitimate vrables, not other data. In particular, VTint moves
vtables to a read-only section, and instruments them with a
special ID. At runtime, the virtual function dispatches’ target
vtables are validated against this ID. As a result, attackers can
only reuse existing vtables, not any other data in read-only
sections. Most vtable reuse attacks are thus defeated.

B. Overview of VTint

To deploy this security policy on binary executables,
VTint uses the binary rewriting technique. In general, it
parses and disassembles the target binary first, and then iden-
tifies all vtables and virtual function dispatches in this binary,
and finally instruments these vrables and virtual function
dispatches with security checks to enforce aforementioned
security policy. Figure 4 describes the overall workflow.

PEParser first parses the target executable. All basic
information, including sections, the export table and relocation
table, are retrieved from the binary. The executable binary’s
EntryPoint, relocation entries and entries in export table,
together form the set of candidate function entries.

Given the candidate function entries, our custom disassem-
bler BitCover conducts a recursive disassembly and identi-
fies all functions, instructions and control tables such as jump
tables. This disassembler is based on our previous work [52].
We have introduced some new forward and backward data-
flow analysis to BitCover, to identify vrables and virtual
function dispatches, in order to support VTint.

Given the vtables and virtual function dispatches, the last
component VRewriter rewrites the original binary program.
More specifically, it moves all identified vzables to a read-only
section, and instruments them with a special 1D to differentiate
them from other code or data in read-only sections. Then it
inserts security checks before each virtual function call to
enforce the aforementioned security policies, i.e., to check
whether it is read-only and whether its ID is correct.

Finally, a hardened PE format binary executable is gener-
ated. This hardened executable is immune to vtable corrup-
tion, vtable injection attacks, and most vtable reuse attacks.
Furthermore, it is resilient to information leakage attacks.

C. Binary Parsing

As described earlier, PEParser will parse the target PE
binary, retrieve all basic information, and build a set of candi-
date function entries to guide further recursive disassembling.

Moreover, it will also identify all candidate vrables. Ad-
dresses of vtables will be used in classes’ constructor func-
tions, and thus they must be relocation entries. Furthermore,
entries in vtables are all virtual function pointers, and thus
they are also relocation entries. So, by examining all relocation
entries via the relocation table, we can identify a candidate
vtable, if and only if we find a relocation entry which points
to an array, and this array is composed of (maybe only one)
other relocation entries which point into code sections. In this
way, PEParser is able to find out all candidate vtables.

D. Disassembling and Identification

BitCover disassembles the given binary and identifies
all vtables and virtual function call sites in it.

1) Disassembling: BitCover takes the original PE exe-
cutable file as input, as well as the candidate function entries
produced by the previous component PEParser, and gener-
ates the target binary’s disassembly information.

In general, the workflow of BitCover consists of two
phases. First, it greedily explores all the code and data in
the program, looking for function entries. For each candidate
function entry, BitCover starts a recursive disassembling
from it until a stop condition is met. For example, it will
stop when an invalid instruction is met, or the new instruc-
tion overlaps with some previous resolved instructions. Once
BitCover meets an invalid byte sequence, it will mark the
code entry from where it starts disassembling as invalid, and
continues disassembling the next candidate function entry. In
the second phase, BitCover refines the disassembling result.
In particular, it will mark some code entries as reliable code
entries based on some rules. Then, it propagates the reliability
across code entries based on the call graph. Finally it removes
unreachable code entries. More details of the disassembler
are discussed in our previous work [52], including other stop
conditions, and other control data tables’ identification.

2) Identifying VIables: After disassembling, we are able
to filter out all vzables from the candidate vtables provided by
PEParser. For each vtable, it will be used in the associated
class’s constructor function, and its pointer will be assigned
to the generated object’s vfptr. Based on this observation, we
propose a new forward data-flow analysis to identify these
vtable assignment operations, and filter real vtables. More
implementation details are discussed in Section V-B.

3) Identifying Virtual Function Call Sites: As Section II-A
describes, to dispatch a virtual function call, viables will
be indirectly accessed to get the address of a target virtual
function. The workflow is that, a vfptr is read out from an
object first (i.e., a memory read operation), and then a function
pointer is read out from the table pointed by the vfptr (i.e.,
another memory read operation), finally the function pointer
is indirectly jumped to or called.

Based on this general pattern, we can identify all candidate
virtual function call sites. Combining with other rules, such as
the propagation of the object pointer (i.e., this pointer) from
caller to callee functions, we can further filter out all valid vir-
tual function call sites. In this process, we use several backward
data-flow analyses to help identify the propagation of pointers
to objects and pointers to vtables. More implementation details
are discussed in Section V-C.

E. Rewriting and Instrumentation

Based on the output of BitCover, the next component
VRewriter will rewrite the original binary to enforce our
security policies. First, it creates a read-only section, and
moves all identified vtables to this section, and instruments IDs
for vtables in this section. Then, all references to vtables will
be updated to the vtables’ new addresses. Finally, VRewriter
will instrument security checks for each virtual function dis-
patch to validate the target vfable’s integrity (i.e., whether it is
read-only and contains a correct ID). The instrumented security
enforcement code will be put into a new code section, leaving
most of the original code section intact.

1) VIuble Instrumentation: First, we will move all iden-
tified vtables to a new read-only section, in case that some
legitimate vfables locate in writable sections. To move a vtable,
we need to know its size. However, it is challenging to identify
the exact size of a vfable in a binary. We conservatively move
several more bytes around vtables to the new section. More
implementation details are discussed in Section V-DI.

Then we instrument an identical ID at the beginning of each
page in the new vtable section. This ID is randomly selected,
and is different from any words at the beginning of any page
in any exiting read-only sections. In this way, we only need to
instrument an identical ID for a small number of pages, and
do not need to modify vtable’ layout. More implementation
details are discussed in Section V-D2.

2) Virtual Call Instrumentation: As Figure 1 shows, when
a virtual function is invoked, the corresponding vtable will be
implicitly accessed to get the target virtual function. VTint
will validate the property of the vtable before it is accessed,
to enforce the aforementioned security policy.

In particular, before the vtable is accessed, VTint will
check whether it is read-only, and whether there is a legitimate
ID associated with this table. If either condition is not satisfied,
the target vtable is a vulnerable table that can be exploited,
and thus will be rejected by the security check. Once a vtable
is rejected, a warning can be raised and the program can
be blocked. More implementation details are discussed in
Section V-E.

FE. Modularity and Compatibility Support

For any single module, VTint can identify all of its
vtables and virtual function dispatches, only using information
collected from the module itself. In addition, the security
checks instrumented for this module also work independently.
As aresult, VTint can be applied to a single module without
any problem, i.e., it has a perfect modularity support.

Further, if VvTint hardens all modules, there will be
no compatibility issues. For legitimate virtual function calls,
the instrumented security checks should not fail, because all
legitimate vfables have been put in read-only sections and
instrumented with an identical ID.

In some cases, however, we cannot harden all modules at
the same time. For example, some modules belonging to the
operating system cannot be altered by user space applications.
For these unhardened modules, there are no IDs instrumented
for their vtables. As a result, when these vtables are accessed in

mov tmp_reg, [esp + 4]

, data-flow: obj_reg <— tmp_reg
mov tmp_reg, candidate_vtable
; data-flow: [obj_reg] <— tmp_reg

; data-flow: obj_reg <— ECX
mov tmp_reg, candidate_vtable
; data-flow: [obj_reg] <--tmp_reg

call malloc

, data-flow: obj_reg <— EAX
mov tmp_reg, candidate_vtable
, data-flow: [obj_reg] <—tmp_reg

sub esp, SIZE

; data-flow: obj_reg <-- ESP
mov tmp_reg, candidate_vtable
; data-flow: [obj_reg] <— tmp_reg

(a) the object instance is from its caller
by argument (stdcall)

(b) the object instance is from its caller
by register ECX (thiscall)

(c) the object instance is allocated by itself
in the heap (inline allocating)

(d) the object instance is allocated by itself
on the stack (inline allocating)

Fig. 5: Constructor functions. Generally, the constructor first accepts a memory block from its caller, e.g., (a) by the first argument or (b) by
the register ECX; or allocates a memory block by itself, e.g., (c) by allocating memory in the heap or (d) by reserving space on the stack. Then
the constructor function copies this class’s vtables into proper locations inside this memory block (i.e., the object instance’s memory region).

the hardened modules, the security checks instrumented before
virtual function dispatches will fail and cause false positives.

To solve this problem, VTint also deploys a fail-safe
check to eliminate these false positives. In this fail-safe check,
only the basic security policy will be enforced, i.e., only read-
only property of vtables will be checked. In this way, it is still
able to defeat all vtable corruption and vtable injection attacks,
and will not generate false positives even for unhardened
modules that do not have IDs.

Note, in some very rare cases, the unhardened modules’
vtables are writable, and cannot pass our fail-safe check.
We believe this type of modules is extremely dangerous
because attackers can directly corrupt these vtables. So we
do not handle this type of incompatibility, and will advise the
administrator/user to harden such modules immediately.

V. IMPLEMENTATION

In this section, we describe the detail of VTint’s prototype
implementation, including the identification of some key struc-
tures (e.g., vtables, constructor functions, and virtual function
dispatches) in binary executables, and the implementation of
the security checks. It is worth noting that, in our current pro-
totype, we focused on Windows PE binaries on x86 platforms
compiled from C++ language; but the techniques we developed
for VTint is general, and can be extended to handle other
executables on other platform.

A. Identifying Constructor Functions

Every C++ object will be initialized explicitly or implicitly
by a constructor function. The general workflow of a construc-
tor function is shown in Figure 5. The object to be initialized
can be passed in from the constructor’s caller, or be directly
allocated in the constructor itself.

In the first case, the constructor’s caller has already pre-
pared the object’s memory, and passes in the this pointer. As
described in Section II-B, for stdcall, the this pointer is
pushed on stack (Figure 5(a)); and for thiscall, the this
pointer is passed through the Ecx register (Figure 5(b)).

In the second case, the constructor will allocate the ob-
ject directly, by calling memory allocation function, such as
malloc or new (Figure 5(c)), or by reserving the space on
stack (Figure 5(d)).

During the initialization, if the object’s class contains vir-
tual function(s), the constructor function will assign associated
vtables to proper locations inside the object’s memory. In
particular, the first word of this object’s memory must be a

vfptr. If this class has multiple base classes, then there may be
other vtable assignments to this memory block.

Based on this observation, we are able to identify con-
structor functions as follows. For each candidate vrable
(i.e., candidate_vtable in Figure 5) identified by the
PEParser component of VTint, we locate all assignment
operations that assign the candidate vtable to registers or
memory (i.e., tmp_req in the figure).

Then, for each of such assignments, VTint uses a forward
data-flow analysis to find out the final target memory of this as-
signment. If a target memory of form [register+offset]
is found, and no other accesses to the candidate vrable (e.g.,
reading an entry of this table) are made before assigning it
to this memory, we mark the register (i.e., obj_req in the
figure) used in this memory as a candidate pointer to an object.

Finally, vTint makes a backward data-flow analysis to
locate the source of this object register. If the source of this
object register is (1) the first argument of the current function,
e.g., Figure 5(a), (2) the register ecx that is passed from
the caller function, e.g., Figure 5(b), (3) the return value of
memory allocation function such as malloc, new or user-
defined functions, e.g., Figure 5(c), or (4) an address on the
stack, e.g., Figure 5(d), then this candidate object register
very likely points to an object, and the current function is
a constructor function.

B. Identifying vtables

After identifying all constructor functions, real vtables
can be filtered out from the candidate vrables identified by
PEParser. In particular, for each candidate vrable, it is a
real vtable if and only if all references to it are assignment
operations in constructor functions that assign them to vfprr.

For each candidate vrable, we first find out all its references
by examining all relocation entries. Then, for each reference,
we apply a static forward data-flow analysis to recognize the
propagation of this pointer. If and only if the pointer is assigned
to a memory (e.g., vfptr) before all other accesses to this
pointer (e.g., read an entry from the candidate table) are made,
this reference is marked as a vtable assignment. Finally,
if and only if all of these references are vtable assignments,
this candidate vrable is marked as an actual vrable.

For these real vtables, their sizes are still not clear. Since
it is challenging to recover the exact size of a vtable from
a binary, we conservatively compute an upper bound of the
size. We scan the words (4-byte) from the beginning of the
vtable and increase the size one by one, and stop counting the
size if one of the following conditions is met. First, if a word

mov tmp_reg1, [obj_reg + offseti]
data-flow viptr_reg <-- tmp_reg1
mov tmp_reg2, [vipir_reg + offset2]

data-flow ECX <— obj_reg
mov tmp_reg1, [obj_reg + offseti]
data-flow viptr_reg <— tmp_reg1

[mem]
[mem]

mov ECX,
mov obj_reg,

mov tmp_reg1, [obj_reg + offset1]

data-flow obj reg <— ECX

mov tmp_reg1, [obj_reg + offset1]
data-flow viptr_reg <-— tmp_reg1

data-flow tmp_obj <— obj reg mov tmp_reg2, [viptr_reg + offset2] mov tmp_reg2, [viptr_reg + offset2] data-flow viptr_reg <— tmp_reg1
push tmp_obj data-flow fp_reg <—tmp_reg2 data-flow fp_reg <—tmp_reg2 mov tmp_reg2, [vipir_reg + offset2]
data-flow fp_reg <—tmp_reg2 call fp_reg call fp_reg data-flow fp_reg <—tmp_reg2
call fp_reg call fp_reg
(a) explicit object assignment (b) explicit object assignment (c) implicit object assignment (d) implicit object assignment
by argument (stdcall) by ECX (thiscall) by ECX (thiscall) by ECX (thiscall)

Fig. 6: Virtual function dispatches. In general, the vfprr is first read from the object; and then the function pointer is read out from the vrable.
The object instance is either passed to the callee (a) explicitly through the first argument, or implicitly by ECX register. When using ECX, there
are three cases: (b) the ECX is from the object register, (c) the object register is from ECX, or (d) they are from a same memory.

scanned is not a relocation entry, then it does not belong to
the vtable. Second, if a word scanned is directly referenced by
some code or data, then it is not an entry of the vrable since
virtual function pointers will only be indirectly accessed.

C. Identifying Virtual Function Dispatches

As described in Section II-A, a virtual function dispatch
has at least three steps. First, the vfpsr that points to a vrable
is read out from the target object. Then, the target function
pointer is read out from the vrable. Finally the control-flow
transfers to the target function by an indirect call or jump
instruction. In most cases, the last two steps can be done in
one instruction because the call and jump instructions on x86
platforms support memory operands.

Before introducing the process of identifying virtual
function dispatches, we first define a notion definition
point. For a register, its definition point is a memory access
operation that retrieves the value from the memory and finally
propagates it to this register. A special case is that, if the target
register is EAX, its definition point could also be any function
invocation instruction, because for Intel x86 ABI, EAX always
holds the return value of a function invocation.

By analyzing the definition points of registers used in
instructions, especially in call/jump instructions, we are able
to identify candidate virtual function calls. First, all indirect
call/jump instructions (e.g., call fp_reqg in Figure 6) are
extracted from the disassembling result. Then, for each indirect
call/jump instruction, VTint makes a backward data-flow
analysis to locate the definition point of the target function (i.e.,
fp_regq in Figure 6) of this call/jump. If the definition point is
found, and there is another register used in this memory access,
this new register is thus a candidate vfptr (i.e., vfptr_reg
in Figure 6). Next, VTint makes another backward data-
flow analysis to locate the definition point of the vfptr_reg
register. If a definition point is found, and there is a register
used in this memory access, this register is thus a candidate
this pointer register (i.e., obj_reqg in Figure 6). Now, a
candidate virtual function dispatch is identified.

Nevertheless, not all function calls that match the above
pattern are real virtual function dispatches. For example, if
a structure member is a pointer to a function pointer, the
corresponding code to invoke the target function will also
match this pattern. Fortunately, in addition to this basic pattern,
the callers of virtual function calls need to pass a special
argument, i.e., the this pointer, to the callees.

As described in Section II-B, there are two calling conven-
tions adopted by major compilers for passing this pointers,

i.e., thiscall and stdcall. For thiscall, the this
pointer is passed to the callee implicitly through ECX register;
and for stdcall it is passed explicitly through the first
argument. So there must be a data-flow between the candi-
date this pointer and ECX register, or the first argument.
Considering this data-flow, there are four general cases of a
virtual function dispatch, as shown in Figure 6.

Taking this additional data-flow into consideration, we can
further remove invalid candidate virtual function dispatches
identified earlier. Starting from the indirect function call or
jump instructions (e.g., call fp_reg in Figure 6) in these
candidate virtual function dispatches, VTint performs a back-
ward data-flow analysis to identify all possible this pointers.
If one of the following conditions is met, the identified virtual
function dispatch is marked as real.

e The first argument pushed for the callee is from the
candidate this register (obj_req in Figure 6(a)). It
is worth noting that, push operations are not the only
way to pass arguments. For example, the instruction
mov [esp], arg also prepares the argument for
the callee. VTint also covers this case.

e At the call site of the indirect call, the value of
ECX register is from the candidate this pointer
(obj_reg in Figure 6(b)).

e The this pointer (obj_req in Figure 6(c)) is from
ECX register, and the value of ECX has not changed
between the load of vfptr and the call site.

e The candidate this pointer (obj_reg in Fig-
ure 6(d)) and ECX both come from the same memory.

D. Instrumenting vtables

To enforce the security policy, we need to instrument vza-
bles first, i.e., put them in read-only sections, and differentiate
them with other code or data in read-only sections.

1) Moving vtables: We will first create a read-only section
(denoted as vtsec) and copy all identified vrables to this
section. So, even if the original vtable is writable, the new
copy will be set to read-only. During this copy operation, we
will conservatively copy more bytes, to make sure all viable
related accesses can work without any problem.

As far as we know, there are two other types of vable
related metadata that may be accessed by the program. First,
there may be a RTTI (RunTime Type Information) pointer for
some C++ objects (e.g., operands of dynamic_cast<>).

; get viptr
mov eax, [ECX]
; save eax ; get viptr
push eax mov eax, [ECX]
; check viable's ID ; save eax try_write_viable:
and eax, 0OxFFFFF000 push eax ; register SEH handler
cmp [eax], ID ; check viable's ID push SEH_Handler
jnz ERROR1 and e?xea,f]xl’lI[’)FFFOOO push FS:[01
; test viable is writable cmp s mov FS:[0], esp SEN Handier:
ush ... jnz ERROR1 trigger_seh: T :)
Ball IsBadWritePtr ; test viable is writable mov [eax], ID i #3 ool i o CONTEXT
test eax, eax call try_write_vtable is_wnitable: I'TIOV e'ax, Eel:p."om CONTEXT struct
iz ERROR2 ; restore eax jmp ERROR2 e ey by strue
i get viptr ; restore eax pop eax seh_handler_ret_site: . L
mov eax, [ECX1 pop eax : virtual function call pop FS:0l ; return 0 indicates handler succeeds
j virtual function call ; virtual function call mov edx, [eax+4] add esp,4 xor eax, eax
mov edx, [eax+4] mov edx, [eax+4] call_edx ret ret
i call_edx
S ——
(a) a typical virtual function call (b) security check solution #1 (c) security check solution #2

Fig. 7: Tlustration of VTint’s security check solution. (a) describes the original virtual function dispatch which needs to be checked. (b) is
a basic solution which first check the ID of the target vrable, and then test whether the vrable is writable by calling existing system APIs such
as IsBadWritePtr. (c) is an optimized solution to check the ID and test the memory property, by utilizing Windows” Structured Exception

Handling (SEH) mechanism.

This pointer usually locates right before the vtable, and is used
for runtime introspection. Second, there may be some offset
adjustors before the vtables used for adjusting this pointer
before invoking a virtual function. For each virtual function in
this vtable, there is at most one this adjustor. So, for a vrable
of size N, there may be at most 4+4 N bytes metadata before
the vrable. It is worth noting that, all this adjustors are not
relocation entries, so we can reduce the size of the metadata
if a relocation entry is found within this metadata region.

As mentioned in Section V-B, PEParser is able to get
an upper bound of the count of virtual functions in a vtable.
Suppose this upper bound is N, we will copy this vtable and its
candidate metadata (at most 4+4«N bytes) before the vrable
to the new section vtsec.

2) Instrument 1Ds: Then we will instrument vtables with
a special ID, to differentiate them from other data or code in
read-only sections. To instrument IDs, we need to answer two
questions: where to instrument, and what IDs can we use?

As shown in Figure 3, the VTGuard solution instruments
the secret cookies (i.e., IDs) at the end of vtables. It will
thus change the layout of vtables. For binary programs, we
can hardly get the class hierarchy information, and we cannot
instrument IDs in this way. Similarly, we cannot instrument
IDs before vrables, as there may be some metadata. Instead,
we instrument an ID at the beginning of each page in the new
vtable section (i.e., vtsec). In this way, we do not modify
the layout of vtables, introducing no compatibility issues.

We propose a novel ID selection solution. More specifically,
we randomly select an ID that is different from any words at
the beginning of any page of any existing read-only sections.
Because the count of such words is limited (i.e., smaller than
page count), there are many candidate 1Ds for use. Unlike other
secret-based solutions, this solution is resilient to information
leakage attacks. Even if attackers know the ID we are using,
they cannot forge a read-only page with this ID, and can only
reuse pages in our new vtable section.

E. Instrumenting Security Checks

After identifying all vtables and virtual function dispatches,
VTint inserts security checks before the virtual function calls

to validate the vrable’s integrity. As shown in Figure 7, the
security checks will first match the 1D of the target vtable.
Then, it will test whether the vrable is read-only. If any one
check fails, the control flow will transfer to pre-defined error
handlers, blocking the program from further execution.

It is worth noting that, there is no efficient solution
available to check whether a memory location is writable
(or readable, executable) on x86 platforms. In Windows, a
program is able to get all its loaded modules’ memory map
information by traversing a special data structure in the Process
Environment Block (PEB). In Linux, it is possible to get the
memory map information from the /proc file system. In
practice, however, both solutions are too slow.

Some APIs provided by the operating system can also be
used to test whether a memory is writable. For instance, the
IsBadWritePtr (Figure 7(b)) in Windows is a qualified
API But this function is inefficient, and will break the program
state in some cases. The read () function in Linux, which
reads file contents to the target memory, can also be used to
test whether the target memory is writable. The performance
overhead, however, is also high.

VTint deploys another solution to check whether the
target memory is read-only, by utilizing the Windows” Struc-
tured Exception Handling (SEH) machanism. The function
try_write_vtable in Figure 7(c) will check if the vrable
is writable. In particular, this function first registers a special
SEH exception handler on the stack. Then, it tries to write the
target vtable with the 1D (i.e., trigger_seh in the figure).

If the vtable is writable, this write operation will succeed,
and the following instruction jmp ERROR2 will be executed.
This error handler terminates the application and never returns
to the original virtual function call that is vulnerable.

Otherwise, this write operation will trigger an exception,
and the exception handler (i.e., SEH_handler in Figure 7)
registered in this function will be automatically invoked by the
operating system. In this exception handler, we only increase
the EIP register in the program state record (i.e., a CONTEXT
structure) by 5 and then return. The return value of this handler
is set to 0, instructing the operating system to restore the pro-
gram state and transfer the control flow to the user application.

TABLE II: Analysis results of the SPEC2000 and SPEC2006 benchmark applications. Only applications having virtual functions are listed
here. The second column SPEC describes which SPEC subset the application is from. The third column source LOC counts the applications’
line of source code. The following column shows the analysis time that VTint takes to disassemble and rewrite this application’s binary. The
file size group of columns shows the original file size, the hardened binary’s size and the size overhead. The VTbale info group of
columns shows the statistics of information related to virtual tables, including the count of instructions, the count of virtual tables and the
count of virtual function dispatches. The last group of columns describes the runtime performance of the original SPEC applications and the
hardened ones, and the performance overhead is then computed. The geometry mean value of these performance overheads is about 0.37%.

analysis file size (KB) VTable info Run Time (sec.)

App SPEC source time size perf.

LOC (sec) orig new | overhead #inst | #vtables | #vcalls orig new | overhead
252.eon spec2000int 41,188 5.9 572 605 5.81% 135,253 68 205 33.8 34.8 2.96%
444 namd spec2006fp 3,886 55 532 544 2.20% 127,593 3 2 989 979 -1.0%
447 dealll spec2006fp 94,384 12.3 1,639 | 1,684 2.70% 360,153 115 200 2,172 | 2,180 0.37%
450.soplex spec2006fp 28,277 6.7 516 551 6.72% 210,347 51 495 556 560 0.72%
453.povray spec2006fp 78,705 136.3 1,170 | 1,221 4.34% 226,923 48 112 440 429 -2.5%
471.omnetpp spec2006int 19,991 9.2 811 910 12.20% 242,166 127 1,431 218 221 1.38%
473.astar spec2006int 4,280 1.5 119 119 0.03% 41,710 2 0 292 292 0
483.xalancbmk | spec2006int | 267,399 211.6 3,767 | 4,030 6.97% 872,069 29 4,248 179 181 1.12%

As a result, the instruction jmp ERRORZ2 (5 bytes) will be
skipped, and the testing function try_write_vtable will
return to the original virtual function call site.

F. Fail-Safe Check

As discussed earlier, in case that some modules are not
hardened by VTint, the instrumented security check may fail
and cause false positives, because there is no ID instrumented
before the vtables in unhardened modules.

To handle such cases, we deploy a fail-safe solution to
provide better compatibility. This fail-safe solution will only
enforce the vtable to be read-only, but not enforce the existence
of the ID if the current module is not hardened. If VTint is not
deployed on all modules, the error handler for ID mismatching
(i.e., ErroOR1 in Figure 7) will first check whether current
module is hardened by vTint. If yes, it blocks the control
flow, and reports an attack. Otherwise, it will not block the
control flow, but just return back to the original code to further
check whether the viable is read-only. In this way, VTint can
still defeat all vtable corruption and vtable injection attacks,
and also provides better compatibility.

To tell whether a module is hardened by VTint, we will
traverse the Process Environment Block (PEB) of the current
executable at runtime, to resolve the section information of the
current module. If a read-only section named vt sec is found,
and the first 4-bytes of this section is the matching ID we used
for vtables, we can conclude that it is hardened by VTint.

VI. EVALUATION

We have implemented a prototype of VTint for x86 PE
executables on the Windows platform. In this C++ implemen-
tation prototype, our custom disassembler BitCover uses an
open source disassembler library Udis86 [47] to decode x86
instructions. In addition to the 8K LOC of Udis86, BitCover
takes about Sk LOC, while VRewriter takes another 3k LOC
and PEParser takes 2k LOC.

We have tested VTint with the SPEC2000 [16] and
SPEC2006 [17] benchmark binaries, and some real world
browsers including Firefox, Chrome and Internet Explorer 6

10

and 8 (denoted as IE6 and IES),! to evaluate our defense
solution’s performance and protection effectiveness.

A. Performance of Static Analysis

In this section, we first describe our experiment setup,
and then show the analysis time of VTint, and the file size
overhead brought by VTint.

1) Experiment Setup: The SPEC2000 and SPEC2006
benchmarks are composed of applications written in C/C++
and Fortran. To harden these benchmarks with VTint, we first
compile them to PE binaries supporting relocation table. For
those applications written in C/C++, we compile them using
the Microsoft Visual Studio 2010 compiler. For those written
in Fortran, we use the Intel Fortran Compiler to compile them.
For each application, all modules are statically linked together.
This experiment is performed on a Windows 7 32bit system,
with an Intel Core2 Duo CPU at 3.00GHz.

We use VTint to automatically disassemble and rewrite
all these benchmark applications’ binaries. The functions iden-
tified by vTint are compared with the symbol information
from the source code. The result shows that there is no false
positives or false negatives when parsing these binaries. We
then replace the original SPEC binaries with the hardened bina-
ries generated by VTint, and then run the performance test by
using the original SPEC harness scripts. The performance test
scripts also check the behavior of the benchmark applications
by matching the outputs of applications with expected outputs.
Results show that the behavior of hardened applications is
same as the original ones’, indicating that the disassembling
and rewriting of VTint is correct and does not break target
applications.

For real world browsers including Firefox and Chrome, we
harden each executable module (i.e., *.dll and *.exe) of the
browser using VTint. We then replace the original modules
with the hardened ones to test the performance and protection
effectiveness. Results show that VTint is able to disassemble

! Newer browsers often require newer OS, causing them hard to be replaced
by VTint due to the integrity protection provided by the OS. In addition, there
are fewer public exploits available for defense evaluation. Hereby, we chose
these two old version browsers for testing.

TABLE III: Analysis results of Firefox modules, including the analysis time each module

takes, the file size information of the original

binaries and the hardened binaries, and the statistics of the VTable related information.

analysis file size (KB) VTable info

App time size

(sec) orig ‘ new overhead #inst ‘ #vtables ‘ #vcalls
crashreporter.exe 1.8 116 117 0.52% 18,461 3 15
updater.exe 3.7 271 276 1.77% 112,693 9 17
webapprt-stub.exe 1.6 96 97 0.61% 38,589 2 17
D3DCompiler_43.dll 74.3 2,106 2,202 4.53% 2,135,041 48 1338
d3dx9_43.d11 36.9 1,998 2,184 9.33% 627,400 124 4152
gkmedias.dll 84.9 4,221 4,493 6.45% 2,130,418 483 5542
libEGL.dIl 0.99 59 64 7.99% 17,772 3 156
libGLESv2.dll 23.7 473 519 9.91% 913,890 87 983
mozjs.dll 123.6 2,397 2,444 1.95% 4,553,743 35 174
msvep100.dll 5.0 421 450 6.79% 78,586 116 438
msverl100.dll 13.2 770 778 0.92% 291,484 91 270
xul.dll 328.9 15,112 17,768 17.57% 5,801,649 6548 54743

TABLE 1V: Analysis results of Chrome modules, including the analysis time each module

takes, the file size information of the original

binaries and the hardened binaries, and the statistics of the VTable related information.

analysis file size (KB) VTable info

App time size

(sec) orig ‘ new overhead #inst ‘ #vtable #vcalls
delegate_execute.exe 21.9 2,105 2,162 2.68% 629,884 428 1,628
chrome_elf.dll 1.9 132 131 -1.3 % 49,138 11 34
d3dcompiler_43.dll 59.4 2,106 | 2,199 4.42% 2,135,041 48 1,338
d3dcompiler_46.dll 106.8 3,231 3,489 7.99% 3,979,873 622 5,017
libegl.dll 1.8 174 174 -0.41% 47,588 9 64
libglesv2.dll 31 1,097 1,157 5.43% 1,303,450 165 1,885
libpeerconnection.dll 23.6 2,461 2,668 8.37% 658,700 437 6,416
metro_driver.dll 6 504 534 5.88% 181,753 177 920
pdf.dll 70.3 8,577 | 8,868 3.38% 2,145,987 1,048 8,602
ppgooglenaclpluginchrome.dll 3.7 331 334 0.64% 106,962 51 142
widevinecdmadapter.dll 1.5 137 138 0.28% 47,423 29 110
xinputl_3.d11 1.3 81 79 -3.12% 23,645 2 4
chrome.exe 8.1 852 865 1.47% 231,493 82 433

and rewrite real world binaries. For example, the module
xul.dll in Firefox (version 17.0.1) has a size of more
than 15MB, containing about 6 millions instructions and more
than 70,000 functions. VTint can automatically handle these
binaries without causing problems. These experiments are also
performed on a Windows 7 32bit system.

We also harden some modules of the IE browser (e.g.,
the core module mshtml .d11). These modules are extracted
from a virtual machine running Windows XP SP3. After
hardening, they are copied back to replace the original ones.’

2) Analysis Time: The disassembling and rewriting process
of VTint is quite fast. In general, it only takes several seconds
to harden a single module.

As shown in Table II, for most SPEC applications that have
virtual functions, the analysis time is less than 10 seconds. The
application 483 .xalancbmk from the SPEC2006int subset
takes the longest time, about 212 seconds. Actually it is also
the largest one among these applications, with 267K lines of
source code and about 900K machine code instructions.

Table IIT and Table IV show the analysis time of VTint
when handling the executable modules of Firefox and Chrome
respectively. Most of these modules take less than one minute.
The module xul.d11 in Firefox takes the longest time (about

2These modules are in the system directory, protected by the operating
system. And thus, special efforts are needed to replace these modules.

11

5 minutes), due to its size. This module is more than 15MB
and has about 6 million instructions.

We also tested the IE 6 browser, the results are similar
and we omit the detailed data. For example, the core module
mshtml.dll is about 4MB and has about 1 million instruc-
tions. It only takes 51 seconds for VTint to disassemble and
rewrite this module.

3) File Size Overhead: VTint needs to copy the original
vtables to a new data section, instrument IDs in this section,
and also instruments virtual function dispatches with security
checks to validate the target vtable’s integrity. In general,
vTint will allocate new data and code sections to put the
new vtables and the security check instructions in.

Moreover, entries in the vtables are all function pointers,
and need to be relocated when the binary module is loaded
into memory. As a result, we need to update the executable
binary’s relocation table, to record all entries in the new
vtables. In addition, the security checks may introduce new
relocation entries too. These entries also need to be recorded
in the relocation table. Therefore, VTint also creates a new
relocation table. All these newly generated relocation table and
sections contribute to a file size increment to target binaries.

As shown in Table II, Table III and Table IV, the over-
all file size overhead brought by VTint is about 5%. For
example, the file size overhead of the SPEC2006 application
483 .xalancbmk is about 6.97%. The file size overhead of

w
W

N
n

[
n

-

Performance Overhead (%)
~N

o
n

sunspider rightware peacekeeper

o
LiteBrite

Fig. 8: Performance overhead of VTint-hardened Firefox, tested
against 6 popular web benchmarks. The geometry mean performance

overhead is 1.84%.

the xul.dl1l1l module of Firefox is about 17.57%, largest in
all these tested modules. Meanwhile, the file size overhead of
the chrome.exe is about 1.47%.

It is worth noting that, for some binaries, their hard-
ened version may have a smaller file size. For example,
the 1ibegl.d1l1l module of Chrome becomes smaller after
hardening. This is a normal phenomenon, because some binary
files include extra padding bytes at the end of the files. VTint
will remove these padding bytes, and output a smaller file.

For the 1E browser which is not listed here, its file size
overhead is also low. For example, the file size overhead of
mshtml.dll is about 9%.

Furthermore, in the current implementation of VTint, the
security checks are all instrumented in a new code section
because there may not be enough space around the virtual
function dispatch instructions. But in fact, compilers usually
instrument several padding bytes around functions. With an
accurate disassembling, it is possible to identify all these
padding bytes in the original code section, and then reuse these
bytes to instrument security checks. Our future work will apply
this optimization to get a smaller file size overhead.

B. VTuable Statistics

VTint first needs to identify some key structures in
the binary, including vtables and virtual function dispatches,
before deploying the security policy. In this section, we give
the statistics of these structures.

In the Table II, columns in the VTable info group
show the statistics related to vtables. For example, among the
872K instructions of 483 .xalancbmk, there are 4248 virtual
function dispatches. These virtual function dispatches may
use virtual function pointers coming from 29 vtables. There
is a special case in this table, the application 473.astar
has two vtables, but has no virtual function dispatches. After
manual analysis of the source code, we confirm that, there
are two classes containing virtual functions. But any objects
of these two classes or their sub-classes never invoke these
virtual functions. In other words, the vtable information of
473.astar identified by VTint is correct.

Table IIT and Table IV shows the statistics of vtable related
information of the modules from Firefox and Chrome. For
example, in the Firefox’s module xul.d11, there are 6548
vtables, and 54743 virtual function dispatches. As there are
about 5.8 millions of instructions in total in this module, we

12

"
- n ~

Performance Overhead (%)

e
n

LiteBrite

kraken sunspider rightware peacekeeper

Fig. 9: Performance overhead of VTint-hardened Chrome, tested
against 6 popular benchmarks. The geometry mean performance
overhead is 1.37%.

find that, in every 100 instructions, there is about one virtual
function dispatch. This ratio is quite high, indicating that the
attack surface of vrable hijacking attacks is large.

C. Runtime Performance

The runtime performance is a key factor affects the adop-
tion of a defense solution. In this section, we test the overhead
brought by VTint by comparing the performance of original
binaries and the hardened binaries of several applications.

1) Runtime Overhead on SPEC benchmarks: First, we test
the SPEC benchmark applications’” performance. Table II shows
the performance data of the original binaries and the hardened
binaries. The average performance overhead is about 0.37%
for these applications. The highest performance overhead
is the one of 252.eon, about 2.96%. Some applications
even get faster after hardening, such as the 444 .namd and
453.povray, maybe due to some experimental errors.

It is worth noting that, because there is no virtual function
dispatches in 473 . astar (although it has 2 vtables), VTint
does not instrument any security checks for this application.
On the other hand, the performance overhead of 473. astar
is zero, also respects this fact.

2) Runtime Overhead on Real World Browsers: Then we
test the performance of two real-world browsers: Firefox and
Chrome. We use six popular browser benchmarks to evaluate
these two browsers’ performance on JavaScript, HTML ren-
dering and HTMLS support, including Google’s Octane [14],
Morzilla’s Kraken [29], Apple’s Sunspider [3], Microsoft’s
LiteBrite [26], RightWare’s BrowserMark [41] and Future-
Mark’s PeaceKeeper [12].

As shown in Figure 8 and Figure 9, the overall performance
overhead for all browsers is about 1.6%, whereas the average
overhead of Chrome and Firefox is about 1.37% and 1.84%.

3) Performance Analysis: The runtime performance over-
head brought by VTint is lower than most of previous
solutions. The SafeDispatch solution [20] introduces a per-
formance overhead of 7% (using method checking) and 30%
(using vtable checking), when no runtime profile information
is provided. The memory allocation solution DieHard [4] also
introduces an overhead of 8%.

The major performance overhead of VTint comes from
the instrumented security checks that test the target vtable’s
read-only property. As described in Section V-E, the current

TABLE V: Real World Exploit Samples Prevented By VTint. These
exploits are collected from public resources, including the famous
database exploit-db. IE here stands for Internet Explorer, and FF
stands for Firefox.

CVE-ID App Vul Type POC Exploit Protected
CVE-2010-0249 1E6 use-after-free vtable injection (5] YES
CVE-2012-1876 1E8 heap overflow vtable injection [38] YES
CVE-2013-3205 1E8 use-after-free vtable injection [7] YES
CVE-2011-0065 FF3 use-after-free vtable injection [40] YES
CVE-2012-0469 FF6 use-after-free vtable injection [15] YES
CVE-2013-0753 | FF17 use-after-free vtable injection [23] YES

solution used by VTint is based on Windows’ Structured Ex-
ception Handling (SEH) mechanism. When testing legitimate
read-only vrables, the security checks will trigger memory
write violation exceptions. The registered SEH handler will
then catch these exceptions, and finally redirect the control
flow to the application’s original code. When testing illegal
vtables that are writable, the security checks will not trigger
exceptions, but flow to a predefined error handler.

This testing works fine, but its performance overhead
is still high. Most (even all) target vtables at runtime are
legitimate and thus are read-only, and cause many memory
write exceptions, leading to a higher-than-desired performance
overhead. As far as we know, there is no other alternate
solution that is more efficient to check whether a memory is
writable. We hope the hardware or the operating system can
provide supports to do a quick memory property check in the
future, similar to the hardware support for DEP. In that case,
the performance overhead of VTint will become much lower.

D. Protection against Real World Exploits

To evaluate the effectiveness of VTint, we choose 6
publicly available vtable hijacking exploits from the Internet,
including security research blogs such as Vupen’s blog, the
penetration testing framework Metasploit [24] and the exploit
database exploit-db [35], as shown in Table V. These exploits
all target real-world browser applications, e.g., Internet Ex-
plorer and FireFox, by exploiting vulnerabilities such as use-
after-free and heap overflow. They all inject fake vtables into
the memory and finally launch the vtable injection attacks.
For the Chrome browser, there are very few public available
exploits. So, it is not tested here.

Table V also lists other detailed information of the 6
exploits we used. For each exploit, we list the vulnerabilities’
CVE-ID, application version, and type of the vulnerabilities and
the reference of a detailed POC description.

We carry out these experiments in a virtual machine
running Windows XP SP3. Core modules of target applications
are extracted from the virtual machine first. Then VTint
disassembles and rewrites these modules in our analysis plat-
form. Finally, these hardened modules are copied back to the
virtual machine to replace the original ones. After deploying
the hardened modules, we drive target applications to access
the malicious URLs that contain these exploits. Results show
that, the security checks instrumented by VTint will block all
these exploits. In other words, VTint is able to protect real
world browsers from vtable hijacking attacks.

13

VII. SECURITY ANALYSIS AND DISCUSSION

By checking the memory property of vtables, VTint can
defeat all vtable corruption and vtable injection attacks. The
only way to bypass VTint is to reuse fake vtables in the read-
only memory, like using code reuse attacks (e.g., return-to-libc
or ROP attacks) to bypass DEP.

In addition, VT int will instrument a special 1D for vtables,
and match this ID before virtual function dispatches. This
solution is resilient to information leakage attacks. As a result,
attackers can only reuse existing vfables in the read-only
memory to bypass VTint. As there are not many vfables in
an application, the attack surface is small. It is also hard to
find an existing vtable that is useful to launch further attacks.

Further, a fine-grained vtable checking policy is able to
defeat this type of vtable reuse attack. A fine-grained vtable
checking policy, however, requires the type information and
class hierarchy information of target applications, which is
hard to retrieve using binary analysis. Our future work will
focus on identifying this information from binaries, and extend
VTint to defeat all vtable hijacking attacks.

Currently, to deploy VTint in practice, we can combine it
with other lightweight solution to provide better security. For
example, the solution VTGuard is a perfect choice. VTGuard
also instruments IDs for each vtable. It can defeat viable
reuse attacks, but is vulnerable to vtable corruption and vtable
injection attacks. It also has a negligible performance overhead
(less than 0.5%).

Combining with the VTGuard solution, VTint can defeat
all vtzable hijacking attacks. The overall performance overhead
is still acceptable (it should be less than 2% together). It is
worth noting that, after combining, the VTGuard solution is
also resilient to information leakage attacks, because the target
vtables must be read-only and cannot be forged or corrupted by
attackers even if VT Guard’s IDs have been leaked. Moreover,
currently VTint implements a similar ID checking to defeat
some vtable reuse attacks. When combining with VTGuard,
this ID checking can be merged with VTGuard’s. As a result,
the overall performance overhead can be further reduced.

VTint is a pure binary instrumentation solution. It iden-
tifies vtable-related components (e.g., virtual function tables
and virtual function call sites) from the binary, by leverag-
ing certain patterns and calling conventions implemented by
major compilers. VTint also cannot handle binaries that are
obfuscated. For binaries which are obfuscated or do not follow
these patterns, it is still an open challenge to enable the needed
binary analysis.

VIII. RELATED WORK

In this section, we discuss some representative works on
the defense of vtable hijacking attacks and other control flow
hijacking attacks, as well as the binary analysis work.

Memory Safety. The memory safety policy ensures that
no out-of-bounds or dangling pointers can be exploited for
unauthorized read or write of memory. As a result, attackers
cannot tamper target applications’ program states, or launch
control-flow hijacking attacks, including the vrable hijacking
attacks. There are many memory safety solutions proposed

by researchers, e.g., [10, 36, 44, 51]. These solutions usually
instrument pointers with extra metadata when they are created,
track the metadata during the program execution, and check
the metadata when these pointers are used to access memory.

The most representative solutions are the spatial memory
safety solution SoftBound [31] and the femporal memory
safety solution CETS [32]. These solutions, however, all intro-
duce a high performance overhead, prohibiting their adoptions.
For example, the combination of SoftBound and CETS will
enforce a complete memory safety at the cost of 2x or more
performance overhead.

Code Pointer Integrity (CPI) [21] proposed a lightweight
memory safety solution, protecting only sensitive pointers
including code pointers. The performance overhead of CPI is
about 8.4%. It also needs the source code to enable the code
pointer analysis and instrumentation.

Control-Flow Integrity. The CFI solution provides a strong
guarantee that all control flow transfers must comply with
programmers’ intentions, i.e., they must respect the program’s
compile-time Control-Flow Graph (CFG). It can stop many
different types of control flow hijacking attacks including
ROP [45], return-to-libc [46] and vtable hijacking attacks. The
original CFI solution was proposed in 2005 [1]. It is not
adopted by the industry, however, because it requires source
code of target applications and introduces a high overhead.

Recently proposed coarse-grained CFI solutions [52, 53]
deploy CFI directly on binary executables. As there is no type
information in binaries, only a coarse-grained CFI policy is
thus enforced. As a result, attackers can bypass the protection
in some cases [13].

Some other CFI solutions [33, 50] enforce a fine-grained
CFI policy on target applications. These solutions depend on
the information collected by compilers at compile-time or by
virtual machines. The dependency on source code and the high
performance overhead, however, also restrict their adoption.

VTable Hijacking Defense. SafeDispatch [20] hardens the
program at compile time to defeat vfable hijacking attacks. It
utilizes the LLVM complier infrastructure to perform a whole
program Class Hierarchy Analysis, and compute the valid
method set and the valid vfable set for each virtual function
dispatch, and then validate them at runtime. Researchers from
Google also proposed a similar approach [48]. These solu-
tions, however, need source code of all modules and require
recompiling target applications to deploy the security policy.
In addition, their runtime overhead is still high.

VTGuard [28] is another solution to protect applications
from vtable hijacking attacks, deployed in the modern Internet
Explorer browsers. This solution instruments secret cookies
in vtables and match them at runtime. It has a negligible
performance overhead and can defeat vtable reuse attacks. But
it also needs target applications’ source code. Furthermore, it
is vulnerable to information leakage attacks, vtable corruption
and vtable injection attacks.

DieHard [4] proposes a custom memory allocator to pro-
vide probabilistic memory safety at runtime. By randomizing
and replicating heap objects, it can tolerate various memory
errors (e.g., heap-based buffer overflows, use after free) with

14

a high probability. As a result, some of the vfable hijacking
exploits can be eliminated by this solution. The average
overhead of this solution is about 8%.

Binary Analysis. Many studies have been made to analyze
binaries. Schwarz et al. [43] discuss the disassembly problem
in detail, including two standard algorithms and a new com-
bination. Many other approaches [18, 19, 39] are proposed
to identify code and data in binaries. Some systems such as
Vulcan [11] provide a general framework for binary rewriting.
The work [9] also discusses some efforts to identify virtual
function dispatches. It also uses some similar heuristics as
VTint, but targets different problems. In addition, it is built on
top of the commercial disassembler IDA Pro [18], and relying
on the LLVM compiler framework to analyze target binaries.

IX. CONCLUSION

In this paper, we propose a novel approach VTint to de-
feat vtable hijacking attacks. It validates the vtables’ integrity
by checking the memory’s read-only property and the ID
associated with vtables. It is able to defeat all vtable corruption
and vtable injection attacks, and most vtable reuse attacks. It
is also resilient to information leakage attacks.

VTint can be applied through binary rewriting on exe-
cutables generated by modern compilers. It provides a good
modularity support and backward compatibility support. Its
runtime performance overhead is low (less than 2%). It can
defeat real world vtable hijacking attacks.

ACKNOWLEDGMENT

This research was supported in part by the Natural Science
Foundation award CCF-0424422, DARPA award HROO11-
12-2-005, and FORCES (Foundations Of Resilient CybEr-
Physical Systems), which receives support from the National
Science Foundation (NSF award numbers CNS-1238959,
CNS-1238962, CNS-1239054, CNS-1239166).

REFERENCES

[1] M. Abadi, M. Budiu, U. Erlingsson, and J. Ligatti, “Control-flow
integrity,” in ACM Conference on Computer and Communica-
tions Security (CCS), 2005.

S. Andersen and V. Abella, “Data Execution Prevention:
Changes to Functionality in Microsoft Windows XP Service
Pack 2, Part 3: Memory Protection Technologies,” http://technet.
microsoft.com/en-us/library/bb457155.aspx, 2004.

Apple, “Sunspider 1.0.2 javascript benchmark suite,” https:
/Iwww.webkit.org/perf/sunspider/sunspider.html, 2014.

E. D. Berger and B. G. Zorn, “Diehard: probabilistic memory

(2]

(3]
(4]

safety for unsafe languages,” in PLDI, vol. 41, no. 6. ACM,
2006, pp. 158-168.
[5] S. BRADSHAW, “Heap Spray Exploit Tutorial: Internet

Explorer Use After Free Aurora Vulnerability,” http://www.
thegreycorner.com/2010/01/heap-spray-exploit-tutorial-internet.
html, 2010.

S. Chen, J. Xu, E. C. Sezer, P. Gauriar, and R. K. Iyer, “Non-

control-data attacks are realistic threats,” in USENIX Security

Symposium, 2005.

[7] s. corelancOd3r, “MS13-069 Microsoft Internet Explorer
CCaret Use-After-Free,” http://www.exploit-db.com/exploits/
28481/, 2013.

[8] C. Cowan, C. Pu, D. Maier, J. Walpole, P. Bakke, S. Beattie,
A. Grier, P. Wagle, Q. Zhang, and H. Hinton, “StackGuard:

(6]

(9]

[10]

(1]

(12]

(13]

(14]

[15]

[16]
(17]

(18]

(19]

(20]

(21]

(22]
(23]
[24]

[25]

[26]

(27]

(28]

[29]

(30]

(31]

Automatic adaptive detection and prevention of buffer-overflow
attack,” in USENIX Security Symposium, 1998.

D. Dewey and J. T. Giffin, “Static detection of c++ vtable escape
vulnerabilities in binary code.” in NDSS, 2012.

D. Dhurjati and V. Adve, “Backwards-compatible array bounds
checking for ¢ with very low overhead,” in Proceedings of the
28th international conference on Software engineering. ACM,
2006, pp. 162-171.

A. Edwards, A. Srivastava, and H. Vo, “Vulcan: binary transfor-
mation in a distributed environment,” Microsoft Research, Tech.
Rep. MSR-TR-2001-50, 2001.

FutureMark, “Peacekeeper: HTMLS browser speed test,” http:
/Ipeacekeeper.futuremark.com/, 2014.

E. Goktas, E. Athanasopoulos, H. Bos, and G. Portokalidis, “Out
of control: Overcoming control-flow integrity,” in /[EEE S&P,
2014.

Google, “Octane JavaScript benchmark suite,”
https://developers.google.com/octane/, 2014.
J. Gruskovnjak, “Advanced Exploitation of Mozilla

Firefox Use-after-free Vulnerability (MFSA 2012-22),”
http://www.vupen.com/blog/20120625.Advanced_Exploitation_
of_Mozilla_Firefox_UaF_CVE-2012-0469.php, 2012.

J. L. Henning, “SPEC CPU2000: Measuring CPU Performance
in the New Millennium,” Computer, Jul. 2000.

J. L. Henning, “SPEC CPU2006 benchmark descriptions,”
SIGARCH Comput. Archit. News, vol. 34, pp. 1-17, Sep. 2006.
Hex-Rays SA, “IDA Pro: a cross-platform multi-processor disas-
sembler and debugger.” http://www.hex-rays.com/products/ida/
index.shtml.

J. Hiser, A. Nguyen-tuong, M. Co, M. Hall, and J. W. Davidson,
“ILR : Where’d my gadgets go,” in I[EEE Symposium on Security
and Privacy, 2012.

D. Jang, Z. Tatlock, and S. Lerner, “SAFEDISPATCH: Securing
C++ Virtual Calls from Memory Corruption Attacks,” in 20th
Annual Network and Distributed System Security Symposium,
2014.

V. Kuznetsov, L. Szekeres, M. Payer, G. Candea, R. Sekar,
and D. Song, “Code-pointer integrity,” OSDI’14, 2014,
00000. [Online]. Available: https://www.usenix.org/system/files/
conference/osdil4/osdil4-paper-kuznetsov.pdf?utm_source=
dlvr.it&utm_medium=tumblr

S. B. Lippman, Inside the C++ object model. Addison-Wesley
Reading, 1996, vol. 242.

Metasploit, “Firefox XMLSerializer Use After Free,” http://
www.exploit-db.com/exploits/27940/, 2013.

Metasploit Open Source Commitment, ‘“Metasploit Penetration
Testing Software & Framework,” http://metasploit.com.
Microsoft, “Software vulnerability exploitation
trends: Exploring the impact of software miti-
gations on patterns of vulnerability exploitation
(2013),” http://download.microsoft.com/download/F/D/F/
FDFBES532-91F2-4216-9916-2620967CEAF4/Software%
20Vulnerability %20Exploitation%20Trends.pdf, 2013.
Microsoft IE, “LiteBrite: HTML, CSS and JavaScript
Performance Benchmark,” http://ie.microsoft.com/testdrive/
Performance/LiteBrite/, 2014.

Microsoft Visual Studio 2005, “Image has safe exception
handlers,” http://msdn.microsoft.com/en-us/library/9a89h429%
28v=vs.80%29.aspx.

M. R. Miller, K. D. Johnson, and T. W. Burrell, “Using virtual
table protections to prevent the exploitation of object corruption
vulnerabilities,” Mar. 25 2014, uS Patent 8,683,583.

Mozilla, “Kraken 1.1 javascript benchmark suite,” http://
krakenbenchmark.mozilla.org/, 2014.

MWR Lab, “MWR Labs Pwn20wn 2013 Write-up - We-
bkit Exploit,” https://labs.mwrinfosecurity.com/blog/2013/04/
19/mwr-labs-pwn2own-2013-write-up---webkit-exploit/, 2013.
S. Nagarakatte, J. Zhao, M. M. Martin, and S. Zdancewic,

15

(32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]
[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

“SoftBound: highly compatible and complete spatial memory
safety for C,” in Conference of Programming Language Design
and Implementation (PLDI), 2009.

S. Nagarakatte, J. Zhao, M. M. Martin, and S. Zdancewic,
“CETS: compiler enforced temporal safety for C,” in Interna-
tional Symposium on Memory Management (ISMM), 2010.

B. Niu and G. Tan, “Modular control-flow integrity,” in Proceed-
ings of the 35th ACM SIGPLAN Conference on Programming
Language Design and Implementation. ACM, 2014, p. 58.
G. Novark and E. D. Berger, “Dieharder: securing the heap,”
in Proceedings of the 17th ACM conference on Computer and
communications security. ACM, 2010, pp. 573-584.
Offensive Security, “The exploit database: an ultimate archive of
exploits and vulnerable software,” http://www.exploit-db.com/.
H. Patil and C. Fischer, “Low-cost, concurrent checking of
pointer and array accesses in ¢ programs,” Softw., Pract. Exper.,
vol. 27, no. 1, pp. 87-110, 1997.

PaX Team, “PaX address space layout randomization (ASLR),”
http://pax.grsecurity.net/docs/aslr.txt, 2003.

A. Pelletier, “Advanced Exploitation of Internet
Explorer Heap Overflow (Pwn20wn 2012 Exploit),”
http://www.vupen.com/blog/20120710.Advanced_Exploitation_
of_Internet_Explorer_HeapOv_CVE-2012-1876.php, 2012.

M. Prasad and T.-c. Chiueh, “A binary rewriting defense against
stack based buffer overflow attacks,” in USENIX Annual Tech-
nical Conference, 2003.

R. regenrecht, “Mozilla Firefox 3.6.16 mChannel use after
free vulnerability,” http://www.exploit-db.com/exploits/17650/,
2011.

RightWare, “Browsermark 2.1 benchmark,” http://browsermark.
rightware.com/, 2014.

rix, “Smashing C++ VPTRs,” http://phrack.org/issues/56/8.html,
2000.

B. Schwarz, S. Debray, and G. Andrews, “Disassembly of
executable code revisited,” in Working Conference on Reverse
Engineering, 2002.

J. Seward and N. Nethercote, “Using valgrind to detect un-
defined value errors with bit-precision.” in USENIX Annual
Technical Conference, General Track, 2005, pp. 17-30.

H. Shacham, “The geometry of innocent flesh on the bone:
Return-into-libc without function calls (on the x86),” in ACM
Conference on Computer and Communications Security (CCS),
2007.

H. Shacham, M. Page, B. Pfaff, E.-j. Goh, N. Modadugu, and
D. Boneh, “On the effectiveness of address-space randomiza-
tion,” Proceedings of the 11th ACM conference on Computer
and communications security (CCS’04), p. 298, 2004.

V. Thampi, “Udis86 disassembler library for x86,” http://udis86.
sourceforge.net/.

C. Tice, “Gcece vtable security hardening proposal,” https://gcc.
gnu.org/ml/gcc-patches/2012-11/txt00001.txt, 2012.

C. Tice, “Improving function pointer security for virtual method
dispatches,” in GNU Tools Cauldron Workshop, 2012.

Z. Wang and X. Jiang, “HyperSafe: A lightweight approach
to provide lifetime hypervisor control-flow integrity,” in /EEE
Symposium on Security and Privacy, 2010.

W. Xu, D. C. DuVarney, and R. Sekar, “An efficient and
backwards-compatible transformation to ensure memory safety
of ¢ programs,” in ACM SIGSOFT Software Engineering Notes,
vol. 29, no. 6. ACM, 2004, pp. 117-126.

C. Zhang, T. Wei, Z. Chen, L. Duan, L. Szekeres, S. McCamant,
D. Song, and W. Zou, “Practical control flow integrity and
randomization for binary executables,” in Security and Privacy
(SP), 2013 IEEE Symposium on. 1EEE, 2013, pp. 559-573.
M. Zhang and R. Sekar, “Control flow integrity for cots bina-
ries.” in USENIX Security, 2013, pp. 337-352.

	Introduction
	Background
	Virtual Function Calls
	Calling Conventions
	Relocation Tables

	Problem Definition
	Threat Model
	VTable Hijacking Attacks
	VTable Corruption Attacks
	VTable Injection Attacks
	VTable Reuse Attacks

	Existing Solutions
	VTGuard
	SafeDispatch
	DieHard

	The VTint Design
	Security Policy
	Overview of VTint
	Binary Parsing
	Disassembling and Identification
	Disassembling
	Identifying VTables
	Identifying Virtual Function Call Sites

	Rewriting and Instrumentation
	VTable Instrumentation
	Virtual Call Instrumentation

	Modularity and Compatibility Support

	Implementation
	Identifying Constructor Functions
	Identifying vtables
	Identifying Virtual Function Dispatches
	Instrumenting vtables
	Moving vtables
	Instrument ids

	Instrumenting Security Checks
	Fail-Safe Check

	Evaluation
	Performance of Static Analysis
	Experiment Setup
	Analysis Time
	File Size Overhead

	VTable Statistics
	Runtime Performance
	Runtime Overhead on spec benchmarks
	Runtime Overhead on Real World Browsers
	Performance Analysis

	Protection against Real World Exploits

	Security Analysis and Discussion
	Related Work
	Conclusion

