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Abstract

The economy of mechanism security principle states that
program design should be kept as small and simple as possi-
ble. In practice, this principle is often disregarded to max-
imize user satisfaction, resulting in systems supporting a
vast number of features by default, which in turn offers at-
tackers a large code base to exploit. The Linux kernel ex-
emplifies this problem: distributors include a large number
of features, such as support for exotic filesystems and socket
types, and attackers often take advantage of those.

A simple approach to produce a smaller kernel is to man-
ually configure a tailored Linux kernel. However, the more
than 11,000 configuration options available in recent Linux
versions make this a time-consuming and non-trivial task.
We design and implement an automated approach to pro-
duce a kernel configuration that is adapted to a particular
workload and hardware, and present an attack surface eval-
uation framework for evaluating security improvements for
the different kernels obtained. Our results show that, for
real-world server use cases, the attack surface reduction
obtained by tailoring the kernel ranges from about 50% to
85%. Therefore, kernel tailoring is an attractive approach
to improve the security of the Linux kernel in practice.

1 Introduction

The Linux kernel is a commonly attacked target. In 2011
alone, 148 Common Vulnerabilities and Exposures (CVE)1

entries for Linux have been reported, and this number is ex-
pected to grow every year. This is a serious problem for sys-

1http://cve.mitre.org/

tem administrators who rely on a distribution-maintained
kernel for the daily operation of their systems. On the
Linux distributor side, kernel maintainers can make only
very few assumptions on the kernel configuration for their
users: Without a specific use case, the only option is to en-
able every available configuration option to maximize the
functionality. The ever-growing kernel code size, caused by
the addition of new features, such as drivers and file sys-
tems, at an increasing pace, indicates that the Linux kernel
will be subject to ever more vulnerabilities.

In addition, as a consequence of the development, test-
ing, and patching process of large software projects, the less
a functionality is used, the more likely it is to contain de-
fects. Indeed, developers mostly focus on fixing issues that
are reported by their user base. As rarely used functionali-
ties only account for reliability issues in a small portion of
the user base, this process greatly improves the overall re-
liability of the software. However, malicious attackers can,
and do, still target vulnerabilities in those less-often-used
functionalities. A recent example from the Linux kernel is
an arbitrary kernel memory read and write vulnerability in
the reliable datagram sockets (RDS) (CVE-2010-3904), a
rarely used socket type.

If the intended use of a system is known at kernel com-
pilation time, an effective approach to reduce the kernel’s
attack surface is to configure the kernel to not include un-
needed functionality. However, finding a suitable configu-
ration requires extensive technical expertise about currently
more than 11,000 Linux configuration options, and needs to
be repeated at each kernel update. Therefore, maintaining
such a custom-configured kernel entails considerable main-
tenance and engineering costs.

Moreover, while it is widely accepted that making pro-
grams “smaller” improves security, quantitatively measur-
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ing security improvements remains a difficult and impor-
tant problem [49]. Existing work on system security of-
ten measures improvements in terms of Trusted Comput-
ing Base (TCB) reduction, which in practice often trans-
lates into a measurement of the total number of source lines
of code (SLOC) (e.g., [19, 34]). Although these metrics
are sensible (as every line of code can have a vulnerabil-
ity) and easy to obtain, they can be imprecise. For instance,
on a given kernel configuration, a large part of the kernel
sources will not be compiled, many parts will only be com-
piled as kernel modules which might never be loaded, and
some functions might simply not be within reach of an at-
tacker.

This paper presents metrics for quantifying the security
of an OS kernel and a tool-assisted approach to automat-
ically determine a kernel configuration that enables only
kernel functionalities that are actually necessary in a given
scenario. Although it is easy to quantify the size of the re-
sulting kernel binaries, this is not convincing evidence that
the resulting kernel indeed presents less of an attack surface
to potential attackers. Hence, after defining what attack sur-
face means, we quantify the security gains in two distinct
security models in terms of attack surface reduction. The
first security model considers that the entire kernel can be
subject to attacks and is therefore a good reference for com-
parison to previous work, whereas the second considers the
scenario of a restricted attacker, and is a good reference for
evaluating the security improvements of configuration tai-
loring in the context of unprivileged local attackers. Our
measurements take into account the static call graph of the
kernel and the possible entry points of the attacker to pro-
vide a more accurate comparison.

Our automated kernel-tailoring approach builds on our
previous work [51], and extends it with multiple improve-
ments, including loadable kernel module (LKM) support.
When compared to other hardening solutions, a notable ad-
vantage of the kernel-configuration tailoring approach is
that it makes no changes to the source code of the kernel:
therefore, it is impossible to introduce new defects into the
kernel source. This approach uses run-time traces as input
for deducing a suitable kernel configuration, and we show
it to work equally well in different use cases. We detail
the use our tool to tailor a “Linux, Apache, MySQL and
PHP (LAMP) stack” kernel on server hardware, as well
as a network file system (NFS) running on a workstation.
We obtain comparative measurements of the tailored ker-
nels that show that configuration-tailoring incurs no over-
head and no stability issues, while greatly reducing the at-
tack surface in both security models.

The major contributions of this paper are:

• A definition of an attack surface and an attack-surface
metric based on static call graphs and security models;
examples of metrics satisfying this definition, and a

comparison of the effects of these choices on our mea-
surements.

• A tool that, given the kernel sources and run-time
traces characterizing a use case, produces a small ker-
nel configuration, taking into account LKMs, which
includes all kernel functionalities necessary for the
workload.

• An evaluation of the attack surface reduction as well
as performance results in the case of a LAMP-based
server and a workstation providing access to files via
NFS.

The remainder of this paper is structured as follows: Sec-
tion 2 defines the notions of attack surface and attack sur-
face measurement, as well as a set of attack surface met-
rics that can be used in practice for our evaluation. Sec-
tion 3 presents an overview of the tailoring process, and
the implementation of the underlying automated kernel-
configuration-tailoring tool. Section 4 evaluates the attack
surface reduction and performance of such an approach in
two use cases and with several attack surface reduction met-
rics. These results are then discussed in Section 5. Section 6
presents related work. The paper concludes in Section 7.

2 Security Metrics

In this section, we present two distinct security models,
and, for each of them, security metrics (attack surface mea-
surements) which we use in Section 4 to evaluate and quan-
tify the security of a running Linux kernel. The dependence
between notions defined or used in this section are summa-
rized in Figure 1.

2.1 Preliminary definitions

Definition 1 (Call graph). A call graph is a directed graph
(F,C), where F ⊆ N is the set of nodes and represents the
set of functions as declared in the source of a program, and
C ⊆ F ×F the set of arcs, which represent all direct and
indirect function calls. We denote the set of all call graphs
by G .

In practice, static source code analysis at compile time
(that takes all compile-time configuration options into ac-
count) is used to obtain such a call graph.

Definition 2 (Entry and barrier functions). A security
model defines a set of entry functions E ⊆ F , which cor-
responds to the set of functions directly callable by an at-
tacker, and a set of barrier functions X ⊆ F , which corre-
sponds to the set of functions that, even if reachable, would
prevent an attacker from progressing further into the call
graph.
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Figure 1. Dependencies between notions de-
fined in this section.

E would typically be the interface of the program that
is exposed to the attacker, whereas X would typically be
the set of functions that perform authorization for privileges
that the attacker is not assumed to have in the security model
(e.g., administrator privileges).

Definition 3 (Attack Surface). Given a call graph G =
(F,C), a set of entry functions E ⊆ F and a set of barrier
functions X ⊆ F , let G′ be the subgraph of G induced by the
nodes F ′ = F \X , and let E ′ = E \X . The attack surface
is then the subgraph GAS of G′ induced by all nodes f ∈ F ′

such that there exists e ∈ E ′ and a directed path from e to f .
By abusing notation, we denote GAS = (G,E,X).

The rationale behind this definition is that for most types
of kernel vulnerabilities due to defects in the source code,
the attacker needs to trigger the function containing the vul-
nerability through a call to an entry function (which, for
local attackers, would be a system call). For example:
for exploiting a double-free vulnerability, the attacker will
need to provoke the extraneous free; for exploiting a stack-
or heap-based buffer overflow, the function writing to the
buffer will be reachable to the attacker; for exploiting a
user-pointer dereference vulnerability, the attacker owning
the user-space process will often provoke the dereference
through the system call interface.

Therefore, the attack surface represents the set of func-
tions that an attacker can potentially take advantage of.

2.2 Security Models

Quantifying a program’s security without specifying a
security model is attractive because it provides an “absolute
value” to compare other programs to. However, taking into
account a security model, and more generally the actual use
of the program, can only result in security metrics that re-
flect the system’s security better. As a simple example, it
is common practice to measure a kernel’s security by the
total SLOC. However, the source code will often contain
branches that will never be compiled such as architecture-
specific code for other architectures. Hence, limiting the
SLOC by excluding unused architecture-specific code, be-
cause this code cannot be exercised by an attacker, is al-
ready an improvement in precision.
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Figure 2. On the left, the GENSEC model. On
the right, the ISOLSEC model.

We now consider the case of the Linux kernel. First, we
define a generic security model that covers the dependabil-
ity of the entire running kernel, and then a more specific
model covering local attacks from unprivileged user space
directed against the kernel. They are depicted in Figure 2.

In both cases, the hardware and the compile-time con-
figuration of the kernel are fixed and taken into account.
In both cases, the high-level security goal is to provide the
traditional confidentiality, integrity and availability guaran-
tees for the kernel: for instance, an attacker could target
full control with arbitrary code execution in kernel mode,
or more limited attacks such as information leakage (e.g.,
recover uninitialized kernel memory content) to breach con-
fidentiality, and denial of service by crashing the kernel to
reduce the system’s availability. In addition, we assume that
the hardware and the firmware the system is running on are
trusted.

2.2.1 Generic Model GENSEC

The GENSEC model covers all possible kernel failures, to
obtain an attack surface that is similar to the notion of TCB
used for measuring security in prior work (e.g., [19, 34]).

More precisely, the attacker is both local and remote, i.e.,
it has an account on the target system, but can also interact
with all hardware devices (e.g., sending layer-1 traffic to
network interface cards). We also assume that the attacker
has some amount of control over a privileged application.
This means the model includes failures due to defects in the
kernel in code paths that are only accessibly from a privi-
leged application.

Therefore, in this model, a defect in any part of the
running kernel — including the core kernel and all loaded
LKMs, as well as any LKM that might be loaded in the fu-
ture, e.g., when new hardware is plugged in — can cause a
failure.

This security model may not seem intuitive, but cor-
responds to what is implicitly assumed when considering



the entire compiled kernel included in the TCB, a common
practice.

GENSEC attack surface In the GENSEC model above,
the attack surface is composed of the entire running kernel,
as well as LKMs that can be loaded. Hence, the barrier
functions set X is empty, and all entry points of the ker-
nel are included in E (both hardware interrupts and system
calls, as well as kernel initialization code).

2.2.2 Isolation Model ISOLSEC

The ISOLSEC model reflects a common model in multi-
user systems and in systems implementing defense in depth,
where it is assumed an attacker has local access, e.g, by
compromising an unprivileged isolated (or sandboxed) pro-
cess on the system, and aims to escape the isolation by di-
rectly targeting the kernel. In this model, the attacker is ma-
licious and has unprivileged local access, therefore it can
exercise the system call interface, but not all code paths:
for instance, the attacker cannot make the system call for
the insertion of a new kernel module. We will detail below,
when evaluating the attack surface, exactly which barrier
functions should be considered.

We also assume that the attacker can target code in
LKMs, including LKMs that are loaded on-demand by the
system. As the attacker is not able to plug hardware into the
target system, we assume that bugs in LKMs not related to
installed hardware cannot lead to failures.

ISOLSEC attack surface An attacker in the ISOLSEC
model has the set of all system calls as entry points E. The
set of barrier functions X contains functions that are only
accessible from privileged applications and LKMs that can-
not possibly be loaded by an action triggered by the attacker.
We provide a more detailed description of those functions
in the next three paragraphs.

Functions that are not reachable because of lacking per-
missions are highly dependent on the isolation technology
used (e.g., LSM-based [11, 18, 32], chroot, LXC [28], sec-
comp [17]) and the policies applied to the application, and
at a first approximation, we only consider the default privi-
lege checking in use in the Linux kernel: POSIX capabili-
ties. Hence, we assume that the set of barrier functions X in-
cludes those functions performing POSIX capability checks
(functions calling the capable() function).

However, this is not sufficient. Linux proposes a
variety of pseudo-filesystems, namely sysfs, debugfs,
securityfs and procfs, in which filesystem operations
are dispatched to specific code paths in the kernel, mostly
in LKMs, and are often used to expose information or fine-
tuning interfaces to user-space processes which, in general,

are privileged. However, these privilege checks are per-
formed at the virtual filesystem layer, using POSIX ACLs:
hence, they do not contain calls to the capable() function,
and need to be considered separately. In addition, as those
filesystems should not be accessible from an unprivileged
application that is sandboxed (e.g., this is the case even with
a simple chroot jail), we include all functionality provided
by those four pseudo-filesystems as barrier functions X .

Finally, as a consequence of our assumptions on LKMs
in the ISOLSEC model, we include in X all LKMs that are
either (a) not loaded while the workload is running, but not
loadable on demand, or (b) a hardware driver that is not
loaded while the workload is running.

For these reasons, we mark in Figure 2 the kernel compo-
nents which can contain funcions in the attack surface only
as “partial a.s (attack surface)”: their inclusion depends on
being reachable, after consideration of the barrier functions.

2.3 Attack Surface Measurements

To quantify security improvements in terms of the attack
surface, we need a metric that reflects its size. Although
we are not the first to make this observation [20, 30], we
propose the first approach that quantifies the attack surface
within a particular security model by using call graphs. In
the following, we present a general approach to measure an
attack surface in a security model as well as specific metrics
that we will use in the case of the Linux kernel.

Definition 4 (Code-quality metric). A code-quality met-
ric µ is a mapping associating a non-negative value to the
nodes of the call graph:

µ : F → R+

Example. A function’s SLOC (denoted SLOC), the cyclo-
matic complexity [33] (denoted cycl), or a CVE-based met-
ric associating the value 1 to a function that had a CVEs in
the past 7 years, and 0 otherwise (denoted CV E), are code-
quality metrics that we use in this paper.

CVE-based metrics provide a posteriori knowledge on
vulnerable functions: they allow an estimate of the number
of CVEs a partical attack surface reduction method would
have avoided, in the past. However, this metric, alone, is un-
satisfactory for multiple reasons. For instance, CVEs only
form a sample of all vulnerabilities existing in an applica-
tion, and this sample is likely to be biased: vulnerabilities
tend to be searched and discovered non-uniformly accross
the code base, with often-used parts being more likely to be
tested and audited. Additionally, past CVEs are not neces-
sarily a good indicator of future CVEs: although a function
with a history of vulnerabilities might be prone to more vul-
nerabilities in the future (e.g., due to sloppy coding style),
the opposite is also likely, since this might indicate that the



function has now been thoroughly audited. For this reason,
we also use a priori metrics such as lines of code and cyclo-
matic complexity, which, although imperfect for predicting
vulnerabilities, do not suffer from the aforementioned is-
sues and can be easily collected through static analysis.

Definition 5 (Attack Surface Metric). An attack surface
metric associated with a code-quality metric µ assigns a
non-negative real value to an attack surface:

ASµ : G → R+

GAS 7→ ASµ(GAS)

and satisfies the property:

∀E ′ ⊆ E,∀X ′ ⊇ X , ASµ(G′AS)≤ ASµ(GAS)

with GAS = (G,E,X),G′AS = (G,E ′,X ′)

That is, the more entry points, the higher the attack sur-
face measurement; the more barrier functions, the lower the
attack surface measurement.

Lemma 1. Let m be a mapping:

m : G → R
G 7→ m(G)

If m satisfies:
∀G ∈ G , m(G)≥ 0

∀G′ ⊆ G ∈ G , m(G′)≤ m(G)

then it is an attack surface metric.

Proof. Let GAS = (G,E,X),G′AS = (G,E ′,X ′) such that
E ′ ⊆ E and X ′ ⊇ X . Then:

G′AS ⊆ GAS

Hence m satisfies the property in Definition 5:

m(G′AS)≤ m(GAS)

Note that this property is not necessary to satisfy Defi-
nition 5, because a smaller set of functions (in G′AS) should
not necessarily mean a smaller attack surface measurement.
This is sensible, because in practice some functions can
reduce the overall attack surface (e.g., by sanitizing in-
put), and an attack surface metric could take this into ac-
count (e.g., Murray, Milos, and Hand [36] propose such a
metric for measuring TCB size). Such an example is de-
picted in Figure 1: A metric satisfying Lemma 1 would al-
ways measure a lower attack surface for G′AS than for GAS,
whereas this is not necessary for a metric satisfying Defini-
tion 5.

Figure 3. Example attack surfaces GAS (with
E = {e} and X = /0) and G′AS (with E ′ = {e′} and
X ′ = /0). Note that E ′ 6⊆ E and G′AS ⊆ GAS.

Proposition 1. The following two functions are attack sur-
face metrics:

AS1µ(GAS) = ∑
i∈FAS

µ(i)

AS2µ(GAS) = µAS
T L(G̃AS)µAS

where GAS = (FAS,CAS), µAS
T = (µ(1), . . . ,µ(|F |)), and

L(G) is the Laplacian matrix of a simple (non-directed)
graph:

L(G) = D−A

where D is a diagonal matrix with the degrees of the nodes
on the diagonal, and A the adjacency matrix of the graph
(Ai j = 1 when the (i,j) edge exists, 0 otherwise). As GAS is
directed, we transform it into a simple graph by ignoring
the direction on its arcs, which we denote G̃AS.

AS1 provides a simple and intuitive formulation of an at-
tack surface metric: for instance, AS1SLOC is a sum of the
lines of code in the attack surface. However, it values each
function equally. AS2 takes advantage of the functions po-
sition in the call graph, and attaches more value to code-
quality metrics in functions that have a large number of
callers (and callees) that have a lower code-quality measure-
ment. The Appendix contains a proof, and a more detailed
explanation of the formulation of AS2. We use both these
attack surface metrics in our evaluations in Section 4.

2.4 Summary

The metrics introduced in this section are for the pur-
pose of a precise evaluation of the security gains of our
approach. These metrics contain metrics used commonly
in prior work, such as total TCB size in SLOC (AS1SLOC in
the GENSEC model). We do not claim the metrics presented
in this section are the panacea in measuring attack surfaces.
Rather, we propose new metrics that take into account what



attackers are capable of. This will allow us to discuss attack
surface reduction results in Section 5 for additional insights
into the advantages and disadvantages of tailoring the Linux
kernel configuration.

3 Kernel Tailoring

3.1 General Idea and Solution Overview

The formalism introduced in Section 2 provides a solid
means to calculate the attack surface in a given security
model. We apply these theoretical considerations to im-
prove the overall system security of Linux as shipped by
Linux distributions such as Ubuntu or Red Hat Linux.
These popular distributions cannot afford to ship and main-
tain a large number of different kernels. Therefore, they
configure their kernels to be as generally usable as possible,
which requires the kernel package maintainers responsible
to enable as much functionality (i.e., KCONFIG features) as
possible. Unfortunately, this also maximizes the attack sur-
face. As security-sensitive systems do not require the gener-
icalness provided, the attack surface can be reduced by sim-
ply not enabling unnecessary features. What features are
necessary, however, depends on the actual workload of the
corresponding use-case. Therefore, our approach consists
of two phases. In the analysis phase, the workload is ana-
lyzed at run time. The second phase calculates a reduced
Linux configuration that enables only the functionality that
has been observed in the analysis phase.

3.2 Configuration Mechanisms in Linux

Variability in Linux is centrally managed by means of
KCONFIG, which is both a tooling and a configuration lan-
guage, in which constraints such as dependencies and con-
flicts are modeled in a domain specific language (DSL). In
the literature, the formal semantics [44, 55] have been ana-
lyzed for use in variability extractors [52], which translate
the specified constraints into propositional formulas. These
formulas are essential for constructing the optimized Linux
configuration.

However, the implementation of variability is very scat-
tered in Linux, which makes holistic reasoning challeng-
ing. In practice, the analysis of KCONFIG files, MAKE files
and C Preprocessor (CPP) code requires very specialized
and sophisticated extraction tools. A reliable mapping of
user-configurable features in KCONFIG to source lines in
the source tree requires a correct combination of all three
sources of variability. A solid understanding of the Linux
build system KBUILD and the configuration tool KCONFIG
is instrumental to correctly relate the variability declaration
in KCONFIG. This work therefore implements our approach

as extension to existing work [13, 37, 52], which has been
kindly provided to us by the original authors.

3.3 Kernel-Configuration Tailoring

The goal of our approach is to compile a Linux kernel
with a configuration that has only those features enabled
which are necessary for a given use case. This section
shows the fundamental steps of our approach to tailor such
a kernel. The six steps necessary are shown in Figure 4.

Ê Enable tracing. The first step is to prepare the kernel
so that it records which parts of the kernel code are executed
at run time. We use the Linux-provided ftrace feature,
which is enabled with the KCONFIG configuration option
CONFIG_FTRACE. Enabling this configuration option mod-
ifies the Linux build process to include profiling code that
can be evaluated at runtime.

In addition, our approach requires a kernel that is built
with debugging information so that any function addresses
in the code segment can be correlated to functions and
thus source file locations in the source code. For Linux,
this is configured with the KCONFIG configuration option
CONFIG_DEBUG_INFO.

To also cover code that is executed at boot time by ini-
tialization scripts, we need to enable the ftrace as early
as possible. For this reason, we modify the initial RAM
disk, which contains programs and LKMs for low-level sys-
tem initialization 2. Linux distributions use this part of the
boot process to detect installed hardware early in the boot
process and, mostly for performance reasons, load only the
required essential device drivers. This basically turns on
tracing even before the first process (init) starts.

Ë Run workload. In this step, the system administra-
tor runs the targeted application or system services. The
ftrace feature now records all addresses in the text seg-
ment that have been instrumented. For Linux, this covers
most code, except for a small amount of critical code such
as interrupt handling, context switches and the tracing fea-
ture itself.

To avoid overloading the system with often accessed ker-
nel functions, ftrace’s own ignore list is dynamically be-
ing filled with functions when they are used. This prevents
such functions from appearing more than once in the output
file of ftrace. We use a small wrapper script for ftrace
to set the correct configuration before starting the trace, as
well as to add functions to the ignore list while tracing and
to parse the output file, printing only addresses that have not
yet been encountered.

During this run, we copy the output of the tracing wrap-
per script at constant time intervals. This allows us to
compare at what time what functionality was accessed, and

2This part of the Linux plumbing is often referred to as “early
userspace”
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Figure 4. Kernel-Configuration Tailoring Workflow

therefore to monitor the evolution of the tailored kernel con-
figuration over time based on these snapshots.

Ì Correlation to source lines. A system service trans-
lates the raw address offsets into source line locations using
the ADDR2LINE tool from the binutils tool suite. Be-
cause LKMs are relocated in memory depending on their
non-deterministic order of loading, the system service com-
pares the raw, traced addresses to offsets in the LKM’s code
segment. This allows the detection of functionality that is
not compiled statically into the Linux kernel. This corre-
lation of absolute addresses in the code segment with the
debug symbols allows us to identify the source files and the
#ifdef blocks that are actually being executed during the
tracing phase.

Í Establishment of the propositional formula. This
step translates the source-file locations into a propositional
formula. The propositional variables of this formula are
the variation points the Linux configuration tool KCONFIG
controls during the compilation process. This means that
every CPP block, KCONFIG item and source file can ap-
pear as propositional variable in the resulting formula. This
formula is constructed with the variability constraints ex-
tracted from #ifdef blocks, KCONFIG feature descriptions
and Linux Makefiles. The extractors we use have been de-
veloped, described and evaluated in previous work [13, 46,
52]. The resulting formula holds for every KCONFIG con-
figuration that enables all source lines simultaneously.

Î Derivation of a tailored kernel configuration. A
SAT checker proves the satisfiability of this formula and
returns a concrete configuration that fulfills all these con-
straints as example. Note that finding an optimal solution to
this problem is an NP-hard problem and was not the focus
of our work. Instead, we rely on heuristics and configurable
search strategies in the SAT checker to obtain a sufficiently
small configuration.

As the resulting kernel configuration will contain some
additional unwanted code, such as the tracing functional-
ity itself, the formula allows the user to specify additional
constraints to force the selection (or deselection) of certain
KCONFIG features, which can be specified in whitelists and
blacklists. This results in additional constraints being con-
jugated to the formula just before invoking the SAT checker.

Ï Completing the Linux kernel configuration. The

resulting kernel configuration now contains all features that
have been observed in the analysis phase. The caveat is that
the resulting propositional formula can only cover KCON-
FIG features of code that has been traced. In principle, fea-
tures that are left unreferenced are to be deselected. How-
ever, features in KCONFIG declare non-trivial dependency
constraints [55], which must all hold for a given configu-
ration in order to produce a valid KCONFIG configuration.
The problem of finding a feature selection with the smallest
number of enabled features, (which is generally not unique)
has the complexity NP-hard. We therefore rely on heuris-
tics to find a sufficiently small configuration that satisfies
all constraints of KCONFIG but is still significantly smaller
compared to a generic distribution kernel.

4 Evaluation

In this section, we present two use cases, namely a
LAMP-based server and a graphical workstation that pro-
vides an NFS service, both on distinct, non-virtualized
hardware, that we use to evaluate the effects of kernel-
configuration tailoring. This evaluation demonstrates the
approach with practical examples, verifies that the obtained
kernel is functional, i.e., no required configuration option is
missing in the tailored kernel, and shows that the perfor-
mance of the kernel with the configuration generated re-
mains comparable to that of the distribution kernel. We
quantify the attack surface reduction achieved with the for-
malisms described in Section 2.

4.1 Overview

In both use cases, we follow the process described in
Section 3 to produce a kernel configuration that is tailored
to the respective use case. For each use case, we detail the
workload that is run to collect traces in the following sub-
sections. Both machines use the 3.2.0-26 Linux kernel dis-
tributed by Ubuntu as baseline, which is the kernel shipped
at the time of this evaluation in Ubuntu 12.04.

To compare the performance, we use benchmarks that
are specific to the use case. We repeat both experiments at
least 10 times and show 95%-confidence intervals in our fig-



ures where applicable. The benchmarks compare the origi-
nal, distribution-provided kernel to the tailored kernel gen-
erated. All requests are initiated from a separate machine
over a gigabit Ethernet link. To avoid interferences by start-
up and caching effects right after the system boots, we start
our workload and measurements after a warm-up phase of
5 min.

To measure the attack surface reduction, we first calcu-
late code-quality metrics for each function in the kernel by
integrating the FRAMA-C [15] tool into the kernel build sys-
tem. For CVEs, we parse all entries for the Linux kernel
in the National Vulnerability Database (NVD)3. For en-
tries with a reference to the GIT repository commit (only
those CVEs published after 2005), we identify the C func-
tions that have been changed to patch a security issue, and
add each function to a list. Our metric assigns a value of
1 to functions that are in this list, and 0 otherwise. We
also generate static call graphs for each use case by us-
ing both FRAMA-C and NCC [38] and combining both call
graphs to take into account calls through function point-
ers, which are very widely used in the Linux kernel. In
the case of the GENSEC model, we compute the AS1 and
AS2 attack surface metrics directly over all functions in this
graph, for both the baseline and the tailored kernel. In the
case of the ISOLSEC model, we compute the subgraph cor-
responding to the attack surface by performing a reachabil-
ity analysis from functions corresponding to system calls
(entry points) and removing all barrier functions as detailed
in Section 2.2.2. We then evaluate the security improve-
ments by computing the attack surface reduction between
the baseline kernel and a tailored kernel.

4.2 LAMP-stack use case

4.2.1 Description

This use case employs a machine with a 2.8 GHz Celeron
CPU and 1 GB of RAM. We use the Ubuntu 12.04 Server
Edition with all current updates and no modifications to
either the kernel or any of the installed packages. As de-
scribed in Section 3.3, we extend the system-provided ini-
tial RAM disk (initrd) to enable tracing very early in
the boot process. In addition, we set up an web plat-
form consisting of APACHE2, MYSQL and PHP. The
system serves static documents, the collaboration plat-
form DOKUWIKI [16] and the message board system PH-
PBB3 [40] to simulate a realistic use case.

The test workload for this use case starts with a simple
HTTP request using the tool WGET, which fetches a file
from the server right after the five-minute warm-up phase.
This is followed by one run of the HTTPERF [35] tool, which
accesses a static website continuously, increasing the num-

3http://nvd.nist.gov/
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Figure 5. Evolution of KCONFIG features en-
abled over time. The bullets mark the point in
time at which a specific workload was started.

ber of requests per second for every run. Finally, we run
the SKIPFISH [54] security scan on the server. SKIPFISH is
a tool performing automated security checks on web appli-
cations, hence exercising a number of edge-cases, which is
valuable not only to exercise as many code paths as possi-
ble, but also to test the stability of the tailored use case.

4.2.2 Results

Figure 5 depicts the number of KCONFIG features that our
tool obtains from the trace logs collected at the times given.
After the warm-up phase, connecting to the server via ssh
causes a first increase in enabled KCONFIG features. The
simple HTTP request triggers only a small further increase,
and the configuration converges quickly after the HTTPERF
tool is run, and shows no further changes when proceeding
to the SKIPFISH scan. This shows that, for the LAMP use
case, a tracing phase of about ten minutes is sufficient to
detect all required features.

Tailoring The trace file upon which the kernel configu-
ration is generated is taken 1,000 sec after boot, i.e., after
running the tool HTTPERF, but before running the SKIPFISH
tool. It consists of 8,320 unique function addresses, includ-
ing 195 addresses from LKMs. This correlates to 7,871 dif-
ferent source lines in 536 files. Our prototype generates
the corresponding configuration in 145 seconds and com-
piles the kernel in 89 seconds on a commodity quad-core
machine with 8 GB of RAM.

When comparing the original kernel to the distribution
kernel shipped with Ubuntu, we observe a reduction of
KCONFIG features that are statically compiled into the ker-
nel of over 70%, and almost 99% for features that lead to
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compilation as LKMs (cf. Table 1). Consequently, the over-
all size of the text segment for the tailored kernel is over
90% lower than that of the baseline kernel supplied by the
distribution.

To relate to the savings in terms of attack surface, we
show the number of source code files that the tailored con-
figuration does not include when compared to the distri-
bution configuration in Figure 6. The figure breaks down
the reduction of functionality by subdirectories in terms of
source files that get compiled. The highest reduction rates
are observed inside the sound/ (100%), drivers/ (95%),
and net/ (87%) directories. As the web server does not
play any sounds, the trace file does not indicate any sound-
related code. Similarly, the majority of drivers are not
needed for a particular hardware setup. The same applies
to most of the network protocols available in Linux, which
are not required for this use case. Out of 8,670 source files
compiled in the standard Ubuntu distribution kernel, the tai-
lored kernel only required 1,121, which results in an overall
reduction of 87% (cf. Table 1).

Stability To ensure that our tailored kernel is fully func-
tional, we run SKIPFISH [54] once on the baseline kernel
and then compare the results to a scan on the tailored ker-
nel. The report produced by the tool finds no significant
difference from one kernel configuration to the other, hence
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Figure 7. Comparison of reply rates of the
LAMP-based server using the kernel shipped
with Ubuntu and our tailored kernel. Confi-
dence intervals were omitted, as they were
too small and thus detrimental to readability.

the tailored kernel can handle unusual web requests equally
well. Furthermore, this shows that for this use case even a
kernel tailored from a trace file which only covers a smaller
test workload than the target scenario is suitable for stable
operation of the service.

Performance We measure the performance with the
HTTPERF tool. The result is compared with a run performed
on the same system that runs the baseline kernel. Figure 7
shows that the tailored kernel achieves a performance very
similar to that of the kernel provided by the distribution.

Security Finally, we compute attack surface reduction
with AS1 and AS2 in the GENSEC and ISOLSEC models
after generating the relevant call graphs. The numbers in
Table 1 show that the AS1SLOC, AS1cycl and AS2SLOC attack
surface reduction is around 85% in the GENSEC model, and
around 80% in the ISOLSEC model. In both models, there
are also 60% fewer functions that were affected by patches
due to CVEs in the past. We also observe that AS2cycl is
slightly lower, with an attack surface reduction around 60%.
Overall, the attack surface reduction is between 60% and
85%.

4.3 Workstation/NFS use case

4.3.1 Description

For the workstation/NFS server use case, we use a machine
with a 3.4 GHz quad-core CPU and 8 GB of RAM, running
the Ubuntu 12.04 Desktop edition, again without modifica-
tions to packages or kernel configuration. The machine is
configured to export a local directory via NFS.



Baseline Tailored Reduction
LAMP NFS LAMP NFS LAMP NFS

Kernel (vmlinux) size in Bytes 9,933,860 4,228,235 4,792,508 56% 52%
LKM total size in Bytes 62,987,539 2,139,642 2,648,034 97% 96%
Options set to ’y’ 1,537 452 492 71% 68%
Options set to ’m’ 3,142 43 63 99% 98%
Compiled source files 8,670 1,121 1,423 87% 84%

GENSEC

Call graph nodes 230,916 34,880 47,130 85% 80%
Call graph arcs 1,033,113 132,030 178,523 87% 83%
AS1SLOC 6,080,858 895,513 1,122,545 85% 82%
AS1cycl 1,268,551 209,002 260,189 84% 79%
AS1CV E 848 338 429 60% 49%
AS2SLOC 58,353,938,861 11,067,605,244 11,578,373,245 81% 80%
AS2cycl 2,721,526,295 1,005,337,180 1,036,833,959 63% 62%
AS2CV E 20,023 7,697 9,512 62% 52%

ISOLSEC

Call graph nodes 92,244 96,064 15,575 21,561 83% 78%
Call graph arcs 443,296 462,433 64,517 89,175 85% 81%
AS1SLOC 2,403,022 2,465,202 425,361 550,669 82% 78%
AS1cycl 504,019 518,823 99,674 126,710 80% 76%
AS1CV E 485 524 203 276 57% 47%
AS2SLOC 15,753,006,783 15,883,981,161 4,457,696,135 4,770,441,587 72% 70%
AS2cycl 918,429,105 929,197,559 374,455,910 391,855,241 59% 57%
AS2CV E 10,151 11,127 4,287 5,489 57% 51%

Table 1. Summary of kernel tailoring and attack surface measurements.

To measure the performance of the different kernel ver-
sions, we use the BONNIE++ [10] benchmark, which covers
reading and writing to this directory over the network. To
achieve results that are meaningful, we disable caching on
both server and client.

4.3.2 Results

The trace file of the configuration selected for further testing
consists of 13,841 lines that reference a total of 3,477 ad-
dresses in modules. This resolves to 13,000 distinct source
lines in 735 files. Building the formula and therefore the
configuration takes 219 seconds, compiling the kernel an-
other 99 seconds on the same machine as described above.
We observe a reduction of KCONFIG features that are stat-
ically compiled into the kernel by 68%, 98% for features
compiled into LKMs, and about 90% less code in the text
segment.

Performance and Stability We did not find any impact
on the regular functionality of the workstation, i.e., all hard-
ware attached, such as input devices, Ethernet or sound, re-
mained fully operable with the tailored kernel booted. Us-
ing the tailored kernel, we run BONNIE++ again with the

same parameters, and compare the results with those of the
distribution kernel. Figure 8 shows that also in this use case
the kernel compiled with our tailored configuration achieves
a very similar performance.

Security Attack surface reduction results are similar to
the LAMP use case. The numbers in Table 1 show that
the AS1SLOC, AS1cycl and AS2SLOC attack surface reduction
is around 80% in the GENSEC model, and around 75% in
the ISOLSEC model. In both models, there are also 50%
fewer functions that were affected by patches due to CVEs
in the past. We also observe that AS2cycl is slightly lower
as well, with attack surface reduction around 60%. Over-
all, our measurements suggest the attack surface reduction
is between 50% and 80%.

5 Discussion

5.1 Attack surface measurements

This section discusses the results of our attack surface
measurements.
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the BONNIE++ benchmark, showing no signif-
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baseline kernel.

Use cases Figure 9 shows that the tailored kernel config-
urations are largely similar for both cases. We observe a
number of features that differentiate the use cases, both in
terms of hardware and workload. The workstation/NFS use
case requires the highest number of differentiating features
(87 enabled KCONFIG options for NFS compared to 27 for
LAMP). This can be explained by the setup (the desktop
version of Ubuntu has the X11 window system installed
and running, whereas the server version has not) and by
the workload: as NFS also runs in kernel mode, additional
kernel features are required. This point is useful for under-
standing attack surface reduction results. Although both use
cases show similar AS1SLOC reductions (around 80%), there
is a slight difference for both GENSEC and ISOLSEC and
the various AS metrics in the reduction achieved in favor of
the LAMP use case (see Table 1). This is simply because
the workstation/NFS use case requires a larger kernel than
the LAMP one.

The case of CVE-2010-3904 Out of the 422 CVEs we
have inspected, we detail the case of one highly publi-
cized vulnerability for illustration purposes. CVE-2010-
3904 documents a vulnerability that is due to a lack of ver-
ification of user-provided pointer values, in RDS, a rarely
used socket type. An exploit for obtaining local privilege
escalation was released in 2010 [42]. We verified that in
the case of the workstation/NFS use case, both tailored ker-
nel configurations have the functionality removed in the
GENSEC and ISOLSEC models, and thus would have pre-
vented the security issue. In contrast, the baseline kernel
contains the previously-vulnerable feature in the GENSEC
and ISOLSEC models.
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Figure 9. Comparison of the two generated
configurations from the use cases in terms of
KCONFIG features leading to built-in code and
code being compiled as LKM. Below, the total
number of compiled source files is compared
between the two resulting kernels.

CVE sampling bias The results in Table 1 show slightly
lower CVE reduction numbers than for all other metrics, es-
pecially in the case of AS1. We hypothesize that this small
difference is due to a sampling bias: code that is used more
often is also audited more often, more bug reports concern-
ing it are submitted, and better care is taken in document-
ing the vulnerabilities of such functions. We also observe
the average number of CVEs per function is lower in the
functions that are in the tailored kernel, when compared to
those functions that are not. Previous studies [9, 39] have
shown that code in the drivers/ sub-directory of the ker-
nel, which is known to contain a significant amount of rarely
used code, on average contains significantly more bugs than
any other part of the kernel tree. Consequently, it is likely
that unused features provided by the kernel still contain a
significant amount of relatively easy-to-find vulnerabilities.
This further confirms the importance of attack surface re-
duction as presented in this paper.

Nevertheless, we still take the CVE reduction numbers
into account, because they reflect a posteriori knowledge
about vulnerability occurrences. All our measurements in-
dicate attack surface reduction lies approximately within
50% and 85% across all parameters (use cases, security
models, metrics), which is a very positive result for kernel
tailoring.

Attack surface metric comparison The AS1 and AS2 re-
sults are quite close, which, considering how different their
formulations are, shows the robustness of the simple attack
surface definition introduced in Section 2. AS2 is also of in-
terest because it introduces the use of the Laplacian, which
is instrumental in many applications of graph theory (e.g.,
for data mining [2]), for the purpose of attack surface mea-
surements.
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Figure 10. AS1SLOC attack surface measurements per kernel subsystem in both security models and
use cases.

Comparison to kernel extension isolation Approaches
such as [31, 50] provide a way, through impressive technical
feats, of isolating LKMs from the kernel, i.e., running them
with lesser privileges. This means, ideally, the compromise
of an LKM by an attacker cannot lead to kernel compro-
mise. To evaluate how such solutions compare to kernel
tailoring, we again make use of the attack surface formal-
ism introduced in Section 2. Assuming that these isolation
solutions are ideal (i.e., that their own implementation does
not increase the kernel’s attack surface and the attackers are
not able to bypass the isolation), we remove all LKMs from
the baseline kernel’s attack surface in the ISOLSEC model,
hence obtaining a lower bound of the real attack surface of
such LKM-isolated kernels. Our results in Table 2 show
that kernel tailoring is superior to LKM isolation: for in-
stance, the AS1SLOC measurement of the ideal LKM isola-
tion is four times higher. We also evaluate whether combin-
ing both approaches could be beneficial, i.e., first generat-
ing a tailored kernel and then applying an ideal LKM iso-
lation. The results show that the resulting attack surface is
not significantly lower than that obtained by kernel tailoring
alone, which further confirms the improvements of our ap-
proach, even when compared to an ideal LKM isolation so-
lution. Additionally, we remark that this lower bound is also
applicable to approaches that prevent automatic-loading of
LKMs, such as the well-known grsecurity kernel patch with
the MODHARDEN option [48].

Security models The attack surface reduction is impor-
tant in both security models, but more so in the GENSEC
model. This can be attributed to the fact that the GENSEC

model includes a large number of drivers, whereas the
ISOLSEC model does less. As can be seen from Figure 10,
the attack surface reduction is particularly high for drivers.
In other words, tailoring appears to be slightly more effec-
tive in the GENSEC model than in the ISOLSEC model. This
is to be expected, since our approach reduces the kernel’s at-
tack surface system-wide (and not per-process). Figure 10
also shows that, both in the baseline and tailored kernels
and independently of the use case, the ISOLSEC attack sur-
face is about half of the GENSEC attack surface. In other
words, the attack surface of a local attacker (as defined in
the ISOLSEC model) is about half of what is generally con-
sidered as the TCB of the kernel.

Importance of kernel configuration When quoting
SLOC measurements of the Linux kernel as a simple way
of quantifying TCB size, we advocate specifying the kernel
configuration the measurement corresponds to. Indeed, our
results show that, depending on the kernel configuration, the
total number of lines of code can vary by up to an order of
magnitude. An other important factor is the kernel version,
since the Linux kernel increased significantly in size over
the past years.

5.2 Kernel tailoring

We will discuss now the key strengths and weaknesses of
the kernel-tailoring tool with respect to various properties.

Effectiveness Although in absolute terms the attack sur-
face of the tailored Linux kernel remains high (for AS1,



Ideal LKM isolation Kernel Tailoring Both combined
LAMP Workstation/NFS LAMP Workstation/NFS

AS1SLOC 2,064,526 425,361 550,669 420,373 489,732
AS1cycl 444,775 99,674 126,710 98,534 113,735
AS1CV E 390 203 276 203 240
AS2SLOC 11,826,476,219 4,457,696,135 4,770,441,587 4,452,329,879 4,663,745,009
AS2cycl 851,676,457 374,455,910 391,855,241 374,214,950 386,472,434
AS2CV E 7,725 4,287 5,489 4,287 4,849

Table 2. Comparison of ISOLSEC attack surface measurements between an ideal LKM isolation ap-
proach (a lower bound of the attack surface of kernel extension fault isolation approaches) and our
approach, when applied to the current Ubuntu 12.04 Kernel. The third column represents attack
surface measurements that would result if both approaches were combined.

about 500K SLOC in the ISOLSEC model, and 1000K
SLOC in the GENSEC model), Table 1 shows that for both
use cases and across all meaningful metrics, the attack sur-
face is reduced by almost an order of magnitude. As such,
vulnerabilities existing in the Linux kernel sources are sig-
nificantly less likely to impact users of a tailored kernel.
This makes the approach presented an effective means for
improving security in various use cases.

Applicability The approach presented relies on the as-
sumption that the use case of the system is clearly defined.
Thanks to this a-priori knowledge, it is possible to deter-
mine which kernel functionalities the application requires
and therefore, which kernel configuration options have to
be enabled. With the increasing importance of compute
clouds, where customers use virtual machines for very ded-
icated services such as the LAMP stack presented in Sec-
tion 4, we expect that our approach will prove valuable for
improving the security in many cloud deployments.

Usability Most of the steps presented in Section 3 re-
quire no domain-specific knowledge of Linux internals. We
therefore expect that they can be conducted in a straight-
forward manner by system administrators without specific
experience in Linux kernel development. The system ad-
ministrator, however, continues to use a code base that con-
stantly receives maintenance in the form of bug fixes and
security updates from the Linux distributor. We therefore
are confident that our approach to tailor a kernel configu-
ration for specific use-cases automatically is both practical
and feasible to implement in real-world scenarios.

Extensibility The experiments in Section 4 show that, for
proper operation, the resulting kernel requires eight addi-
tional KCONFIG options, which the ftrace feature could

not detect. By using a whitelist mechanism, we demon-
strate the ability to specify wanted or unwanted KCONFIG
options independently of the tracing. This allows our ap-
proach to be assisted in the future by methods to determine
kernel features that tracers such as ftrace cannot observe.

Safety Many previous approaches that reduce the Linux
kernel’s TCB (e.g., [17], [24]) introduce additional security
infrastructure in form of code that prevents functionality in
the kernel from being executed, which can lead to unex-
pected impacts and the introduction of new defects into the
kernel. In contrast, our approach modifies the kernel con-
figuration instead of changing the kernel sources (e.g., [25,
48]) or modifying the build process (e.g., [12]). In that
sense, our approach, by design, cannot introduce new de-
fects into the kernel.

However, as the configurations produced are specific to
the use case analyzed in the tracing phase, we cannot rule
out that the tailored configuration uncovers bugs that could
not be observed in the distribution-provided Linux kernel.
Although we have not encountered any of such bugs in prac-
tice, we would expect them to be rather easy to fix, and
of rare occurence, as the kernels produced contain a strict
subset of functionality. In some ways, our approach could
therefore even help improve Linux by uncovering bugs that
are hard to detect.

This also emphasizes the importance of the analysis
phase, which must be sufficiently long to observe all nec-
essary functionality. In case of a crash or similar failure,
however, we could only attribute this to a bug in either the
kernel or the application implementation that needs to be
fixed. In other words, this approach is safe by design.



6 Related work

This paper is related to previous research from many ar-
eas: improving OS kernel reliability and security, reducing
the attack surface of the kernel towards user-space applica-
tions, specializing kernels for embedded systems, measur-
ing attack surfaces, and code complexity.

Kernel specialization Several researchers have suggested
approaches to tailor the configuration of the Linux kernel,
although security is usually not a goal. Instead, most of-
ten improvements in code size or execution speed are tar-
geted. For instance, Lee et al. [25] manually modify the
source code (e.g., by removing unnecessary system calls)
based on a static analysis of the applications and the ker-
nel. Chanet et al. [8], in contrast, propose a method based
on link-time binary rewriting, and also employ static analy-
sis techniques to infer and specialize the set of system calls
to be used. Both approaches, however, do not leverage any
of the built-in configurability of Linux to reduce unneeded
code. Moreover, our approach is completely automated and
it is significantly safer, because we do not make any unsup-
ported changes to the kernel.

Micro-kernel architectures and retrofitting security
TCB size reduction has always been a major design goal
for micro-kernels [1, 27], and in turn facilitates a formal
verification of the kernel [22] or its implementation in safer
languages, such as OCaml [29]. Our work achieves this goal
with a widely-used monolithic kernel, i.e., Linux, without
the need of new languages or concepts.

A number of approaches exist that retrofit micro-kernel–
like features into monolithic OS kernels, mostly targeting
fault isolation of kernel extensions such as device drivers [7,
31, 50]. For instance, the work of Swift et al. [50] wraps
calls from device drivers to the core Linux kernel API (and
vice-versa), as well as use virtual memory protection mech-
anisms, which leads to a more reliable kernel in the pres-
ence of faulty drivers. In the presence of a malicious at-
tacker who can compromise such devices, however, this is
in general insufficient. This can be mitigated with more
involved approaches such as LXFI [31], which requires in-
terfaces between the kernel and extensions to be annotated
manually. An alternative is to prevent potential vulnerabil-
ities in the source code from being exploitable in the first
place. For instance, Secure Virtual Architecture (SVA) [12]
compiles the existing kernel sources into a safe instruction
set architecture, which is translated to native instructions
by the SVA VM. This provides among other guarantees, a
variant of type safety and control flow integrity. However,
it is very difficult to recover from attacks (or false positives)
without crashing the kernel with such defenses [26]. In con-
trast, kernel tailoring only uses the built-in configurability

of Linux, hence kernel crashes can only be due to defects
already present in the kernel.

Kernel attack surface reduction The ISOLSEC model
used in this paper is commonly used when building sand-
boxes or isolation solutions, in which a set of processes
must be contained within a particular security domain (e.g.,
with [11, 18, 32], which are all based on the Linux Security
Module (LSM) framework [53]). As we have demonstrated,
adjusting the kernel configuration also significantly reduces
the attack surface in such a model (this corresponds to the
ISOLSEC model). The idea of directly restricting or moni-
toring for intrusion detection the system call interface on a
per-process basis has been extensively explored (e.g., [23,
41] and references in [14]), although not often with specific
focus on reducing the kernel’s attack surface (i.e., reduc-
ing AS1SLOC in the ISOLSEC model), or in other words, to
specifically prevent vulnerabilities in the kernel from being
exploited by reducing the amount of code reachable by an
attacker in this model

SECCOMP [17] directly tackles this issue by allowing
processes to be sandboxed at the system call interface.
KTRIM [24] goes beyond simply limiting the system call in-
terface, and explores the possibility of finer-granularity ker-
nel attack surface reduction by restricting individual func-
tions (or sets of functions) inside the kernel. In contrast,
this work focuses on compile-time removal of functionality
from the kernel at a system-wide level instead of a runtime
removal at a per-application level. In future work, we will
investigate how dynamic approaches such as SECCOMP or
KTRIM can be combined with the static tailoring of the ker-
nel configuration most effectively.

Analysis of variability in Linux This work relies on
static analysis to identify the implementation of variability
in Linux. Berger et al. [5] statically analyze the implemen-
tation and expressiveness of the variability declaration lan-
guages of Linux and eCos, an operating systems targeted
at embedded systems, with the goal to extract a reliable
feature-to-code mapping. In our approach, we make use
of this mapping for Linux when establishing the proposi-
tional formula from the identified source line locations in
the traces (Step Í in Figure 4). The work of Berger et al.
[5] is continued in a follow-up publication [4] and by Nadi
and Holt [37], which analyze implementation anomalies in
KBUILD. Unfortunately, both extractors are based on pars-
ing MAKE files, which turns out to be error-prone or to re-
quire adaptations for each new Linux kernel version [13].
We therefore use an improved version of the GOLEM tool by
Dietrich et al. [13], which extracts variability from KBUILD
with a sufficient accuracy for this work.

The variability extracted the GOLEM tool is combined
with the variability model used by the UNDERTAKER



tool, which checks for configuration inconsistencies in
Linux [52]. Configuration inconsistencies manifest them-
selves in #ifdef blocks that are only seemingly config-
urable, but in fact are not in any KCONFIG configuration.
While in this work we do not aim to improve the Linux im-
plementation, we have extended the UNDERTAKER tool to
generate the tailored configurations. The necessary mod-
ifications were straightforward to implement, and we will
include them into the next public release.

Complexity, security metrics, and attack surface The
need for better security metrics is widely accepted in both
academia and industry [3, 21, 43, 49]. Howard, Pincus,
and Wing [20] were the first to propose the use of code
complexity and bug count metrics to compare the relative
“attackability” of different software, and others have fol-
lowed [30, 45, 47]. Murray, Milos, and Hand [36] underline
the fact that TCB size measurements by SLOC, while good,
might not be precise enough because additional code can
sometimes reduce the attack surface (e.g., sanitizing input).
Manadhata and Wing [30] present an attack surface met-
ric based on an insightful I/O automata model of the target
system, taking into account in particular the data flow from
untrusted data items and the entry points of the system. The
definition of attack surface used in their work closely re-
lates to ours, with the differences that our modeling is solely
based on static call graphs and a measure of code complex-
ity of each underlying function. In contrast, this work mea-
sures the attack surface with respect to a particular attacker
model.

7 Conclusion

Linux distributions ship “generic” kernels, which con-
tain a considerable amount of functionality that is provided
just in case. For instance, a defect in an unnecessarily pro-
vided driver may be sufficient for attackers to take advan-
tage of. The genericalness of distribution kernels, however,
is unnecessary for concrete use cases. This paper presents
an approach to optimize the configuration of the Linux ker-
nel. The result is a hardened system that is tailored to a
given use case in an automated manner. We evaluate the se-
curity benefits by measuring and comparing the attack sur-
face of the kernels that are obtained. The notion of attack
surface is formally defined and evaluated in a very generic
security model, as well as a security model taking precisely
into account the threats posed by a local unprivileged at-
tacker.

We apply the prototype implementation of the approach
in two scenarios, a Linux, Apache, MySQL and PHP
(LAMP) stack and a graphical workstation that serves data
via network file system (NFS). The resulting configuration
leads to a Linux kernel in which unnecessary functionality

is removed at compile-time and thus, inaccessible to attack-
ers. We evaluate this reduction using a number of different
metrics, including SLOC, the cyclomatic complexity and
previously reported vulnerability reports, resulting in a re-
duction of the attack surface between about 50% and 85%.
Our evaluations also indicate that this approach reduces the
attack surface of the kernel against local attackers signif-
icantly more than previous work on kernel extension iso-
lation for Linux. We are convinced that the presented ap-
proach improves the overall system security and is practical
for most use cases because of its applicability, effectiveness,
ease and safety of use.

Acknowledgments

This research has been partially supported by the
TClouds project4 funded by the European Union’s Sev-
enth Framework Programme (FP7/2007-2013) under grant
agreement number ICT-257243.

References

[1] Mike Accetta, Robert Baron, David Golub, Richard Rashid,
Avadis Tevanian, and Michael Young. “MACH: A New
Kernel Foundation for UNIX Development”. In: Proceed-
ings of the USENIX Summer Conference. 1986, pages 93–
113.

[2] Mikhail Belkin and Partha Niyogi. “Laplacian Eigenmaps
and Spectral Techniques for Embedding and Clustering”.
In: Advances in Neural Information Processing Systems 14.
2001, pages 585–591.

[3] S.M. Bellovin. “On the Brittleness of Software and the In-
feasibility of Security Metrics”. In: Security Privacy, IEEE
4.4 (2006), page 96. ISSN: 1540-7993. DOI: 10.1109/
MSP.2006.101.

[4] Thorsten Berger, Steven She, Krzysztof Czarnecki, and An-
drzej Wasowski. Feature-to-Code Mapping in Two Large
Product Lines. Technical report. University of Leipzig
(Germany), University of Waterloo (Canada), IT University
of Copenhagen (Denmark), 2010.

[5] Thorsten Berger, Steven She, Rafael Lotufo, and Andrzej
Wasowski und Krzysztof Czarnecki. “Variability Model-
ing in the Real: A Perspective from the Operating Sys-
tems Domain”. In: Proceedings of the 25th IEEE/ACM In-
ternational Conference on Automated Software Engineer-
ing (ASE ’10). (Antwerp, Belgium). 2010, pages 73–82.
ISBN: 978-1-4503-0116-9. DOI: 10.1145/1858996.
1859010.

[6] N. Biggs. Algebraic Graph Theory. 1974.
[7] Miguel Castro, Manuel Costa, Jean-Philippe Martin, Mar-

cus Peinado, Periklis Akritidis, Austin Donnelly, Paul
Barham, and Richard Black. “Fast byte-granularity soft-
ware fault isolation”. In: Proceedings of the ACM SIGOPS
22nd symposium on Operating systems principles. SOSP
’09. 2009, pages 45–58. ISBN: 978-1-60558-752-3. DOI:
10.1145/1629575.1629581.

4http://www.tclouds-project.eu

http://dx.doi.org/10.1109/MSP.2006.101
http://dx.doi.org/10.1109/MSP.2006.101
http://dx.doi.org/10.1145/1858996.1859010
http://dx.doi.org/10.1145/1858996.1859010
http://dx.doi.org/10.1145/1629575.1629581
http://www.tclouds-project.eu


[8] Dominique Chanet, Bjorn De Sutter, Bruno De Bus, Ludo
Van Put, and Koen De Bosschere. “System-wide Com-
paction and Specialization of the Linux Kernel”. In: Pro-
ceedings of the 2005 ACM SIGPLAN/SIGBED Conference
on Languages, Compilers and Tools for Embedded Systems
(LCTES ’05). 2005, pages 95–104. ISBN: 1-59593-018-3.
DOI: 10.1145/1065910.1065925.

[9] Andy Chou, Junfeng Yang, Benjamin Chelf, Seth Hallem,
and Dawson Engler. “An empirical study of operating sys-
tems errors”. In: Proceedings of the 18th ACM Symposium
on Operating Systems Principles (SOSP ’01). (Banff, Al-
berta, Canada). 2001, pages 73–88. ISBN: 1-58113-389-8.
DOI: 10.1145/502034.502042.

[10] Russell Coker. Bonnie++. Benchmark suite for hard drive
and file system performance. URL: http : / / www .
coker.com.au/bonnie++/ (visited on 08/02/2012).

[11] Kees Cook. Yama LSM. 2010. URL: http://lwn.net/
Articles/393012/ (visited on 06/04/2012).

[12] John Criswell, Andrew Lenharth, Dinakar Dhurjati, and
Vikram Adve. “Secure Virtual Architecture: A Safe Exe-
cution Environment for Commodity Operating Systems”.
In: Proceedings of the 21st ACM Symposium on Operat-
ing Systems Principles (SOSP ’07). (Stevenson, WA, USA).
2007, pages 351–366. ISBN: 978-1-59593-591-5. DOI: 10.
1145/1294261.1294295.

[13] Christian Dietrich, Reinhard Tartler, Wolfgang Schröder-
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Appendix

The following is a proof of Proposition 1.

Proof (AS1 and AS2 are attack surface metrics). AS1µ sat-
isfies Definition 5 through Lemma 1, as adding new func-
tions to the sum results in a larger attack surface measure-
ment (since µ has non-negative values).

For AS2µ , the non-negativity is a known result of al-
gebraic graph theory [6]: the Laplacian matrix of a sim-
ple graph is symmetric real and all eigenvalues are non-
negative, hence, the quadratic form associated with the
Laplacian (x 7→ xT L(G)x) can only take non-negative val-
ues.

Before proving that AS2µ satisfies the second property
in Lemma 1, we explicit the rationale behind chosing this
metric. The metric contains a quadratic term that accounts
for the relative “complexity” of a function in comparison to
its callers and callees: if a function is calling (or is called
by) a more complex function, its relative contribution to the
attack surface should increase and vice versa. For instance,
this can be written for a function n, called by functions m,
m′ and calling function m′′, κ(n) denoting the relative com-
plexity of function n:

κ(n)= µ(n)
[
(µ(n)−µ(m))+(µ(n)−µ(m′))+(µ(n)−µ(m′′))

]
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Generalizing to any function:

κ(n) = µ(n)

deg(n)µ(n)− ∑
(i,n)∈C̃AS

µ(i)


Which, after summing over all functions, corresponds to
µAS

T L(G̃AS)µAS.
Let’s now prove that adding a new node to an existing

graph can only increase this quadratic term. Without loss
of generality, we assume we starting with function set F =
J1 . . .N−1K and affect N to the newly added function. This
function is either called or is calling m functions in I ⊆ F
with deg(N) = m < N. We denote by κ the old relative
complexity and κ ′ the new (after the addition of N to the
graph), and deg corresponds as well to the old degree of a
node, unless it is deg(N). Then:

∀i ∈ F,κ ′(i)−κ(i) = µ(i) [µ(i)−µ(N)]

Therefore:

κ(N)+ ∑
i∈F

(κ ′(i)−κ(i)) = µ(N)

[
deg(N)µ(N)−∑

i∈I
µ(i)

]
+∑

i∈I
µ(i) [µ(i)−µ(N)]

= ∑
i∈I

µ(i)2 +mµ(N)2−2µ(N)∑
i∈I

µ(i)

= ∑
i∈I

(µ(i)−µ(N))2 ≥ 0

Hence, adding new functions can only increase the attack
surface measurement AS2µ .
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