AccelPrint: Imperfections of Accelerometers Make Smartphones Trackable

Sanorita Dey, Nirupam Roy,

Wenyuan Xu, Romit Roy Choudhury, Srihari Nelakuditi

People use hundreds of apps

Some apps are sneaky

- Exchanging IDs without consent is rampant
 IMEI (device id), IMSI (subscriber id), or ICC-ID (SIM card serial number) help track users
- One possible Solution: TaintDroid
 - Realtime filtering of exchange of device IDs

Law: Get user's consent

• While installing a cookie • While sharing location

People use hundreds of apps

Our findings

Other sensors can also potentially track the users

Accelerometers have fingerprint

What if accelerometers have fingerprints?

What if accelerometers have fingerprints?

What if accelerometers have fingerprints?

Evidence of fingerprint

Toy Experimental Setup

- Six stand-alone accelerometer chips
- Stimulation with an external vibration motor
- Arduino to control vibration and collect accelerometer readings

Accelerometers are distinguishable

Accelerometer chips of Samsung Galaxy S3

Accelerometer chips of Nexus S

Accelerometer chips of Samsung Galaxy Nexus

Accelerometers are distinguishable

Accelerometer chips of Samsung Galaxy S3

Accelerometer chips of Samsung Galaxy Nexus

Accelerometers are distinguishable

Accelerometer chips of Samsung Galaxy Nexus

Why are accelerometers distinct?

Accelerometers are based on MEMS

Internal structure of an accelerometer

Reasons for difference in accelerometers

- Manufacturing imperfections
- Idiosyncrasies due to QFN and LGA Packaging
- Subtle imperfections do not alter the rated functionality
- Small imperfections can potentially introduce idiosyncrasies in data

Evaluation and External Impact Analysis

Larger Scale Exploration

80 stand-alone accelerometer chips

27 smartphones and tablets

107 stand-alone chips, smartphones and tablets in total

36 time domain and frequency domain features

Bagged Decision Trees for ensemble learning (with accelerometer traces)

Feature Selection

Extract 8 time and 10 frequency domain features from S(i) and I(i)

Feature Name	Description
Mean	$\bar{x} = \frac{1}{N} \sum_{i=1}^{N} x(i)$
Std-Dev	$\sigma = \sqrt{\frac{1}{N-1} \sum_{i=1}^{N} (x(i) - \bar{x})^2}$
Average Deviation	$D_{\bar{x}} = \frac{1}{N} \sum_{i=1}^{N} x(i) - \bar{x} $
Skewness	$\gamma = rac{1}{N} \sum_{i=1}^{N} \left(rac{(x(i) - ar{x})}{\sigma} ight)^3$
Kurtosis	$\beta = \frac{1}{N} \sum_{i=1}^{N} \left(\frac{(x(i) - \bar{x})}{\sigma} \right)^4 - 3$
RMS Amplitude	$A = \sqrt{\frac{1}{N} \sum_{i=1}^{N} (x(i))^2}$
Lowest Value	$L = (Min(x(i)) _{i=1 \ to \ N})$
Highest Value	$H = (Max(x(i)) _{i=1 \ to \ N})$

Feature Name	Description
Spec. Std Dev	$\sigma_s = \sqrt{\left(\sum_{i=1}^{N} \left(y_f(i)\right)^2 * y_m(i)\right) \left/ \left(\sum_{i=1}^{N} y_m(i)\right)\right.}$
Spec. Centroid	$C_s = \left(\sum_{i=1}^N y_f(i)y_m(i)\right) \Big/ \left(\sum_{i=1}^N y_m(i)\right)$
Spec. Skewness	$\gamma_s = \left(\sum\limits_{i=1}^N \left(y_m(i) - C_s ight)^3 * y_m(i) ight)/\sigma_s^3$
Spec. Kurtosis	$\beta_{s} = \left(\sum_{i=1}^{N} (y_{m}(i) - C_{s})^{4} * y_{m}(i)\right) / \sigma_{s}^{4} - 3$
Spectral Crest	$CR_s = \left(Max(y_m(i))\right)_{i=1 \ to \ N}\right)/C_s$
Irregularity-K	$IK_{s} = \sum_{i=2}^{N-1} \left y_{m}(i) - \frac{y_{m}(i-1) + y_{m}(i) + y_{m}(i+1)}{3} \right $
Irregularity-J	$IJ_{s} = \frac{\sum_{i=1}^{N-1} (y_{m}(i) - y_{m}(i+1))^{2}}{\sum_{i=1}^{N-1} (y_{m}(i))^{2}}$
Smoothness	$S_{s} = \sum_{i=2}^{N-1} \left 20.log(y_{m}(i)) - \right $
	$\frac{\left(20.\log(y_m(i-1))+20.\log(y_m(i))+20.\log(y_m(i+1))\right)}{3}\right $
Flatness	$F_s = \left(\prod_{i=1}^N y_m(i)\right)^{\frac{1}{N}} / \left(\left(\sum_{i=1}^N y_m(i)\right)/N\right)$
Roll Off	$R_s = \frac{SampleRate}{N} * n \Big _{\substack{\sum \\ i=1}}^{n} y_m < Threshold}$

Time domain features

Frequency domain features

Overall classification performance

Overall classification performance

Precision and Recall

average precision & recall > 99%

Questions

- Is the external vibration mandatory for fingerprinting the accelerometers?
- What is the impact of smartphone CPU load on fingerprints?
- Does the fingerprint manifest only at faster sampling rates?
- Does the system need to be aware of the surface on which device is placed?

Precision and Recall Without Vibration

worst case precision & recall > 66%

average precision & recall > 88%

Natural Questions

- Is the external vibration mandatory for fingerprinting the accelerometers?
- What is the impact of smartphone CPU load on fingerprints?
- Does the fingerprint manifest only at faster sampling rates?
- Does the system need to be aware of the surface on which device is placed?

Is the system sensitive to CPU load?

• CPU load matters. But up to 20% difference, high classification precision

Natural Questions

- Is the external vibration mandatory for fingerprinting the accelerometers?
- What is the impact of smartphone CPU load on fingerprints?
- Does the fingerprint manifest only at faster sampling rates?
- Does the system need to be aware of the surface on which device is placed?

Does the fingerprint manifest only at faster sampling rates?

- Even at slower sampling rates, devices exhibit discriminating features
- Likelihood of distinguishing devices improves with faster sampling rates

Natural Questions

- Is the external vibration mandatory for fingerprinting the accelerometers?
- What is the impact of smartphone CPU load on fingerprints?
- Does the fingerprint manifest only at faster sampling rates?
- Does the system need to be aware of the surface on which device is placed?

Does the system need to be aware of the surface on which device is placed?

• Training on different surfaces helps but the system is surface-agnostic

Conclusion and Future Work

Accelerometers possess fingerprints

Next step is commercial-grade evaluation

How to scrub fingerprint from sensor data?

Two objects may be indistinguishable ...

... but no two objects are identical

Thank You

http://web.engr.illinois.edu/~sdey4/

Can we distinguish between an alien phone from a registered phone?

How unique are accelerometer fingerprints?

Even with increasing number of known or alien devices, precision/recall is still high

Can we mask a device's fingerprint with a case?

- Accelerometer readings with and without case are different
- Training with and without case still helps classify a device

When to extract a fingerprint in practice?

- Opportunistically under similar conditions
 - e.g. when vibration motor on, CPU load moderate

AccelPrint Design

Accelerometer data collection

- Vibrate phone/chip for a certain duration (say 2 sec)
 - Smartphones stimulated with internal vibration motor

Trace: Accelerometer values during vibration period

- ${s_x(i), s_y(i), s_z(i)}$ be the ith acceleration at time T(i)
 - Root sum square $S(i) = \sqrt{s_x^2(i) + s_y^2(i) + s_z^2(i)}$
- Samples are not at regular intervals
 - Sampling rate depends on the mode
 - Sampling interval I(i) = T(i+1) T(i)

Fingerprint matching

When a phone is registered

- AccelPrint is trained with features extracted from multiple (say 10 to 15) traces from that phone
- Bagged Decision Trees for ensemble learning

When a phone is tested

- Extracts features from a single trace
- Classifier outputs a matching registered phone
 - or "alien" based on classification score

Can we fingerprint a device without vibration?

Rotational setup controlled by Arduino

Can we fingerprint a device without vibration

Even with rotational motion for stimulation, average precision/recall > 97%