
Attack Patterns for
Black-Box Security Testing of
Multi-Party Web Applications

Avinash Sudhodanan (sudhodanan@fbk.eu)
Alessandro Armando (armando@fbk.eu)
Roberto Carbone (carbone@fbk.eu)
Luca Compagna (luca.compagna@sap.com)

NDSS, San Diego, 22/02/2016
1

Multi-Party Web Applications (MPWAs)

Examples

o  Single Sign-On (SSO)

o  Cashier-as-a-Service (CaaS)

Popularity/Relevance

o  27% of top 1000 US websites supports
Facebook SSO [1]

o  179+ million PayPal users worldwide

2

Shopping
online

Service Provider
(SP) User (U)

SAML SSO, OAuth, PayPal Express..

Trusted Third-Party (TTP)

Identity Provider
(e.g. Google)

Payment Service
Provider

(e.g. PayPal)

Alice
Online Shop

A Service Provider web app. relying on Trusted Third-Parties to deliver its services to Users
through web-based security protocols

Multi-Party Web Applications (MPWAs)

Examples

o  Single Sign-On (SSO)

o  Cashier-as-a-Service (CaaS)

Popularity/Relevance

o  27% of top 1000 US websites supports
Facebook SSO [1]

o  179+ million PayPal users worldwide

3

A Service Provider web app. relying on Trusted Third-Parties to deliver its services to Users
through web-based security protocols

U TTP SP

1. Login Request

2. Auth. Request

4. AuthAssert (Alice,SP)

3. Login & Consent

5. “Welcome Alice”

Alice Online Shop

The implementation of the protocols underlying MPWAs is notoriously error-prone

Several Vulnerabilities Reported
Many vulnerabilities discovered through a variety of techniques applied to specific scenarios

4

Tech. [Ref.] Vulnerable MPWA Attack Attacker’s Goal
FV [2] SPs implementing Google’s

SAML SSO
Replay UV’s AuthAssert for SPM in SPT Authenticate as UV at SPT

GB+FV [3] developer.mozilla.com (SP)
implementing BrowserID

Make UV browser send request to SPT
with UM’s AuthAssert

Authenticate as UM at SPT

BB [4] PayPal Express Checkout in
OpenCart 1.5.3.1

Replay Token of transaction T1 at SPT
during transaction T2 at SPT

Complete T2 at SPT

FV [5] SPs implementing Facebook
SSO

Replay UV’s AccessToken for SPM in
SPT

Authenticate as UV at SPT

BB [6] PayPal Payments Standard
in osCommerce v2.3.1

Replay PayeeId of SPM during
transaction T at SPT

Complete T at SPT

WB [7] Authorize.net credit card sim
in baby products store

Replay OrderId of transaction T1 at
SPT during transaction T2 at SPT

Complete T2 at SPT

FV [8] CitySearch.com (SP) using
Facebook SSO

Make UV browser send request to SPT
with UM’s AuthCode

Authenticate as UM at SPT

Legend- FV: Formal Verification, GB: Grey-Box Analysis, BB: Black-Box Analysis, WB: White-Box Analysis

SAML SSO: Example of vulnerable implementation

5

U TTP SP

1. Login Request

2. Auth. Request

4. AuthAssert(Alice,SP)

3. Login & Consent

5. “Welcome Alice”

Alice Online Shop
A man-in-the-middle attack against the SAML based SSO for Google Apps reported in [2]

Google

Victim User
(UV)

SAML SSO: Example of vulnerable implementation

6

TTP Malicious SP
(SPM)

1. Login Request

2. Auth. Request

3. Login & Consent

5. “Welcome Alice”

Alice Kitty pics Google

Session (UV, SPM)

Target SP
SPT

Malicious User
(UM)

Bob Online Store

1’. Login Request
:

5’. “Welcome Alice”
:

Session (UM, SPT)

4. AuthAssert(Alice)

Attack strategy: Replay UV’s AuthAssert for SPM in SPT

Our Observation- I: attack strategies
The strategy behind many attacks reported in the literature is the same

7 Can we exploit the similarity in attack strategies to discover new attacks in an automatic way?

Tech. [Ref.] Vulnerable MPWA Attack Strategy Attacker’s Goal
FV [2] SPs implementing Google’s

SAML SSO
Replay UV’s AuthAssert for SPM in SPT Authenticate as UV at SPT

GB+FV [3] developer.mozilla.com (SP)
implementing BrowserID

Make UV browser send request to SPT
with UM’s AuthAssert

Authenticate as UM at SPT

BB [4] PayPal Express Checkout in
OpenCart 1.5.3.1

Replay Token of transaction T1 at SPT
during transaction T2 at SPT

Complete T2 at SPT

FV [5] SPs implementing Facebook
SSO

Replay UV’s AccessToken for SPM in
SPT

Authenticate as UV at SPT

BB [4] PayPal Payments Standard
in osCommerce v2.3.1

Replay PayeeId of SPM during
transaction T at SPT

Complete T at SPT

WB [6] Authorize.net credit card sim
in baby products store

Replay OrderId of transaction T1 at
SPT during transaction T2 at SPT

Complete T2 at SPT

FV [7] CitySearch.com (SP) using
Facebook SSO

Make UV browser send request to SPT
with UM’s AuthCode

Authenticate as UM at SPT

Our Observation- II: preconditions

Some properties of the HTTP elements of protocols can be
used as preconditions to apply the attack strategy:

•  Syntactic/Semantic properties of HTTP elements [8]

•  Data flow properties

8

U TTP SP

1. Login Request

2. Auth. Request

4. Auth. Assert

3. Login & Consent

5. “Welcome Alice”

Google Alice Alice

Can we understand from the HTTP traffic of the underlying protocol which attack strategy to be applied?

Online shop

Property Label
User Unique UU

Session Unique SU

Property Flow
The HTTP element flows from SP to TTP, through the browser SP-TTP

The HTTP element flows from TTP to SP, through the browser TTP-SP

:

Our Observation-III: threat model

Four nominal sessions are sufficient to execute all the attacks we considered:

The thread model: Attacker can play the role of a User and/or a Service Provider

9
Is this threat model general enough for our purpose? Any added value by considering browser history attacker?

10

From Attacks to Attack Patterns

From Attacks to Attack Patterns: one example

11

Ref. Vulnerable MPWA Attack Strategy Attacker’s Goal
FV [2] SPs implementing

Google’s SAML SSO
Replay UV’s AuthAssert for SPM in SPT Authenticate as UV at SPT

FV [5] SPs implementing
Facebook SSO

Replay UV’s AccessToken for SPM in SPT Authenticate as UV at SPT

(Formalized)

(Formalized)

e.g. “Welcome Alice”

Attack Patterns

12

Approach

Knowledge of the security expert is encapsulated in attack patterns

13

• Provide
implementation,
recording of user
actions of the
nominal sessions

• Execute user actions
•  Identify syntactic/

semantic, data flow
properties of underling
HTTP elements (e.g.
SU, TTP-SP etc.)

• Check preconditions
• Execute actions e.g. replay

an element from one
protocol run in another

• Check postconditions

Implementation

14

Results (excerpt)

15

Novelty SP TTP (& Protocol) Attack (& Elements) ACKs

New attack Alexa e-comm < 10 Linkedin JS API SSO RA5 (Uid, Email)

developer.linkedin.com RA5 (Mem. Id, Access. Token)

Attacks previously
reported in SSO found
other scenarios e.g. CaaS

All SPs Stripe Checkout RA4 (DataKey, Token)

open.sap.com Gmail (reg. via email) LCSRF (Act. Link)

Same attack in another
protocol of same scenario

INstant Linkedin JS API SSO RA1 (Access_Token)

Alexa US top < 1000 Log in with Instagram LCSRF (Auth. Code)

pinterest.com Facebook SSO RedURI (red_uri, Auth. Code)

All SPs Log in with PayPal RedURI (red_uri, Auth. Code)

Same attack another app OpenCart v2.1.0.1 2Checkout RA3 (Order_num, Key)

Conclusions

•  Identified 7 attack patterns

•  Introduced a black-box security testing framework leveraging our attack patterns to discover

vulnerabilities in the implementations of MPWAs

•  Implementation based on OWASP ZAP (a widely-used open source penetration testing tool)

•  Using our tool we discovered 21 previously-unknown vulnerabilities in SSO, CaaS and beyond

16

Limitations and future directions

Coverage

•  general issue for black-box techniques

•  attack patterns can state precisely what they are testing

•  still our approach is not complete

•  can we reach practical full-coverage for replay attacks?

Observability

•  our approach can observe client side communication

•  server-to-server (S2S) communication is not considered

•  what would we gain by adding S2S observability?
17

References

[1] Zhou, Y. and Evans, D. SSOScan: automated testing of web applications for single sign-on vulnerabilities. USENIX 2014

[2] Armando, A., Carbone, R., Compagna, L., Cuellar, J., and Tobarra, L. Formal Analysis of SAML 2.0 Web Browser Single Sign-On:
Breaking the SAML-based Single Sign-On for Google Apps. FMSE 2008

[3] Bai, G., Lei, J., Meng, G., Venkatraman, S. S., Saxena, P., Sun, J., Liu, Y., and Dong, J. S. Authscan: Automatic extraction of web
authentication protocols from implementations. NDSS 2013

[4] Pellegrino, G., and Balzarotti, D. Toward black-box detection of logic flaws in web applications. NDSS 2014

[5] Wang, R., Zhou, Y., Chen, S., Qadeer, S., Evans, D., and Gurevich, Y. Explicating SDKs: Uncovering assumptions underlying
secure authentication and authorization. USENIX 2013

[6] Sun, F., Xu, L., and Su, Z. Detecting logic vulnerabilities in e-commerce applications. NDSS 2014

[7] Bansal, C. and Bhargavan, K. and Maffeis, S. Discovering Concrete Attacks on Website Authorization by Formal Analysis. CSF,
2012

[8] Wang, R., Chen, S., and Wang, X. Signing me onto your accounts through facebook and google: A traffic-guided security study of
commercially deployed single-sign-on web services. S&P 2012

18

Thank You
sudhodanan@fbk.eu

19

Backup slides

20

Example Attack Pattern: RA1

21

Custom Strategies

Threat Model: Browser History of victim user (UV) is available to Attacker

22

Complex Attack Patterns

23

LCSRF Attack Pattern

24

Beyond SSO and CaaS scenario: Reg. via email

25

B

11. Login and consent

U

2. GET URI_SP

MP SP

1. Visit URI_SP

3. Registration Form

5. POST Email 4. Enter Email

6. ActLink

8. GET URI_MP 7. Visit URI_MP

9. Login Form

10. Enter credentials U

12. ActLink

14. GET ActLink 13. Click ActLink

15. Status

TTP

Our Observation-III: threat model

Four nominal sessions are sufficient to execute all the attacks we considered:

The thread model: Attacker can play the role of a User and/or a Service Provider

26

Nominal Sessions
User SP Comment
S1 UV SPT Session between potential victim,

target SP and TTP
S2 UM Session between malicious user,

target SP and TTP
S3 UV SPM Session between potential victim,

reference SP and TTP

Session between malicious user,
reference SP and TTP S4 UM

Configuration
One TTP TTP The TTP which is considered non-malicious

Two SPs SPT The target SP who has a protocol integration
with TTP

SPM Another SP that has the same protocol
implementation as SPT

Two Us UV The user representing a potential victim

UM The user representing a malicious attacker

This threat model is general enough to detect the type of attacks we considered !

Our Observation-III: threat model

Four nominal sessions are sufficient to execute all the attacks we considered:

The thread model: Attacker can play the role of a User and/or a Service Provider

27
Is this threat model general enough for our purpose?

