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Abstract—Use-after-free vulnerabilities have become an
important class of security problems due to the existence
of mitigations that protect against other types of vul-
nerabilities. The effects of their exploitation can be just
as devastating as exploiting a buffer overflow, potentially
resulting in full code execution within the vulnerable
program. Few protections exist against these types of
vulnerabilities and they are particularly hard to discover
through manual code inspection. In this paper we present
FreeSentry: a mitigation that protects against use-after-free
vulnerabilities by inserting dynamic runtime checks that
invalidate pointers when the associated memory is released.
If such an invalidated pointer is accessed, the program will
subsequently crash, preventing an attacker from exploiting
the vulnerability. When checking dynamically allocated
memory, our approach has a moderate performance over-
head on the SPEC CPU benchmarks: running with a
geometric mean performance impact of around 25%. It
has no overhead when deployed on widely used server
side daemons such as OpenSSH or the Apache HTTP
daemon. FreeSentry also discovered a previously unknown
use-after-free vulnerability in one of the programs in SPEC
CPU2000 benchmarks: perlbmk. This vulnerability seems
to have been missed by other mitigations.

I. INTRODUCTION

Use-after-free vulnerabilities have become particu-
larly widespread and few mitigations exist to protect
against them, while even fewer are currently deployed
in production environments. The vulnerability class is
present in all types of applications and is the result of
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retaining pointers to memory that has been freed and
subsequently accessing these stale pointers. Exploiting
other vulnerabilities, such as buffer overflows, has be-
come harder due to mitigations [1]. This has resulted
in use-after-free vulnerabilities becoming a significantly
more important target for exploitation in recent years.

A study [2] which surveyed vulnerabilities and cor-
responding exploits for Microsoft products from 2006-
2012 found that there has been a significant change
in the vulnerabilities that are found and exploited by
attackers due to the introduction of mitigations. In
2011 and 2012, the most exploited memory errors for
Microsoft products were use-after-free vulnerabilities.
It was also the most exploited vulnerability for both
Windows Vista and Windows 7 and is the most common
type of memory error that occurs in Internet Explorer.
Typically, during their monthly patch-cycle, Microsoft
will release patches for Internet Explorer, fixing several
use-after-free vulnerabilities. Given that Windows Vista
and Windows 7 (and Windows 8) are the Microsoft
operating systems that have the most mitigations enabled
to prevent successful exploitation of whole classes of
traditional vulnerabilities, it is no surprise that attackers
have shifted their attention to a vulnerability type that
currently lacks widespread mitigations.

Use-after-free vulnerabilities are very hard to spot
during manual code review as they require knowing the
pattern of allocation and deallocation that occurs during
a program’s execution. The vulnerability is a temporary
one, that only exists at particular points in time when
the stale pointer presents itself. The stale pointer can
be present for a long time in the program, but the
actual vulnerability that occurs when the stale pointer
is used can occur several functions or hundreds or even
thousands of lines removed from the deallocation, further
complicating the review process. As such, this type of
vulnerability can easily be missed by even the most



experienced code reviewer. Unlike missing checks for
other vulnerabilities, such as buffer overflows or integer
errors, there is no easy check that a programmer can
add to ensure that the pointer isn’t stale. Even explicitly
setting a pointer to NULL after freeing memory can cause
the issue to be missed because a pointer could have been
copied to another pointer.

In this paper we present FreeSentry, a mitigation that
automatically protects applications against use-after-free
vulnerabilities at runtime through compile-time instru-
mentation. It provides protection by tracking pointers
that point to an object (a chunk of dynamically allocated
memory or a stack frame) and invalidates these pointers
when the object is freed. We achieve this through source
code transformation that inserts runtime code to track
pointers and invalidates these pointers when the asso-
ciated object is freed. Our approach is compatible with
existing, unprotected compiled code and does not require
intervention by a developer. It is also able to protect
against use-after-free vulnerabilities that exist in both dy-
namically allocated memory as well as in automatically
allocated memory (i.e., on the stack). While it doesn’t
require intervention from a developer to be deployed, it
does however support developer cooperation to improve
performance. For example, it is possible for a developer
to manually opt out of protection for a particular function
which can result in significant performance increases.
It is also possible for developers to manually register
a pointer for tracking even in unprotected functions, by
simply calling a library function with the address of the
pointer that requires tracking. The performance overhead
for our approach is moderate: a mean of 25% for the
CPU2000/2006 benchmarks, which makes it significantly
faster than other approaches that offer full protection
against these types of attacks. We also measured perfor-
mance overhead for frequently used daemons on servers
like Apache HTTPD and OpenSSH and show that the
overhead for these applications is negligible.

The rest of this paper is structured as follows: Sec-
tion II describes use-after-free vulnerabilities and how
attackers can abuse them. Section III discusses the design
of our countermeasure, while Section IV examines our
prototype implementation. Section V presents an evalu-
ation of our prototype by benchmarking it and examines
the mitigation’s effectiveness through a security evalua-
tion. In Section VI we compare our approach to other
mitigations, while Section VII discusses combining our
approach with a bounds checker. Finally, Section VIII
presents our conclusion.
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Figure 1. Use-after-free vulnerability

II. PROBLEM DESCRIPTION

A use-after-free vulnerability occurs when a pointer
to an object that has been freed is dereferenced. This
can result in information leakage but could also allow
an attacker to modify unintended memory locations,
potentially leading to code execution. When memory is
freed, it can be potentially reused by the system when a
new memory allocation request is performed. When this
happens, one or more objects will inhabit the memory
location of the previous object and other datatypes could
exist in one object versus another. For example, if we
have an object A which contains four integers and we
have a pointer p that points to it. If object A is freed but
p is still used, the program will expect that memory to be
inhabited by an object containing four integers. At some



other point the program allocates memory for an object
B that contains two function pointers and a character
array of 8 bytes. Depending on how the memory has
been reassigned, the resulting location for object B can
encompass all or part of the previous memory inhabited
by object A. However, when pointer p is accessed, the
program expects to access four integers. If these integers
overlap with the function pointers in object B, then
attackers could be able to read or write these pointers
as if they were integers, potentially allowing them to
assign these integers values that would reference their
injected code. When the function pointers are executed
in object B, the injected code would be called instead
of the intended function. Figure 1 provides a graphical
representation of this issue.

Listing 1 shows an example program that suffers from
two use-after-free vulnerabilities. The vulnerabilities ex-
ist on lines 12 and 15 due to releasing of memory
at lines 11 and 4 respectively. The issue at line 12
is related to dynamically allocated memory, while the
issue at line 15 is due to a pointer to stack-allocated
memory which is freed automatically at line 4 when
the function returns. The vulnerabilities in this example
are simply for illustrative purposes to demonstrate our
approach in subsequent sections, they are not exploitable
due to the lack of memory reuse between the freeing of
memory and the use-after-free vulnerability. If memory
was reused as depicted in Figure 1, then an attacker could
potentially partially overwrite function_ptr2 in object B
with the value 99 (the ASCII value of the character c)
at line 12.

Listing 1. A C program that is vulnerable to use-after-free vulner-
abilities
1 char xretptr () {
2 char p, xq;:
3 q = &p;
4 return q;
5 ¥
6
7 int main() {
8 char xa, xb; int i;
9 a = malloc(16);
10 b = a+5;
11 free(a);
12 b[2] = "¢’
13
14 b = retptr ();
15 xb = ’¢’;

16 }

A specialized case of the use-after-free vulnerability
is the double free vulnerability where memory is released
by calling free and that same object is then again freed
at some later point in time. This potentially causes
the memory allocator to overwrite memory management
information stored in the free chunk, which could result
in an exploitable state. The only difference between a
double free and a regular use-after-free vulnerability is
where the dangling pointer is used. In a regular use-after-
free, the pointer can be used anywhere, while in the case
of the double free, the stale pointer is used together with
a call to free.

III. APPROACH

The core idea behind the protection that FreeSentry
offers is to link objects back to their pointers. When the
memory for the object in question gets freed, then the
pointers that still reference the object can be invalidated.

To do this, whenever a pointer is created or modified
to point to a new object, the address of the pointer is
registered as referring to our object. When the object is
freed, the freeing function will look up all the pointers
that point to the memory region inhabited by the object.
If these pointers still point to our object (they could
have been changed by unprotected code), the pointers are
invalidated. When a pointer is invalidated, it is made to
point to an invalid memory location which will cause the
program to crash if it attempts to dereference it. These
transformations are done automatically by FreeSentry, no
programmer intervention is required.

Listing 2 shows a transformation that is done to the
example vulnerable program in Listing 1.

Listing 2. Vulnerable C program protected with FreeSentry
1 char xretptr () {
2 labelstack ();
3 char p, xq;
4 q = &p;
5 regptr(&q);
6 invalidatestack ();
7 return q;
8 }
9
10 int main() {
11 char xa, xb; int 1i;
12 a = malloc(16);
13 regptr(&a);
14 b = a+5;
15 regptr(&b);



16 free (a);

17 b[2] = ’¢’;
18

19 b = retptr ();
20 regptr(&b);
21 xb = ’¢’;

22 }

In the transformed program in Listing 2, the following
occurs. When a pointer is set to an object, regptr()
is called with the address of the pointer, registering
the pointer as pointing to that specific object. When
malloc() gets called at line 12, FreeSentry intercepts it at
runtime, calls the original malloc() function to perform
the allocation and registers the memory bounds. When
the free() function is called, it is also intercepted, the
original free() function is called and the pointers that
have been registered via regptr() are invalidated. The
labelstack() and invalidatestack() functions perform the
same functions as the intercepted malloc() and free()
functions, but for stack-allocated memory.

FreeSentry does not modify the way that pointers are
represented; this means that the program will remain
compatible with existing code that may not have been
protected with the mitigation. This also allows develop-
ers to opt out of protection for specific functions. For
example, if a function has been verified manually to
be safe, then the function can opt out of registering its
pointers. Any memory that the unprotected function frees
will still trigger the pointer invalidation as pointers to
the freed memory could have been created elsewhere.
The same occurs for any memory it allocates: this will
still be labelled to allow pointers to the memory to be
tracked in other locations. Opting out would only be done
to improve performance. Section V-A2 discusses a case
study on how opting out of a minimal amount of code
can positively affect FreeSentry’s performance.

Our main approach is compatible with objects created
in all types of memory: whether dynamically allocated,
global, static or created on the stack. Of these types of
objects, global and static objects do not need to generally
be checked for potential use-after-frees because global
and static objects are only released when the program
terminates. However, having a pointer to stack space
that has been reclaimed for other purposes is possible,
as the example in Section II demonstrates. This type of
vulnerability is rare and can be more easily detected.
In fact some compilers will generate warnings when
returning a pointer to a stack variable. FreeSentry can run

with or without stack protection enabled and we expect
that the typical use-case of the mitigation will be to only
protect dynamically allocated memory.

A. Supporting data structures

The memory layout for the supporting data structures
is presented in Figure 2. The information that is regis-
tered about a pointer and where it refers to is called the
pointer registration information. To link the pointers to
objects, two lookup tables are used. The first one, which
we call the object lookup table, is used to look up all
the pointer registration information based on the address
of an object. The second lookup table is used to look up
that same information based on the address of a pointer
and is called the pointer lookup table.

The free function uses the first approach to look up
the information: when an object is freed, the pointer
registration information is found based on the object’s
memory location using the object lookup table. The code
that tracks the pointers uses the second approach: based
on the address of a pointer, we can find the registration
information.

The first way of looking up information could be
eliminated if we transformed the free() calls in programs
to pass the address of the pointer to the object being
freed instead of passing the address of the object by
value. However, this approach would mean that any
calls to free() in unprotected code would no longer be
able to invalidate the pointers pointing to that memory.
Eliminating the second table is possible, since we can
access the value of the pointer being passed into the reg-
istration and can thus look up the registration information
based on the object. However this would significantly
reduce performance as we would need to examine the
registration information of all pointers that refer to a
specific object to locate the desired pointer’s registration
information.

We also need to know the start of the object that
a pointer is referencing when adding that pointer to the
object’s lookup table. To do this we use a technique based
on the one described in [3]: a unique label is stored for
the memory area that an object inhabits when the object
is allocated, called a label. When we register a pointer
to an object, we look up the label of the object that the
pointer references. That label is then used with the object
lookup table to find the pointer registration information,
to which we then add the new pointer. Objects are a
minimum size and can inhabit multiple memory areas
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Figure 2. Memory layout of FreeSentry

(called regions) that are multiples of that size. The same
label will be used for each of the regions that an object
inhabits.

To find an object’s label we right-shift the address
of the object by the minimum object size which gives
us the index of the label in the label lookup table, that
label is then used as an index into the object lookup
table. To find the pointer registration information based
on a pointer to the address, we right-shift the pointer by
4 bits and use that value as an index into the pointer
table. Both hash tables are of a fixed size, so a modulo
operation is performed to ensure the index points within
the hash table. All pointer registration elements contain
references to the next and previous elements for both
hash tables to deal with collisions. They also contain the
label of the object that is being referenced as well as the
address of the pointer being registered.

When a pointer is set to a new object, its pointer
registration information is looked up via the pointer
lookup table, if present, the pointer is set to point to
the new object and is removed from the object lookup
table by unlinking it from the doubly linked list of object
references. If the object already points to the current
object then no actions are performed. If the pointer is
not present, a new pointer registration information object
is created, and added to the front of the respective hash
bucket for both the pointer lookup table and the object
lookup table. Figure 2 shows the memory layout for
FreeSentry.

B. Freeing memory

When memory is freed, we look up the label of the
object in the label lookup table. We use this label as

an index into the object lookup table, and retrieve the
pointer registration information, which contains both the
pointer’s address and the object label it refers to. If the
stored object label matches the label of the object being
freed (we might have retrieved a pointer registration
for an object that inhabits the location in the hash
table due to bucketing), then we check if the pointer is
still referring to the object. This is necessary because
the pointer may have changed if it was modified in
unprotected code. If it is still pointing to our object,
then the pointer is invalidated and the pointer registration
information is removed.

This approach may introduce dangling pointers of
its own: if the memory that a registered pointer lives
on is freed, then accessing that pointer via the pointer
registration information may cause an invalid pointer
access. Because we check the value of the pointer and
make sure it still points to our object before invalidating
it, this is not an issue in cases where the memory is still
accessible. However, this becomes a problem when the
page on which the pointer is located becomes invalid.
To ensure that the program does not crash as we access
pointers, we keep a bit-array that stores the liveness
of a page and check if the page is still alive before
accessing any pointer stored on it. We keep this bit-array
up to date by intercepting calls to mmap(), munmap()
and mremap(), and update the bit-array depending on
the removal or addition of pages.

C. Reallocating memory

When realloc() is called to increase or decrease the
size of a memory region, the pointer that is returned
could be different from the pointer that is passed in as
argument. The only guarantee that realloc() gives is that



the old data will remain intact up to the smallest size (i.e.,
min(oldsize, newsize)). Due to this lack of guarantee, any
call to realloc() should invalidate all pointers to the old
object. However, our goal is to remain as unintrusive as
possible if there’s no potential for harm. As such, we will
only invalidate pointers when the new pointer returned
by realloc() is different from the old pointer passed into
the function. If the mitigation is used as a testing tool
to detect as many use-after-frees as possible, then it is
beneficial to turn on invalidating of all the old pointers.

When realloc() allocates new memory, it copies the
old data over to the new memory location and subse-
quently frees the old memory location. Any pointers to
the old memory location are now stale. An example
of this type of use-after-free can be found in CVE-
2009-0749 [4]. FreeSentry found a vulnerability of this
type in the perlbmk benchmark which is part of the
SPEC CPU2000 benchmarks used to test performance in
Section V. The details of this vulnerability are discussed
in Section V-B1.

D. Stack protection

If stack protection is enabled, we perform labelling
of the stack frame when the function is entered and then
invalidate any pointers that refer to this stack frame when
leaving the function.

There are two complications to this approach. First
is the alloca() function, which allocates memory dynam-
ically on the stack and as a result causes changes to
the stack frame. To support this function, we ensure that
all calls to alloca() allocate a multiple of our minimum
object size and insert a library call after an alloca() to
update the labelling to include this newly allocated area.

The second issue is due to longjmp(), which is a
function that will jump to the last place in the code where
setjmp() was executed, resetting the stack pointer and
other registers to the value they held at the time of the
setjmp() call. These changes in stack pointer need to be
tracked by FreeSentry to be able to invalidate the stack
frames that have been freed due to the longjmp() call.
To facilitate this, we intercept calls to this function and
invalidate each stack frame separately by walking over
the saved frame pointer until we reach the frame we’re
returning to. This ensures that any pointers that become
stale due to the longjmp() are properly invalidated.

While FreeSentry supports protecting against dan-
gling pointers to stack-allocated variables, their occur-
rence are rare. As such, we assume that the typical
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use case for the mitigation will not include the stack
protection: the added performance impact of enabling
stack protection is too high relative to the rarity of this
type of vulnerability.

E. Pointer arithmetic and out-of-bounds pointers

If simple pointer arithmetic occurs increasing or de-
creasing the value of a single pointer, then we do not
consider this as a change in target object and thus no
tracking is added at compile time. This is due to the
fact that if no buffer overflows exist, we can assume
that an object will stay within the bounds of the object
it refers to. Out-of-bounds pointers can be created this
way, but they simply will be considered to still point
within bounds by our implementation. However these
pointers will not be invalidated when the object is freed
as we expect the values to be in bounds at the time of
deallocation. This provides for maximum compatibility
for FreeSentry: if a pointer is changed in unprotected
code and now points to a new object, which might be
immediately adjacent to the object being freed, then we
cannot invalidate it if it no longer points within the
bounds of the original object.

If pointer arithmetic occurs where a value is assigned
to a pointer based on arithmetic with a different pointer,
then an out-of-bounds value can still occur which can
cause incompatibility with our approach: if the out-of-
bounds pointer points to a new memory location that is
subsequently freed, then the pointer will be invalidated.
If new pointer arithmetic occurs on this out-of-bounds
pointer that would make it go in bounds again, then the
result will still be invalid. This type of incompatibility
only occurs with programs that generate illegal out-of-
bounds values (i.e., not compatible with the C standard)
and can be solved by combining our approach with
a bounds checker that supports illegal out-of-bounds
values. In Section V we discuss a workaround that we
used to run the benchmarks on a program that generates
these illegal out-of-bounds pointers.

Another possibility that can exist is pointer arithmetic
with freed values. For example, one piece of code that
FreeSentry would break when used naively is shown in
Listing 3:

Listing 3.
int main() {
char xa, xb;
int difference;
a = malloc(100);

C program with pointer arithmetic
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b =a+ §;
free(a);
difference =

Whether the code in Listing 3 is valid, is arguable:
it is valid in C to subtract two pointers that refer to the
same object. One might argue that if the object no longer
exists, then the pointers can no longer point to the same
object and thus one might expect undefined behavior by
the compiler. However, even if the memory has been
reused, as long as the pointers are not dereferenced, then
no exploitable use-after-free vulnerability has occurred.
If our mitigation simply invalidated both pointers with-
out taking this possibility into account, some programs
might break (in fact, one of the benchmarks, perlbmk,
performs this exact operation). To achieve maximum
compatibility, our mitigation will invalidate pointers by
making them point to a reserved area of memory. In
our implementation, we assume that the top 1GB of
memory has permissions that our user-mode program
cannot access. This is the case for both 32-bit and 64-bit
versions of both Linux and Windows, where the top areas
of memory in a user-mode process are reserved for the
kernel. Any access to the kernel address space, will result
in a segmentation fault. This allows our implementation
to invalidate a pointer by simply setting the first two bits
to one (on Windows systems, just setting the first bit to
one is enough as the top 2GB of memory is reserved).
This allows this type of arithmetic to keep working!.

F. Pointers copied as a different type

One limitation in our approach is that it does not track
pointers that are not copied as pointers, i.e., if a pointer
is copied as a different type, this will not be tracked
by our approach. This can occur for example, when a
programmer calls the memcpy() function to copy one
area of memory to another. The memory is copied as
a void type and not through pointer assignment resulting
in the copy not being tracked by our mitigation. While
our approach cannot automatically detect the copying, it

'On Linux this introduces a minor compatibility issue, if the point-
ers used in the arithmetic cross the memory boundary where these
bits are flipped: i.e. having a pointer above and below 0x40000000
and a pointer above and below 0x80000000. However this is unlikely
to happen in practice: it requires a dynamic memory allocation that
crosses this boundary, having one pointer that is set above and one
that is set below the boundary and then requires the application to
free that memory and subsequently perform a subtraction of those
two pointers

does allow for a programmer to register the pointers in
the new memory area by manually calling the regptr()
function with the address of the newly copied pointer.

G. Unprotected code

Unmodified code that is linked to code that is pro-
tected by our mitigation will work without issues. Any
pointer assignments and propagation in this code will not
be tracked by our approach and any dangling pointers
that result from this code will not be detected. However,
calls to memory allocation functions will still be inter-
cepted, allowing the correct labelling of newly allocated
or reallocated memory and the correct invalidation of
tracked pointers. We provide the ability for a programmer
to manually opt out of tracking by setting a function
attribute. This allows for flexibility when deploying the
mitigation, allowing a programmer to improve perfor-
mance by making sure particular often-called functions
are safe. We discuss the impact of selective opting out
by a programmer in Section V-A2.

H C++

Our prototype implementation, discussed in Section
IV is aimed at C code due to the CIL framework that
we use to transform the code. However, the principles
hold the same for C++ as they do for C. Pointers
operate in much the same way in C++ as they do in
C, so tracking occurs in a similar manner. The smart
pointers provided by C++ in the form of unique_ptrs,
auto_ptrs, shared_ptrs and weak_ptrs are built on top
of regular pointers using templates, which means they
would all be trackable in the manner discussed in the
previous sections. However, given the properties that
these smart pointers provide, tracking could be simplified
by eliminating some of the checks for conditions that
cannot occur on a particular pointer subtype. Dynamic
memory handling is similar to C: when new or new/[] is
called, the memory is labeled by FreeSentry and when
delete or delete[] is called, the pointers to the memory
are invalidated.

IV. PROTOTYPE IMPLEMENTATION

FreeSentry is implemented using CIL [5]. Whenever
a pointer is set to an object, the pointer is registered by
calling a library function regptr(), which creates a new
pointer registration information, which stores the address
of the pointer and the label of the object that is associated
with it and stores pointers to that information in both in



the pointer and object lookup tables. When the program
starts up, we allocate these various memory regions by
using a constructor function in the library that is linked
by the mitigation.

Our default region size is 32 bytes in our prototype
implementation, meaning that all objects must be a
multiple of 32 bytes in size. To achieve this, we intercept
all calls to the memory allocation functions: malloc(),
calloc() and realloc(). We then increase the size of the
allocated object to be a multiple of 32 bytes. We then
ensure that these functions perform the labelling for
the allocated objects to ensure that we can track the
object sizes. We also made a minor modification to the
memory allocation library to ensure that all objects are
aligned on a 32-byte boundary, mostly to simplify our
implementation. If stack protection is enabled, then we
also label the stack frames at the start of the function
and use gcc options to ensure that stack frames start at a
32-byte boundary and are a multiple of 32 bytes in size.

A. Optimizations

There are two major optimizations performed by our
approach that both rely on call graph analysis that we
perform on the program. We examine which functions
a particular function calls and to go through that call
chain until we either hit a leaf function or a library
call. If along the call chain, any function calls the free()
function (or any variant function that has the potential to
free memory, such as realloc(), library functions that free
pointers passed into it, etc), we consider that function
a leaf function that calls free(). We propagate the free-
calls through the functions in the program, allowing us
to know if any function calls free() at any time. To be
able to support this modelling, we provide models for the
functions in typical system libraries such as libc, libm and
openssl: noting whether they potentially free any memory
they did not themselves allocate. When we encounter a
function that doesn’t exist in the program, nor in our
model (i.e., a library call that we do not recognize), we
err on the side of safety and assume that this function
calls free() and propagate it accordingly. Note that the
model (which simply indicates if a library function calls
free or not) is not required for FreeSentry to work, if
no model is available then we assume that all unknown
functions call free and it simply reduces the potential
for optimization. This also means that a developer is not
required to ever update the default models as they already
provide all the basic information for the default system
libraries. If new calls are added without an updated

model, then they are simply assumed to call free and
functions that call them are not optimized.

The first optimization that relies on this approach
simply removes pointer tracking for a local variable if the
function does not at any point call free and does not take
the address of that local variable. We still track changes
to pointers in global and dynamic memory, including
copies of local variables to this memory, as well as
dereferences of local variables that result in changes
to pointers. This provides for significant optimizations
because CIL introduces many temporary variables when
transforming programs, which simply hold intermediate
values for complex calculations. This also allows a
further optimization for the stack-based approach: if no
addresses of local variables are taken, then a function
cannot return a pointer to it’s local stack frame, allowing
us to remove the labelling and invalidating calls for that
function.

A second optimization is to introduce loop optimiza-
tion. If no function calls that free memory are performed
in a loop and there are no unexpected exits out of the
loop (i.e., no return statements), then the registration
for simple pointer assignments (i.e., where there is no
arithmetic or dereferencing on the left hand side value)
is moved outside of the loop. Statements that use this
pointer value will still be tracked, but since the pointer
is overwritten every loop iteration, it is only tracked when
the loop ends since it can’t become stale in the loop.

Both these approaches are safe, because there can be
no releasing of memory due to a lack of function calls
that call free() in the respective optimized scopes.

A few other optimizations include the fact pointers
that are set to point to global memory are not tracked
because this memory can never be freed’>. We also
do not update pointer information when simple pointer
arithmetic occurs that simply changes the value of the
base pointer (e.g., p++;) , given that we assume that
memory stays within bounds as discussed in Section
1I-E.

V. EVALUATION

In this section we evaluate how FreeSentry performs
in terms of performance overhead. We also provide
a security evaluation and discussion, showing that the
mitigation is able to prevent exploitation of real-world

A rare vulnerability can occur when a module is unloaded, as
evidenced by CVE-2010-0425[6]
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Figure 3. SPEC CPU2000/CPU2006 performance benchmarks

vulnerabilities. All the benchmarks and evaluations in
this section were done on a single machine: an Intel
Core 17-286QM with 16GB of RAM running the 32-bit
version Ubuntu 12.04.03 with kernel 3.8.0-29-generic.
All benchmarks were compiled with CIL-1.6.0, which in
turn used gcc 4.6.3 with the -O2 optimization level. Each
program was linked with dlmalloc-2.7.2: the original one
for our baseline benchmark and the slightly modified one
for FreeSentry.

A. Performance overhead

In this section we evaluate and discuss the perfor-
mance overhead of our approach using a number of
benchmarks: the SPEC CPU2000 and SPEC CPU2006
benchmarks and a benchmark consisting of a number of
popular server daemons.

Figure 3 provides results for the C programs in the
SPEC CPU2000 and CPU2006 benchmarks (except for
the programs that are already part of CPU2000). The
base run is performed by compiling the programs with
CIL and subsequently running the resulting programs.
We provide the base run using CIL so as to measure the
impact of FreeSentry free of interference from tools. The

CIL framework introduces very little to no overhead on
the SPEC benchmarks when compared to GCC [3], so
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the use of CIL will have negligible performance impact
on real world deployment compared to GCC.

We then measure the runtimes of the same pro-
grams protected by FreeSentry. The mitigation results
are presented twice, once with the base mitigation which
provides protection for the most common case; use-after-
frees where a stale pointer refers to dynamically allocated
memory. The second results are for FreeSentry with both
protection for use-after-frees in dynamically allocated
memory as well as on the stack. All tests were run with
the reference load supplied by the SPEC benchmarks.
Most programs were run unmodified (besides for the au-
tomatic checks inserted by the mitigation) for the results
provided here, except for perlbmk where a minimally
modified version that fixes the vulnerability described
in Section V-B1 was used for both the base run and
the protected runs. One of the benchmarks, vpr, creates
illegal out-of-bounds pointers [7], [3] that point before
the object. To run this benchmark, we modified our
mitigation to allocate an extra 8 bytes to every allocated
chunk and to increase the returned pointer by 8 bytes.
The pointer is decreased again when the memory is freed.
Having support from a bounds checker with support for
out-of-bounds objects, as discussed in section VII, would
allow the program to work without workarounds.
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The geometric mean performance impact for our
mitigation for the CPU2000 benchmarks is 29% for the
dynamic memory protection and 47% when the stack
protection is included. For the CPU2006 benchmarks the
overhead is 18% and 32% respectively. With an overall
mean overhead of 25% and 42% over both benchmarks.
This is a moderate overhead for this type of protection:
CETS [8], which also does source-based transformation,
has significantly higher overhead. If we compare the 14
programs that are reported in both studies, there is a
mean overhead of around 48% for the measurements by
the CETS mitigation, while we have a mean overhead
of 29% for our mitigation with stack protection turned
on (CETS also provides protection for the stack). The
overhead for our dynamic protection is 12% for these
programs.

The program with the highest overhead in our mea-
surements is Perl and this is mainly due to the signif-
icant amount of allocations and deallocations that Perl
performs in the benchmarks. However, the vast majority
of programs protected by our mitigation have a much
lower impact on performance, in many cases the impact
of dynamic protection is negligible.

As discussed in Section III-D, we believe that the
mitigation is best used without stack protection as these
types of vulnerabilities are rare and the benefit of protec-
tion for these types of vulnerabilities does not outweigh
the added performance impact.

1) Daemons: To measure the overhead of the server
side daemons, we selected a number of popular internet
daemons: the Apache HTTP server, the Nginx HTTP
server, OpenSSH and ProFTPD. As with the previous
test, the base run is performed by compiling the programs
with CIL and subsequently running the programs. The
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measurements are relative to the CIL base run. To test
the daemons, we transferred a 1.8 GB file via the tested
service by connecting to the daemon via the local host.
Before the start of each measurement, the disk cache
was purged. Each service with and without mitigations
was measured 50 times and the performance overhead
for the averages of these runs are presented in Figure
4. The overheads range from -0.62% to 0.48% for
both FreeSentry versions on these runs, which can be
explained by regular variances in runtimes. This shows
that running FreeSentry with disk intensive applications
has no performance impact.

2) Opting out of protection for specific functions:
As discussed in Section III-G, a programmer can decide
to opt out of protection to improve performance. We
tested the potential impact of this approach by profiling
the gap program in the CPU2000 benchmarks. This
program implements a language and library designed
for computational group theory and is moderate in size,
consisting of 71,430 lines of code. Profiling shows that
gap spends most of its time in 2 functions when used
with FreeSentry: NewBag() and ProdInt(). The Newbag()
function allocates memory for a ’bag’ of a particular
type, sets the entries to O and returns a pointer to this
memory. This is a memory allocation function that can
reuse existing bags if needed and can provide garbage
collection. This 150-line function runs on top of the
regular memory allocation functions provided by mal-
loc() and free() and calls them when new memory is
needed or memory is released back to the system. The
ProdInt() function is 174 lines and returns the product of
2 integers. For our test, we assumed that these functions
were safe and opted out of protection for just these
two functions, which means the pointers within these
functions were not tracked. Note that for the Newbag()
function, any memory that is allocated or freed will still
be intercepted by our malloc() and free() functions, so
memory will still be labeled and invalidated. As such, all
other functions are still protected even if their memory
was allocated or freed by an unprotected function. Opting
out for these 324 lines out of a total of 71,430, dropped
the performance overhead for gap from 104.28% to
33.42% and reduced the number of calls to our pointer
tracking function from 2.3 billion calls to 1.3 billion
calls. While programmer cooperation is not necessary
to use our mitigation, if an assertion can be made that
particular functions are bug free, this can vastly improve
performance for our mitigation.



Table I.

SECURITY EVALUATION AGAINST REAL WORLD VULNERABILITIES

CVE id

Affected Programs

Result

CVE-2003-0015

CVS <=1.1.14

Protected

CVE-2004-0416

CVS 1.12.x-1.12.8 and 1.11.x-1.11.16

Protected

CVE-2007-1521

PHP before 4.4.7 and 5.x before 5.2.2

Protected

CVE-2007-1522

PHP 5.2.0 and 5.2.1

Protected

CVE-2007-1711

PHP 4.4.5 and 4.4.6

Protected

B. Security Evaluation

1) Perlbmk vulnerability: Perlbmk is one of the pro-
grams that makes up the SPEC CPU2000 benchmark
suite. It is a stripped down version of the Perl interpreter
that removes many operating system specific functions
and aims to create a version of Perl aimed specifically
at CPU benchmarking.

In the function yy_lex() in the file foke.c, the program
implements lexical analysis for Perl programs. While
running the benchmark’s reference load, the program
exhibits a use-after-free vulnerability.

Listing 4. Perlbmk use-after-free vulnerability

d = s; 2576
if (PL_lex_state == LEX NORMAL)

s = skipspace(s); 2578
if (PL_lex_state == LEX NORMAL

&& isSPACE (xd)) { 2618

The relevant code snippets are duplicated in Listing
4. At line 2576, d aliases pointer s. Then at line 2578,
the function skipspace() is called. This function will,
depending on the program state, end up calling realloc()
on the memory pointed to by s to increase the size to
allow for a larger line of text to be read into memory.
When the realloc() in question is called using the refer-
ence load provided by the SPEC CPU2000 benchmark,
the memory will be allocated at a different location
and the data will be copied. When this happens, all
references to the memory that s refers to are invalidated
by our mitigation. This includes the pointer d. When d is
dereferenced at line 2617, the program crashes because
it refers to freed memory. To be able to measure the
performance overhead of perlbmk, we fixed the program
using the least intrusive method by recording the value
of isSPACE(*d) in a variable at line 2577 and then using
this variable in the comparison at line 2617. Fixing
this vulnerability resulted in no further crashes in the
program.

2) Real world vulnerabilities: In this section we
evaluate our mitigation against vulnerabilities that were
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found against real world applications. We selected the
vulnerabilities solely on the availability of public proof-
of-concept exploits (POCs). This limited our selection to
5 vulnerabilities.

The results of running these POCs against our mit-
igation are presented in Table I: a value of “protected”
means that the attempted use-after-free was prevented
and the program crashed trying to dereference an inval-
idated pointer (i.e. dereferencing a pointer to memory
above 3GB in our implementation). The programs oper-
ated normally when not running the exploit. The focus
in Table I is on double free vulnerabilities as these are
the vulnerabilities for which public exploits are available.
While many other use-after-free vulnerabilities have been
discovered in C programs, there are very few with public
exploits for open source C programs. For mitigations
that provide a safer memory allocator, a double free
vulnerability is the easiest type of vulnerability to detect:
simply mark a chunk as free and check if it is free before
performing a second free operation. However, for our
mitigation with its focus on pointer tracking, double free
vulnerabilities are the exact same thing as a use-after-free
vulnerability as they both result from a dangling pointer
reference. In the case of a double free, the dereference
on the dangling pointer occurs during the free operation
(where we do not perform any extra checks with respect
to double frees), while in the general use-after-free case,
the dereference occurs in another operation. Given that
both types of vulnerabilities require dereferencing the
pointer, the double frees tested here provide the exact
same information about our mitigation as a more general
use-after-free vulnerability.

Finally, a vulnerability [9] was privately reported
by Damien Millescamps to the ClamAV team, which
would trigger a use-after-free in version 0.98.4 of the
software when scanning a maliciously crafted PE binary.
The reporter provided a proof-of-concept binary that
would trigger the vulnerability. Compiling ClamAV with
FreeSentry resulted in the program crashing trying to
access an invalid pointer as soon as the free memory
is accessed, preventing exploitation of this vulnerability.



VI. RELATED WORK

A typical approach to preventing use-after-free vul-
nerabilities is to use garbage collection. However this
does not deallocate memory instantaneously, but defers
this to a scheduled time interval or till memory con-
straints require it to be collected. When garbage collec-
tion is done, only memory to which no references exist
anymore is deallocated, preventing pointers from refer-
ring to deallocated memory [10]. However, C programs
will generally not clear all pointers to a memory location
when they free that location. As such, using garbage
collection without modifying the program could result in
the program using an unacceptable amount of memory. It
also requires abandoning potentially customized memory
allocators and using the garbage collector instead.

Dhurjati and Adve [11] propose a mitigation that
protects against dangling pointers by ensuring that a new
virtual page is used for every allocation of the program.
To conserve memory this new virtual page is mapped
onto the same physical page as the original allocation.
This allows the mitigation to prevent stale pointers from
using the memory, but also reduces memory overhead by
reusing the original allocation. While the approach also
has a low overhead for UNIX servers, it suffers from
a significant slowdown when used with programs that
perform frequent memory allocations.

Cling [12] is a memory allocator that is designed
to prevent attacks against use-after-free vulnerabilities
by making them harder to exploit. The overhead for
the approach is very low, but some of the performance
improvements and slowdowns are achieved due to the
fact that a different memory allocator is used, which
makes it harder to compare overhead completely. Cling
does not eliminate the use-after-free problem entirely. It
only allows address space reuse for freed objects among
objects of the same type. However, while it constraints
exploitation vectors, it does not really solve all issues
introduced by dangling pointers if the program’s control
flow makes it hard to guess the object type being allo-
cated. It also does not support protection against dangling
pointers that refer to memory on the stack.

Undangle [13] is another mitigation that prevents use-
after-free vulnerabilities. Like Cling, it does not require
source code. It works by using taint tracking to track
how pointers are copied to other pointers. When memory
is destroyed, it can then see what pointers still point
to the memory location. It can report all the dangling
pointers that point to a particular memory location at a
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given set in time and allows a user to specify a window
when to report these findings, allowing it to be used as a
bug tracking tool, but which can result in false positives.
Due to the very high performance overhead, the approach
is not really practical for deployment use and relies on
execution traces to perform analysis.

CETS [8] provides a compile-time approach to protect
against dangling pointers in C. It does this by maintaining
a unique identifier with each object and then associates
the identifier with a pointer when the pointer is set to
point to the object. Whenever a pointer is dereferenced,
the mitigation checks if the pointer’s unique identifier is
still allocated. CETS achieves a mean overhead of 48%
for the programs measured. However, due to a lack of
robustness in their prototype implementation, a number
of the more complex SPEC CPU benchmarks were not
able to compile with their approach. If we compare the 14
benchmarks that overlap between both studies, the mean
overhead for CETS for these benchmarks is around 48%,
while FreeSentry has an overhead of around 29% with
stack protection enabled and 12% with only dynamic
memory protection enabled. CETS does not have the
option of enabling only dynamic memory protection. Due
to the lack of complex benchmarks supported by CETS
it is also unclear if there would be an additional impact
on performance for the regular benchmarks when adding
support for these more complex programs.

DieHard [14] is a memory allocator that is designed
to probabilistically tolerate errors including buffer over-
flows and dangling pointers. It does randomized allo-
cation within a heap of a particular size, meaning that
chunks of memory are allocated at random locations
within this memory area. To prevent use-after-free at-
tacks, it also randomizes the reuse of chunks. DieHarder
[15] extends this approach by improving randomization
which makes exploitation harder, but attackers who can
control allocations (such as an attacker using JavaScript),
could still simply allocate memory until their desired
chunk is reused. DieHarder has a comparable geometric
mean performance overhead to FreeSentry: DieHarder
has an overhead of around 30% when compared to
dlmalloc 2.7.

SAFEDISPATCH [16], VTGuard [17] and VTV [18]
are three approaches that protect against the most widely
used technique to exploit use-after-free vulnerabilities:
overwriting virtual table pointers. These types of pointers
are used in C++ objects to be able to support dynamic
dispatching, so that the virtual method to execute for



the desired class can be decided at run-time. These ap-
proaches focus specifically on protecting these tables and
thus their overhead is very low. However, if an attacker
does not target the virtual table pointer, but instead targets
a pointer within an object (such as the vulnerability
discussed in Section II) then these mitigations would not
be effective.

There are also a number of other approaches that com-
bine bounds checking and dangling pointer mitigation.

Safe C [19] is a bounds checker for C that also
provides protection against dangling pointers. It defines a
kind of safe pointer that contains the following attributes:
value, pointer base, size, storage class (heap, local,
global) and capability (forever, never). The value attribute
is the actual pointer, the base and size attributes are used
for spatial check while the storage class and capability
attributes are used for temporal checks. However the
pointer representation is changed, resulting in an incom-
patibility with existing code. The added checks also have
a significant impact on performance.

Clause et al. [20] developed a dynamic taint tool
that checks for both spatial and temporal errors for
dynamically allocated memory. It works by assigning
taint marks to objects and assigning the same taint mark
to pointers to these objects. The taint marks for pointers
are then propagated and transformed through the program
whenever an operation (such as arithmetic) on a pointer
occurs. When the pointer is dereferenced, the taint mark
for the pointer is compared to the taint mark of the
object. If the taint marks differ then a memory error
has occurred. The approach discussed by Clause at al.
works on binaries rather than source code, but requires
hardware assistance to be able to efficiently check and
propagate the taint marks.

Fail-safe C [21] is a compiler that implements a
memory safe version of the ANSI C standard. It does
this using a number of techniques: fat pointers and inte-
gers (because pointers can be cast to integers and back
again) for bounds checking, keeping track of runtime
type information, garbage collection to prevent dangling
pointers, etc. The overhead of this approach is, however,
significant. The programs in the ByteMARK benchmark
were slowed down by two to four times on average.

Xu et al. [22] track metadata that they associate with
pointers to provide checks for both spatial and temporal
errors and flags the spatial or bounds errors when a
pointer is dereferenced. As with the previous approach,
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the overhead is significant, on average the benchmarks
reported in the paper were slowed down up to two times.

Safe languages are languages where it is generally not
possible for any known memory corruption vulnerability
to exist as the language constructs prevent them from
occurring. A number of safe languages are available that
will prevent these kinds of implementation vulnerabilities
entirely. There are safe languages [23], [24], [25], [26],
[27], [28] that remain as close to C or C++ as possible,
these are generally referred to as safe dialects of C. While
some safe languages [29] try to stay more compatible
with existing C programs, use of these languages may
not always be practical for existing applications due to
the effort required to transform a project to adhere to the
syntactical changes imposed by these languages.

VII. FUTURE WORK

While this approach focuses specifically on prevent-
ing and measuring the technique to provide protection
against use-after-free vulnerabilities, the approach can
be extended to include bounds checking techniques that
perform bounds checking using the available bounds
information [3] for a modest increase in performance.
While both the FreeSentry and bounds checking mitiga-
tions have non-trivial overhead, their combination should
keep the overhead relatively close to the numbers of the
worst performing technique, since processing for both
techniques occurs during pointer creation and modifica-
tion and not when the pointer is accessed.

VIII. CONCLUSION

There are many widely deployed mitigations, includ-
ing stack cookies and address space layout randomiza-
tion that are present in many of the current compilers
and operating systems. However, there are currently
no widely deployed mitigations that prevent use-after-
free vulnerabilities. This has resulted in use-after-free
vulnerability becoming the most exploited type of vulner-
abilities on Windows operating systems. In this paper, we
presented FreeSentry, a mitigation which is transparent
to an unwitting programmer allowing easy deployment
to provide protection, but also provides the flexibility to
allow programmers who are aware of the mitigation to
optimize their interaction with it. This allows us to offer
a more focused protection, which allows a more com-
plicated mitigation to be applied, with a lower measured
overhead than the ones that are currently deployed. Our
performance overhead is moderate for CPU-intensive



programs, while for programs that have high I/O it has
no impact on performance, allowing it to be deployed
as-is for server applications that rely on heavy I/O. In
environments where security is of paramount importance,
this type of mitigation can significantly improve security
at a modest cost.
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