
Inside Job:
Understanding and Mitigating the

Threat of External Device Mis-Bonding (DMB)
on Android

Muhammad Naveed1
Xiaoyong Zhou2

Soteris Demetriou1
XiaoFeng Wang2
Carl A. Gunter1

1University of Illinois at Urbana-Champaign
2Indiana University at Bloomington

External devices enhance
smartphone’s capabilities

iThermometer

Temperature monitoring device for babies and elderly
persons

Other devices

• FDA approved devices

• Sync information to EHR or web-account

• Wrong amount of insulin can kill

Bluetooth Devices

 Source (for both numbers and figure): http://www.bluetooth.com

http://www.bluetooth.com

Bluetooth Devices

 Source (for both numbers and figure): http://www.bluetooth.com

Total devices shipped

2012
Total devices shipped

9 Billion

http://www.bluetooth.com

Bluetooth Devices

 Source (for both numbers and figure): http://www.bluetooth.com

Total devices shipped

2012
Total devices shipped

9 Billion
Total devices shipped

2016

Total devices shipped

20 Billion

http://www.bluetooth.com

Bluetooth Devices

 Source (for both numbers and figure): http://www.bluetooth.com

Total devices shipped

2012
Total devices shipped

9 Billion
Total devices shipped

2016

Total devices shipped

20 Billion

Total devices shipped

2018

Total devices shipped

30 Billion

http://www.bluetooth.com

Fundamental Problem

Fundamental Problem

Fundamental Problem
Pair with phone

Fundamental Problem

Fundamental Problem
Doesn’t pair with apps

External devices and
Android design

• Android is not designed to protect these external
devices

• We designed the following two attacks to show the
problem:

• Data-stealing attack

• Data-injection attack

Device Mis-bonding
Attacks

Adversary Model

• A malicious app with BLUETOOTH and
BLUETOOTH_ADMIN permissions is installed on
the victim’s phone

• Additionally, physical proximity is required for data-
injection attacks

Normal Scenario

Normal Scenario

Normal Scenario

Normal Scenario

Normal Scenario

Normal Scenario

Normal Scenario

Normal Scenario

Emergency Physician

Data-stealing Attack

Emergency Physician

Data-stealing Attack

Emergency Physician

Data-stealing Attack

Emergency Physician

Data-stealing Attack

Emergency Physician

Data-stealing Attack

Emergency Physician

Data-stealing Attack

Emergency Physician

Technical Challenges

Technical Challenges
• When to steal data?

• Device is not always connected

• Naive strategy: Periodic device discovery
• Increased power usage
• Not stealthy

Technical Challenges
• When to steal data?

• Device is not always connected

• Naive strategy: Periodic device discovery
• Increased power usage
• Not stealthy

• Observation: Execution of device’s official app is a strong
indication of the device being ON and in connection range.
• getRunningAppProcesses() or linux command ps can find if the official

app is running in O(n)
• getRunningTasks() can find if the official app is running in O(1), with

additional GET_TASKS permission

Technical Challenges

Technical Challenges
• If official app is in communication with the target

device, the malicious app cannot connect to it.

Technical Challenges
• If official app is in communication with the target

device, the malicious app cannot connect to it.

• To get data, malicious app needs to connect to the
target device using one of the following strategies:

Technical Challenges
• If official app is in communication with the target

device, the malicious app cannot connect to it.

• To get data, malicious app needs to connect to the
target device using one of the following strategies:
• disruption: simply disrupt the official app connect, reliable

but less stealthy

Technical Challenges
• If official app is in communication with the target

device, the malicious app cannot connect to it.

• To get data, malicious app needs to connect to the
target device using one of the following strategies:
• disruption: simply disrupt the official app connect, reliable

but less stealthy
• pre-connection: right before the official app connects,

reliable and stealthy

Technical Challenges
• If official app is in communication with the target

device, the malicious app cannot connect to it.

• To get data, malicious app needs to connect to the
target device using one of the following strategies:
• disruption: simply disrupt the official app connect, reliable

but less stealthy
• pre-connection: right before the official app connects,

reliable and stealthy
• post-connection: right after the official apps disconnects,

reliable and stealthy

Success Rate

Target Device! Pre-connection Post-connection

Bodymedia Link
Armband 99/100 100/100

iThermometer 42/100 100/100
Nonin Pulseoximeter 99/100 92/100

MyGlucoHealth
Glucometer 100/100 0/100*

*device turns off automatically
after sending data to the phone

Stealthiness
Technique Avg. Power

Consumption Sampling Rate

getRunningAppProce
ssess() 8mW 2 samples/s

getRunningTasks() 3mW 2 samples/s

connect() 17mW 0.18 samples/s

startDiscovery() 15mW 0.054 samples/s

Facebook 18mW

Gmail 1mW

Data-injection Attack

Data-injection Attack

Data-injection Attack

Data-injection Attack

Data-injection Attack

Data-injection Attack

Data-injection Attack

Data-injection Attack

Data-injection Attack

Emergency Physician

Device Cloning
• Target device MAC address is sufficient for cloning

• Target device name and UUID can make clone
indistinguishable from original device

• This information can be obtained using
BluetoothAdapter.getBondedDevices()!

• SpoofTooph temporarily overwrites the MAC
address of bluetooth dongle

Link key reset
• createsecureRfcommSocket() uses a link-key for

encryption and authentication

• Clone cannot connect without this key

Link key reset
• createsecureRfcommSocket() uses a link-key for

encryption and authentication

• Clone cannot connect without this key

• Observation: We cannot get the link key, but can
simply replace one

Link key reset
• createsecureRfcommSocket() uses a link-key for

encryption and authentication

• Clone cannot connect without this key

• Observation: We cannot get the link key, but can
simply replace one

• Android’s pairing and un-pairing methods are not
directly available to programmers

Connection Race

Connection Race
• When both clone and original device are in vicinity, which will

connect to the phone?

Connection Race
• When both clone and original device are in vicinity, which will

connect to the phone?

• Observation: How Bluetooth socket works?
• Devices are in slave mode and smartphone initiate connection
• Paging: Devices switches between page sleep and page

scan mode
• Device accept connection only in page scan mode
• To save power these devices have large page sleep period

and small page scan period
• Adversary can set arbitrary page sleep and page scan period

in allowed range

Adversary always wins!
Distance of cloned

device 1 feet 20 feet
(with wall in between)

Number of
observations 100 100

No. of times original
device responded 0 0

No. of times cloned
device responded 100 100

• Using default page sleep and page scan time period
(much more than minimum)

• Clone’s radio had 2.5mW radio while original device
had 100mW radio

Pervasiveness of
Device-Misbonding attacks

Measurement

• The problem discussed before are caused by lack
of bonding between external device and app

• Device and app manufacturers can fix this issue
using appropriate authentication mechanism

• We conducted a measurement study to see if any
device already have such security mechanism

Methodology
• App collection: Manually searched for bluetooth apps

using following search queries:
• “Bluetooth Door Lock”
• “Bluetooth Health”
• “Bluetooth Medical Devices”
• “Bluetooth Meter”

• Out of 90 apps, 68 apps involved some private
information

• Decompiled the 68 apps and studied the source code

Classification of apps

Methodology
• Searched for authentication-related programming

structures

• Authentication is always based on some secret. It
can come from:
• external inputs e.g. UI,
• web communication,
• internal memory or
• generated by some cryptographic operations

Manual Analysis
• Manual analysis of 20 apps. The other 48 apps

were filtered out by locations of their suspicious
APIs.

Authentication
Methods

Libraries/
Functions used Total Apps with app-device

authentication

Crypto
javax.crypto,
bouncycastle 9 0

Internal storage openFileInput() 15 0

Web
communication

HttpClient 50 0

UI for app-device
authentication Manual 0 0

Defense
Dabinder

!

Source code !
https://github.com/DabinderAndroid/extDroid.git

https://github.com/DabinderAndroid/extDroid.git

Solution
• Theoretically, device manufactures can provide

protecting

• Upgrading both app and hardware, some apps
come from third parties

• Billions of existing devices

• Case-by-case fix can be ugly

• Better alternative is to provide an Android OS-level
solution

Dabinder Design
• Pairing Control

• Maps external device MAC address to app

• Connection Control
• Before socket established device-app mapping

is checked

• Unpairing Control
• Unpairing needs user interaction

Performance

Functions Original Dabinder Delays

BluetoothSocket mean 0.0317
SD 0.0059 ms

mean 0.0353
SD 0.0153 ms 0.0036 ms

connectSocket mean 63.1670
SD 14.7098 ms

mean 86.5152
SD14.2201 ms 23.3482 ms

removeBond mean 0.5319
SD0.1863 ms

mean 0.5493
SD 0.1822 ms 0.017ms

Dabinder Architecture

Conclusion
• Device Mis-Bonding (DMB) threat is serious

• Confidentially threat: Can lead to theft of private
information

• Integrity threat: Can also compromise the integrity
of sensitive data

• OS-level solution provides reasonable protection to
bind app to the device

!32

Thank you!

http://goo.gl/XXSGGU!
(link is case-sensitive)

Defense: https://github.com/DabinderAndroid/extDroid.git

Please watch video demos at:

http://goo.gl/XXSGGU
https://github.com/DabinderAndroid/extDroid.git

