Checking More and Alerting Less: Detecting Privacy Leakages via Enhanced Data-flow Analysis and Peer Voting

Kangjie Lu, Zhichun Li, Vasileios P. Kemerlis, Zhenyu Wu, Long Lu, Cong Zheng, Zhiyun Qian, Wenke Lee, Guofei Jiang

In terms of privacy data...

- Are "you" contained in smartphone?
 - Contacts, photo, SMS, credentials, browse history...

Privacy Disclosures

Privacy can be disclosed to internet or public

Prevalent Privacy Disclosures

- 8% apps failed to protect bank account and social media logins [BBC, Oct 12]
- 95% of the top-100 free exhibited at least one kind of privacy-compromising behavior, while 78% of paid apps disclosed similar data. [Black Hat USA, Jul 13]

 30% general apps have privacy disclosures, shown by AndroidLeaks [TRUST'12]

Privacy Disclosure Vs. Privacy Leak

- Privacy Disclosure == Privacy Leak ?
- MOST privacy disclosures are legitimate

Research Problem

 How can we automatically differentiate suspicious privacy leaks from legitimate privacy disclosures???

Insight

 An app's (namely primacy app) functionally similar apps (namely peer apps) are supposed to exhibit similar privacy disclosures

AAPL: <u>A</u>nalysis of <u>App Privacy</u> <u>L</u>eak

Detecting Privacy Leaks via Peer Voting Mechanism

AAPL Workflow

Collecting Peer Apps

- Possible approaches
 - Apps with similar permissions
 - Apps with similar text descriptions
 - Similar apps suggested by Google Play,
 - derived from users' experience, ML, etc.

Purifying Peer Apps

- Adopt NLP
 - Parse app descriptions using NLTK¹
 - tf-idf vectors
 - cosine similarity

¹http://www.nltk.org/

Uncovering Privacy Disclosures

Opportunistic Constant Evaluation

- Conditional sources
 - provider.query(uri, sql)
 - Contact? SMS?
 - Non-sensitive?Have no idea?

Backward SDG slicing & DFS traversal

```
Uri uri = "1";
...
uri=uri.concat("2");
...
Data = provider.query(uri);
```


Most privacy

data accesses

follow this way

Peer Voting

- VotesNumber: the total number of peers with the same disclosure (votes with 1)
- PeersNumber: the number of peers
- Disclosure legitimacy = VotesNumber/PeersNumber

Implementation

Built on Dalysis^[CHEX CCS'12] and IBM WALA¹

 The improvements account for about 6K SLoC in Java; Peer voting accounts for 1.3K SLoC in Python

¹http://wala.sourceforge.net/

Evaluating Disclosure Analysis

- Data set: 40,456 apps; manually examined 530 data-flows in top 300 popular apps
- Performance: 12 seconds/app
- Detection rate: 44.7% (31% increased compared with original 36.9%)
- False positive rate: 6.7% (5 times reduced compared with original 34.2%)

Evaluating Peer Voting

 Manually label 532 unique privacy disclosures from 417 randomly chosen primary apps

Privacy Disclosures

 Accuracy: 88.7% with false positive rate 10.7% and false negative rate 12.5%

Case Studies

Арр	App ID	Leak	# of peers	Legitimacy
注音	com.linpusimetc.android .linpustckbd	Contacts -> URL	20	0%
	simosoftprojects.musicpl ayerforpad	Phone Number -> URL	21	0%
刀	com.apptivateme.next.hr dp	Cookie -> Log	15	0%

Conclusion

- We propose AAPL, a novel peer voting mechanism detect suspicious privacy leaks
- Checking more and alerting less

Thank you!

Q & A