
Privacy-Preserving Logarithmic-time Search on Encrypted Data in Cloud

Yanbin Lu

University of California, Irvine

yanbinl@uci.edu

Abstract

Ideally, a privacy-preserving database-in-the-cloud en-

vironment would allow a database owner to outsource its

encrypted database to a cloud server. The owner would

retain control over what records can be queried and by

whom, by granting each authorized user a search token and

a decryption key. A user would then present this token to

cloud server who would use it to find encrypted matching

records, while learning nothing else. A user could then use

its owner-issued decryption key to learn the actual matching

records.

The main challenge is how to enable efficient search over

encrypted data without sacrificing privacy. Many research

efforts have focused on similar problems, however, none

supports efficient logarithmic-complexity search. In this

paper, we construct the first provably secure logarithmic

search mechanism suitable for privacy-preserving cloud

setting. Specifically, we propose an efficient and provably

secure range predicate encryption scheme. Based on this

scheme, we demonstrate how to build a system that sup-

ports logarithmic search over encrypted data. Besides pri-

vacy guarantees, we show that the proposed system sup-

ports query authentication and secure update.

1 Introduction

Cloud computing refers to massive computing and stor-

age resources offering on-demand services over a network.

In a cloud computing environment, data storage and soft-

ware execution are outsourced to a cloud server which may

comprise a group of computers. A user only needs to have

a compact operating system with limited storage and com-

puting resources.

One of the most popular and basic cloud computing ser-

vices is storage-as-a-service (SAAS). We cite two examples

of SAAS application scenarios. The first involves a hospi-

tal that maintains database of patients medical records. The

hospital is the database owner that outsources the database

to a cloud server. Later, physicians (database users) can ac-

USER

(Offline)

Database Owner

Cloud Server

Server

Server
Server

Server

Server

Server
Server

Transfer Encrypted Database

(1
).
 R

eq
ue

st

(2
).
 S

ea
rc

h
to

ke
n

&
 D

ec
ry

pt
io

n
ke

y

(3). Search token

(4). M
atching encrypted records

Figure 1. Idealized privacypreserving cloud

storage scenario.

cess patients’ records through the cloud server by search-

ing on certain attributes, e.g. SSN, last name, DoB or

age. The second example is Personal Data Vault (PDV)

wherein database owners are individuals who outsource per-

sonal data (e.g. temperature, blood pressure or heart rate)

collected from their devices. A database owner can later

authorize someone (e.g. her cardiologist) to analyze this

data during certain time interval, e.g. heart rate during the

night.

Although cloud storage is an attractive concept, many

prospective users are reticent about embracing it. Not sur-

prisingly, one major concern is privacy. In our hospital sce-

nario, a personal record contains one’s medical history, in-

cluding details of lifestyle habits, family medical history,

lab test results, prescribed medication, etc. Such data is

clearly very sensitive for most people and must be kept in

confidentiality by law [2]. In the PDV example, monitoring

vital signs – such as heart beat or blood pressure – reveals

sensitive information about one’s health.

In an idealized privacy-preserving cloud storage setting

shown in Fig.1, the database owner encrypts its records un-

der a set of searchable attributes and outsources them to a

cloud server. In step 1, the user requests search authoriza-

tion from the database owner who then decides whether the

user is authorized. If so, in step 2, the database owner is-

sues the user a search token and a decryption key. These

two items restrict the records that can be searched and de-

crypted, respectively. In step 3, the user supplies the search

token to the cloud server which allows the latter to identify

all matching encrypted records. The search token reveals no

information about the query. In step 4, the cloud server re-

turns matching encrypted records to the user who decrypts

them. The decryption key should only lead to the decryp-

tion of matching records and nothing else.

The main obstacle to achieving the above “nirvana” is

how to conduct secure and efficient search over encrypted

data. Early database-focused work does not provide prov-

able security [15]. Recent results on provably secure search

over encrypted data only support linear-complexity search.

However, given massive (and constantly growing) amounts

of outsourced data, linear search is becoming inefficient.

For this reason, this paper focuses on provably secure tech-

niques providing truly efficient and flexible search over

encrypted data. Concretely, we propose a scheme that

achieves this with logarithmic complexity (in the number

of records).

Contribution: To achieve efficient search over encrypted

data, we first design a novel cryptographic primitive – range

predicate encryption. Then we use it to construct a sys-

tem that supports logarithmic search, query authentication

and provable data update. Furthermore, we analyze and

prove security of the proposed system and evaluate its per-

formance.

Organization: Sec. 2 overviews related work. Next, we

propose an efficient range predicate encryption scheme,

used as a building block in Sec. 3. Then, Sec. 4 defines the

problem and the security model for our cloud system. Sec.

5 presents the logarithmic search scheme over encrypted

data. Query authentication and provable data update are

discussed in Sec. 6 and 7, respectively. An extension to

the scheme is presented in Sec. 8. Limitation is discussed

in Sec. 9. Next, Sec. 10 includes an in-depth performance

evaluation. Sec. 11 concludes this paper. The appendix

contains security proofs, an extention to multi-dimentional

query and an example of the inner-product predicate en-

cryption scheme.

2 Related Work

This section overviews related work; it can be skipped

with no lack of continuity.

2.1 Searchable Encryption

Searchable encryption can be divided into symmetric-

key and public-key versions. The former [23] allows a

client to outsource its symmetrically encrypted data to an

untrusted server and later to search for a specific keyword

by giving the server a search token that does not reveal the

keyword or any plaintext. The public-key version [10] is

used in a similar scenario, except that anyone can generate

and store encrypted data on an untrusted server.

We stress that these searchable encryption schemes alone

do not fit our requirements. If we use the client referred in

the searchable encryption as the data owner, it is clear that

the data owner is unable to generate decryption keys for data

users. In other words, these searchable encryption schemes

lack support of decryption key delegation. Moreover, exist-

ing schemes do not support logarithmic-complexity range

search.

Bellare et al. [5] proposed a deterministic efficiently

searchable public-key encryption scheme. The basic idea is

to attach a deterministic searchable tag that can be queried

by clients to each ciphertext. Since searchable tags are de-

terministic, the server can organize them in a sorted way and

match them in logarithmic time. Although it is efficient, this

scheme has several drawbacks. First, it only supports equal-

ity search. Second, it is hard to deal with duplicate attribute

values. Records with duplicate attribute values will end up

with same ciphertext, exposing plaintext frequency.

Goodrich and Mitzenmacher [13] applied Oblivious

RAM to cloud storage environment to hide access pattern

with sublinear amortized data request cost. However, they

assume the client who outsources database is the same as

the one who searches database. Therefore, their solution

does not fit our requirements.

2.2 Order Preserving Encryption (OPE)

OPE schemes are deterministic schemes where the en-

cryption function preserves numerical ordering of plaintexts

such that a comparison operation can be used on cipher-

texts. Agrawal et al. [3] proposed the first OPE scheme for

numeric data. Later, Boldyreva et al. [9] proposed another

(provably secure) way to achieve the same functionality.

With OPE, achieving logarithmic-complexity search is

trivial since a comparison between any two ciphertext is

possible. However, OPE does not match our security re-

quirements. First, since it is deterministic OPE cannot be

IND-CPA secure. Plus, it complicates handling of duplicate

values. Second, it assumes that plaintenxt domain distri-

bution is fixed and the encryption function is aware of this

distribution, which is not always possible for dynamic data.

2.3 Attributebased encryption (ABE)

Sahai and Waters [20] introduced the concept of ABE

where a user’s keys and ciphertexts are labeled with sets of

descriptive attributes and a particular key can decrypt a par-

ticular ciphertext only if the cardinality of the intersection

of their labeled attributes exceeds a certain threshold.

Later, Goyal, et al. [14] introduced the notion of Key-

Policy ABE (KP-ABE) where the trusted authority (master

key owner) generates users’ private keys associated with ar-

bitrary monotonic access structures consisting of AND, OR

or threshold gates. Only ciphertexts that satisfy the private

key’s access structure can be decrypted. Bethencourt, et

al. [7] explored the concept of Ciphertext-Policy ABE (CP-

ABE) where each ciphertext is associated with an access

structure that specifies which type of secret keys can de-

crypt it. Ostrovsky, et al. [19] extended the result in [14] by

allowing negative constraints in a key access structure.

One unfortunate drawback of ABE is that attributes are

revealed in ciphertext, which is not acceptable in the cloud

scenario.

2.4 Predicate Encryption

Predicate encryption can be viewed as ABE supporting

attribute hiding. A ciphertext is associated with a set of

hidden attributes I . The master secret key owner has fine-

grained control over access to encrypted data by generating

a secret key skg corresponding to a predicate g. skg can be

used to decrypt a ciphertext associated with hidden attribute

I if and only if g(I) = 1.

Shi, et al. [22] proposed a range predicate encryption

scheme. Used in a cloud setting, it allows the database

owner to encrypt messages under an integer attribute and

store them on an untrusted server. A client then requests a

key that identifies messages with integer attributes within a

certain range. This scheme also supports multi-dimentional

range queries. However, it does not protect token privacy,

i.e. a cloud server can learn the range a client is querying.

This is because encryption is public key based and a cloud

server can encrypt messages under various attribute values

and launch dictionary attacks against client’s submitted to-

kens. Furthermore, this scheme cannot hide attributes for

messages that are matched by a token.

Boneh and Waters [11] developed a public-key based

hidden vector encryption scheme that can be extended to

handle range, subset and conjunctive queries. It also hides

attributes for messages that match a query. Blundo, et al. [8]

proposed a private-key version of hidden vector encryption

and showed that it also guaranteed security for key patterns.

Katz, et al. [16] proposed a public-key based predicate-

encryption scheme that supports inner products. Attra-

padung and Libert [4] improved the efficiency of the inner-

product encryption by sacrificing attribute privacy. Shi, et

al. [21] noticed that public-key predicate encryption might

inherently reveal the query predicate inside a token and pro-

posed a symmetric-key inner product encryption scheme to

address this problem. As shown in Sec. 3.3, although inner-

product predicate encryption can be extended to range pred-

icate encryption in a straightforward way, it is too expensive

to do so.

3 Range Predicate Encryption (RPE)

In this section, we introduce range predicate encryption

(RPE) that is later used as a cryptographic building block in

Sec. 5. Specifically, we construct an RPE scheme that im-

proves the security definitions and performance of previous

work. From now on, we use DO to denote database owner,

U to denote database user and S to denote cloud server. Our

notation is reflected in Table 1.

3.1 Definitions

We distinguish between symmetric and public-key RPE.

We also distinguish between predicate and predicate-only

encryption where the former decrypts data while the latter

only outputs a flag indicating whether the decryption key

matches the encryption predicate. For simplicity, we only

define a symmetric-key range predicate-only encryption.

Definition 1. A symmetric-key range predicate-only en-

cryption scheme consists of the following probabilistic poly-

nomial time algorithms.

RPE Setup1(1k, [0, T−1]): On input of security parameter

1k and range [0, T − 1], outputs private key SK .

RPE Encrypt1(SK, t): On input of SK and value point t,
outputs ciphertext C.

RPE ExtractKey1(SK,Q): On input of SK and search

rangeQ, outputs decryption key skQ.

RPE Decrypt1(skQ, C)): On input of decryption key skQ
and ciphertext C = RPE Encrypt(SK, t), outputs

1 if t ∈ Q and 0 otherwise.

Note that we use superscript 1 to denote algorithms in

predicate-only and superscript 2 to predicate version. In the

latter, all functions are the same as in their predicate-only

counterpart, except that RPE Encrypt2 takes an additinal

payload input m and RPE Decrypt2 outputs m iff t ∈ Q.

We stress that a predicate version can be easily obtained

from a predicate-only version using techniques such as [16].

Also note that public-key range predicate(-only) encryp-

tion differs from its symmetric counterpart in that an addi-

tional public key PK is generated in RPE Setup and PK
instead of SK is used as input to RPE Encrypt. Since

public-key range predicate(-only) encryption is not used in

this paper, we omit its details.

3.2 Security Definitions

The following security definitions apply to symmetric-

key predicate(-only) encryption: Def. 2 describes plain-

text privacy and Def. 3 defines predicate privacy that is

U database user DO database owner

S cloud server Q a query range

qs start value point of Q qe end value point of Q

T the domain limit h = log T
u(v) unique integer assigned to node v (Sec. 3.4) w(v) binary string label of node v (Sec. 3.4)

LC(v) label cover of node v (Sec. 3.4) CP(x) cover path for value x (Sec. 3.4)

MCS(Q) minimum cover set for range Q (Sec. 3.4) P (·) polynomial

Table 1. Notation.

unique to the symmetric version. For simplicity, we focus

on symmetric-key predicate-only encryption.

Definition 2. A symmetric range predicate-only encryp-

tion scheme offers selectively secure plaintext privacy if all

polynomial-time adversaries have at most a negligible ad-

vantage in the selective security game defined below:

• Init: A submits two points t0, t1 ∈ [0, T − 1] upon

which it wishes to be challenged.

• Setup: The challenger runs RPE Setup1(1k, [0, T −
1]) to generate SK .

• Phase 1: A adaptively issues two types of queries:

– Decryption key query. On the ith query, rangeQi

is submitted, such that either: (t0 /∈ Qi) ∧ (t1 /∈
Qi) or (t0 ∈ Qi)∧(t1 ∈ Qi)∧(zj /∈ Qi) for any

previous ciphertext query of value point zj . The

challenger runs RPE ExtractKey1(SK,Qi) and

returns its output to A.

– Ciphertext query. On the ith query, a value point

zi is submitted such that, for any previous de-

cryption key query of range Qi where (t0 ∈
Qi) ∧ (t1 ∈ Qi), zi /∈ Qi. The challenger runs

RPE Encrypt1(SK, zi) and returns its output to

A.

• Challenge: The challenger flips a random coin b, and

responds with RPE Encrypt1(SK, tb) to A.

• Phase 2: A may continue to issue queries, subject to

the same restrictions as in phase 1.

• Guess: The adversary outputs a guess b′ for b.

The advantage of the adversary in the above game is defined

as: AdvA = |Pr[b′ = b]− 1
2 |.

We stress that the above definition is stronger than that

in [22] in the sense that it allows the adversary to query

a range key skQ where both t0, t1 ∈ Q, so-called match-

concealing security model of [22], but subject to the addi-

tional requirement that no plaintexts inQ have been queried

before. Note that this additional requirement is not neces-

sary for general range predicate encryption security defini-

tion and is only necessary for our scheme (Sec. 3.5) to be

secure. In match-concealing model, even if a ciphertext is

matched and decrypted by a key, the attribute is still hidden.

Whereas, match-revealing model does not protect matched

ciphertext attribute privacy. The range predicate encryption

scheme presented in [22] only deals with match-revealing

model.

Definition 3. A symmetric range predicate-only scheme of-

fers selectively secure predicate privacy if all polynomial-

time adversaries have at most a negligible advantage in the

selective security game defined below:

• Init: A submits two rangesQ0,Q1 where it wishes to

be challenged.

• Setup: The challenger runs RPE Setup1(1k, [0, T −
1]) to generate SK .

• Phase 1: A adaptively issues two types of queries:

– Decryption key query. On the ith query, a

range Qi is submitted. Then the challenger runs

RPE ExtractKey1(SK,Qi) and returns its out-

put to the adversary.

– Ciphertext query. On the ith query, a value point

zi is submitted such that zi /∈ Q0 ∧ zi /∈ Q1.

The challenger runs RPE Encrypt1(SK, zi) and

returns its output to A.

• Challenge: The challenger flips a random coin, b, and

responds with RPE ExtractKey1(SK,Qb) to the ad-

versary.

• Phase 2: The adversary may continue to issue queries

as in Phase 1.

• Guess: The adversary outputs a guess b′ of b.

The advantage of the adversary in the above game is defined

as: AdvA = |Pr[b′ = b]− 1
2 |.

3.3 Strawman construction

This section presents a strawman construction of

symmetric-key range predicate-only encryption based on

the symmetric-key inner-product predicate-only encryption

scheme [21] summarized in the Appx. E.

RPE Setup1(1k, [1, T]): Outputs SK that algorithm

SSW Setup(1k) outputs.

RPE Encrypt1(SK, t): Builds a vector ~x =
(x1, . . . , xi, . . . , xT) where xi = 1 if i = t
and xi = 0 otherwise. Outputs what algorithm

SSW Encrypt(SK, ~x) outputs.

RPE ExtractKey1(SK,Q): Builds a vector ~y =
(y1, . . . , yi, . . . , yT) where yi = 0 if i ∈ Q
and yi = 1 otherwise. Outputs what algorithm

SSW ExtractKey(SK, ~y) outputs.

RPE Decrypt1(tkQ, C): Outputs what algorithm

SSW Query(tkQ, C) outputs.

It is easy to see that, if t ∈ Q, the inner product

〈~x, ~y〉 = 0. Recall that, for inner-product predicate-only

encryption, decryption works iff 〈~x, ~y〉 = 0. Therefore, the

above strawman construction works. However, the problem

is that the vector encapsulated inside the ciphertext and the

decryption key have the same length as the domain limit, T .

Considering the cost of SSW Encrypt and SSW Query is

linear to the vector length, the above construction is imprac-

tical.

Note that we can also build strawman construction based

on hidden vector encryption proposed in [8]. However, that

scheme’s cost is linear in T as well.

As a result, we need a more efficient construction. Be-

low, we first represent integer domain in a more efficient

way. Then we show how to transform the range query into

an efficient inner-product query.

3.4 Efficient Representation of Ranges

A natural way to improve the efficiency of range repre-

sentation is to use a segment tree [12] which is essentially a

binary tree of height h = logT . Each node v has a binary-

string label w(v). The root is labeled by an empty string.

A non-leaf node that is labeled with the binary string w has

left child labeled w0 and right child labeled w1. Each leaf

node v at depth log T represents an integer value point from

0 to T −1 whose binary form is the same as w(v). This tree

is never constructed in its entirety, but is instead built up by

DO as needed.

We say that a node v covers a value point x if the path

from the root to the node representing x comes accross node

v. For example, in Fig. 2(a), node labeled by ‘10’ covers

value points 4 and 5. We define label cover LC(v) as the

range of labels of leaves that node v covers, which can be

determined by padding w(v) with (log T − |w(v)|) 0s to

get the lower bound, and with (log T −|w(v)|) 1s to get the

upper bound. For example, LC(‘1’) in Fig. 2(a) is {‘100’,

‘101’, ‘110’, ‘111’}.
We define CP(x) as the cover path for value point x, i.e.

the set of nodes on the path from the root to the leaf node

representing x (including leaf). Clearly, CP(x) is the set

Algorithm 1:MCS Procedure.

input : A rangeQ
output: The minimum cover set forQ.

1: Interprets qs and qe in binary-string label form as bs
and be respectively;

2: Queue.push(root);
3: while Queue not empty do

4: v ← Queue.top();
5: Queue.pop();
6: if LC(v) ⊆ [bs, be] then

7: MCS(Q)←MCS(Q) ∪ v;

8: else

9: for each child v′ of v do

10: if LC(v′) ∩ [bs, be] 6= φ then

11: Queue.push(v′);
12: end if

13: end for

14: end if

15: end while

of nodes that cover x. As an example in Fig. 2(a), CP(5)
includes those nodes marked by a circle. The binary-string

label of each node in CP(x) can be easily identified by re-

moving the tailing digit from binary representation of x one

by one.

We define MCS(Q) as the minimum cover set for a

range Q = [qs, qe], i.e. the minimum required nodes that

cover and only cover the leaf nodes representing integers in

Q. Obviously, nodes inMCS(Q) follow three properties:

(1) For any v, w ∈ MCS(Q), LC(v) ∩ LC(w) = φ; (2)

∪v∈MCS(Q)LC(v) covers binary-string labels of Q com-

pletely; (3) ∪v∈MCS(Q)LC(v) covers only binary-string la-

bels in Q and no more. As an example, in Fig. 2(a),

MCS(Q) for Q = [1, 6] includes those nodes marked by

a square.

MCS(Q) can be efficiently computed by Alg 1. Given

a range Q = [qs, qe], the algorithm first interprets qs and qe
in binary-string label form as bs and be respectively. Then

it traverses the tree in a breadth-first way and inserts in the

MCS(Q) all nodes v such that LC(v) is completely con-

tained between [bs, be]. A node v′ such thatLC(v′) does not

intersect with [qs, qe] is excluded from entering the search

queue.

For cardinality ofMCS(Q), we have the following the-

orem whose proof is shown in Appx. A.

Theorem 1. For any range Q ∈ [0, T − 1], the largest

possible |MCS(Q)| is 2 · (log T − 1) if T ≥ 4.

The following proposition was proposed in [21].

Proposition 1. If x ∈ Q, then CP(x) andMCS(Q) inter-

sects at only one node.

'1'

'10'

'101'

'0'

'00' '01' '11'

'000' '001' '011''010' '100' '111''110'

0 1 2 3 4 5 6 7

(a) Segment tree representation of [0, 7]

0

1 2

3 4 5 6

7 8 9 10 11 12 13 14

(b) Example of integer u(v) for each node v

Figure 2. (a) nodes marked with circle are CP(5) and nodes marked with square areMCS([0, 7]). (b)
binary labels in (a) are transformed to integers.

We assign each node v a unique integer u(v) in following

order. Starting from the root which is assigned 0, increasing

integers are assigned in zigzag fashion for each node in the

tree. One example is shown in Fig. 2(b). Note that u(v) for

a leaf node is different from the integer the leaf represents.

We use w(v)(i) to denote its ith binary character (from right

to left) of w(v). The following lemma shows the transfor-

mation from node label to the unique integer.

Lemma 1. Each node v’s binary-string label w(v) can be

transformed to a unique integer u(v) as follows:

u(v) =

{

∑|w(v)|−1
i=0 (2i + 2i · w(v)(i)) if |w(v)| > 0

0 if |w(v)| = 0

3.5 Improved Construction of Range Predicate
Encryption

Now, we start to show how to transform a symmetric-key

inner-product predicate-only encryption to a symmetric-key

range predicate-only encryption. The main idea is to use a

polynomialP (·) to capture all the nodes in CP(x) such that

if v ∈ CP(x), then P (u(v)) = 0. Then we can test whether

a node inMCS(Q) appears in CP(x) by evaluating P (·) at

u(v) for each v ∈ MCS(Q). Last, by expanding polyno-

mial P (·), we can express the zero test of a polynomial as

the zero test of an inner product. The detailed construction

of each algorithm is shown below:

RPE Setup1(1k, [1, T]): The setup algorithm outputs the

SK that SSW Setup(1k) outputs.

RPE Encrypt1(SK, t): The encryption algorithm first

identifies all nodes in CP(t). Next it constructs a poly-

nomial P (X) =
∏

v∈CP(t)(X − u(v)) =
∑h

i=0 αiX
i

where h = logT . Then it constructs a vector ~x =
(α0, . . . , αh). Last it runs C ←SSW Encrypt(SK, ~x)

and outputs C.

RPE ExtractKey1(SK,Q): The extraction algorithm first

identifies all nodes in MCS(Q). Next it makes a set

U = {u(v)}∀v∈MCS(Q). If U ’s size is smaller than

2 · (logT − 1), the upper bound ofMCS cardinality,

it will append U with enough random integer numbers

bigger than 2 ·T (so that it will not collide with u(v) for

any node v). It also shuffles U for security purpose. For

each ui ∈ U , it then creates a vector ~yi = (u0
i , . . . , u

h
i)

where h = logT . For each ~yi, it runs ski ←
SSW ExtractKey(SK, ~yi). Then, the decryption key

for range Q becomes skQ = {ski}1≤i≤2·(log T−1).

Last, it outputs skQ.

RPE Decrypt1(SK,C): The decryption algorithm out-

puts 1 iff there exists ski ∈ SK such that

SSW Decrypt(ski, C) outputs 1.

If we use predicate version of SSW to replace the

predicate-only version of SSW, our range predicate-only

encryption scheme will become range predicate encryption

scheme.

We have following theorems regarding security of our

range predicate-only encryption scheme and their proofs are

provided in Appx. B.1 and B.2 respectively.

Theorem 2. If SSW has selectively secure plaintext pri-

vacy and predicate privacy, then our symmetric-key range

predicate-only scheme has selectively secure plaintext pri-

vacy.

Theorem 3. If SSW has selectively secure predicate pri-

vacy, then our symmetric-key range predicate-only scheme

has selectively secure predicate privacy.

4 Logarithmic Search on Encrypted Data

(LSED)

In this section, we show how to use the range predicate(-

only) encryption scheme constructed in Sec. 3.5 to build a

logarithmic search over encrypted data (LSED) system.

4.1 Problem Definition

To simplify description, we define the following algo-

rithms that form the LSED system. We use qs and qe to

denote the boundaries of range Q. We say a value point

t < Q if (t < qs) ∧ (t < qe). We say a value point t > Q

...

......

...

Non-leaf node

leaf node

encrypted

record

encrypted

record

Figure 3. The encrypted B+tree used in

LSED.

if (t > qs) ∧ (t > qe). We refer to SEncrypt and SDecrypt

as symmetric encryption and symmetric decryption respec-

tively.

Definition 4. A Logarithmic Search over Encrypted Data

(LSED) system consists of the following probabilistic poly-

nomial time algorithms.

LSED Setup(1k, [0, T − 1]): on input a security parameter

1k and a range [0, T − 1], outputsDO’s master private

key mskDO.

LSED Encrypt(mskDO, t,m): DO on input mskDO , a

value point t and a record m, outputs a ciphertext C.

m can be empty.

LSED ExtractToken(mskDO,Q): DO, on input mskDO

and a search rangeQ, outputs a search token tkQ.

LSED ExtractKey(mskDO,Q): DO, on input mskDO

and a search rangeQ, outputs a decryption key skQ.

LSED Test(tkQ, C): S on input a search token tkQ and a

ciphertextC = LSED Encrypt(mskDO, t,m), out-

puts “>” if t > Q and outputs “<” if t < Q. Otherwise

it outputs “=”.

LSED Decrypt(skQ, C): U on input a de-

cryption key skQ and a ciphertext C =
LSED Encrypt(mskDO, t,m), outputs m if

t ∈ Q and ⊥ otherwise.

At this moment, we assume that the database table has

only one numeric searchable attribute. We will discuss

how to deal with multi-dimentional attributes in Appx. D.

Note that we require the encrypted database be organized

in a B+-tree before being transmitted to the cloud. This is

necessary to facilitate logarithmic search. Possible privacy

leaks are discussed in Sec. 9. We assume the searchable

attributes can be encoded using discrete integers from 0 to

T − 1. For example, an IP address can be encoded using

integers through [0, 232 − 1]. We will deal with real-value

and string attribute in Sec. 8.

Now we discuss how the LSED system works based on

the above six algorithms. We assume private communica-

tion channel (TLS/SSL) between any two entities. Before

starting, DO runs LSED Setup to initialize some param-

eters. Next, DO organizes records into a B+ tree using

records’ searchable attribute value as keys in order to sup-

port logarithmic search. ThenDO encrypts each node in the

B+ tree. Specifically, each node’s keys are treated as value

point input to LSED Encrypt. Records are encrypted by

LSED Encrypt with their attribute value and content as

input. Fig. 3 shows an example of the resulting B+ tree

node. We use e(ki) to denote the ciphertext after running

LSED Encrypt over the ith key ki in one node. We refer

to f as the B+-tree branching factor. At the end of each

node, there is a Merkle tree-like hash, the purpose of which

will be explained in Sec. 6. Last, DO outsources the en-

crypted B+-tree to S.

Whenever U forms a range query, it submits the range

to the DO for authorization. If the query is approved, DO
runs LSED Extract to extract a search token and a decryp-

tion key for the queried range and gives the token and key

to U . Then, U hands the search token to S who runs a log-

arithmic search over the encrypted B+-tree. Specifically,

S initiates two top-down B+-tree traversals, one to find the

left most and the other to find the right most range query re-

sult. We use left boundary traversal path and right boundary

traversal path to denote the nodes met in these two traver-

sals respectively. With the help of the search token, S can

decide whether a key, even though encrypted, is bigger or

smaller than the search value embedded in the search token

through LSED Test. Therefore, during the B+-tree traver-

sal, at a node of depth p, S can decide the correct pointer

to the node at depth p + 1. The cost of the whole search

is O(log2 n) if we assume binary search inside each B+-

tree node. The matching encrypted results are sent back to

U who uses the decryption key to run LSED Decrypt to

recover the plaintext records.

4.2 Adversary Model

We assume S is untrusted and can be compromised. An

adversary at S can read all the ciphertexts stored on it and

can read all search tokens transmitted from U . The goal

of the adversary is to break the ciphertext or to learn the

queries issued by U . We don’t assume this type of adver-

sary can learn useful information from the communication

between U andDO since private communication channel is

employed.

We also assume that U can be compromised and it can

collude with S. The goal of this adversary is to break the

ciphertext that it is not authorized to search.

The only entity we trust isDO who takes care of encryp-

tion, token/key generation and database update.

4.3 Security Definition

Def. 5 describes the plaintext security, with which, DO
can safely outsource encrypted database to the cloud.

Definition 5. A LSED scheme has selectively secure plain-

text privacy if all polynomial-time adversaries have at most

a negligible advantage in the selective security game de-

fined below:

• Init: A submits two points t0, t1 ∈ [0, T − 1] where it

wishes to be challenged.

• Setup: The challenger runs the

LSED Setup(1k, [0, T − 1]) algorithm to gener-

ate params, mskDO and gives params to A.

• Phase 1: A adaptively issues queries, where each

query is of one of three types:

– Token query. On the ith query, a range Qi =
[qs, qe] is submitted satisfying the condition that,

for any previous ciphertext query of zi, either

(t0 < Qi) ∧ (t1 < Qi) ∧ zi ≥ qs, or

(t0 > Qi) ∧ (t1 > Qi) ∧ zi ≤ qe or (t0 ∈
Qi) ∧ (t1 ∈ Qi). The challenger responds with

LSED ExtractToken(params,mskDO,Qi).

– Key query. On the ith query, a range Qi is

submitted satisfying the condition that, for any

previous ciphertext query of zi, either (t0 ∈
Qi) ∧ (t1 ∈ Qi) ∧ zi /∈ Qi or (t0 /∈ Qi) ∧
(t1 /∈ Qi). The challenger responds with

LSED ExtractKey(params,mskDO,Qi).

– Ciphertext query. On the ith query, a value zi
and a message mi is submitted. For any pre-

vious token query of Qi = [qs, qe] such that

t0 < Qi ∧ t1 < Qi, it is required that zi ≥ qs.

For any previous token query of Qi = [qs, qe]
such that t0 > Qi ∧ t1 > Qi, it is required

that zi ≤ qe. For any previous key query of

Qi such that t0 ∈ Qi ∧ t1 ∈ Qi, it is required

that zi /∈ Qi. The challenger responds with

LSED Encrypt(params,mskDO, zi,mi).

• Challenge: A outputs two equal-length messages

m0,m1. If there is an i, in key query, for which

(t0 ∈ Qi) ∧ (t1 ∈ Qi), then it is required m0 = m1.

The challenger flips a random coin, b, and responds

LSED Encrypt(params,mskDO, tb,mb) to the ad-

versary.

• Phase 2: The adversary may continue to issue queries,

subject to the same restrictions as in Phase 1.

• Guess: The adversary outputs a guess b′ of b.

The advantage of the adversary in the above game is defined

as AdvA = |Pr[b′ = b]− 1
2 |. Compared to the plaintext pri-

vacy of range predicate encryption (Def. 2), the above defi-

nition does not allow the case where t0 < Qi and t1 > Qi

during the token query because adversary can immediately

tell b by executing LSED Test over the challenge cipher-

text. The above definition also captures the case where U
and S collude because the adversary is allowed to issue both

token and key query.

The following definition describes token privacy, with

which, U query privacy is guaranteed against a malicious

S.

Definition 6. A LSED scheme has selectively secure token

privacy if all polynomial-time adversaries have at most a

negligible advantage in the selective security game defined

below:

• Init: A submits two rangesQ0,Q1 where it wishes to

be challenged.

• Setup: The challenger runs the

LSED Setup(1k, [0, T − 1]) algorithm to gener-

ate mskDO .

• Phase 1: The adversary issues queries, where each

query is of one of three types:

– Token query. On the ith query, a range Qi

is submitted and the challenger responds with

LSED ExtractToken(params,mskDO,Qi).

– Key query. On the ith query, a range Qi

is submitted and the challenger responds with

LSED ExtractKey(params,mskDO,Qi).

– Ciphertext query. On the ith query, a value

zi and a message mi is submitted. For

any token query of Qi, it is required zi ∈
Qi. For any key query of Qi, it is required

zi /∈ Qi. The challenger responds with

LSED Encrypt(params,mskDO, zi,mi)

• Challenge: A submits two ranges Q0 and Q1.

The challenger flips a random coin, b, and responds

LSED ExtractToken(params,mskDO,Qb) to the

adversary.

• Phase 2: The adversary may continue to issue queries,

subject to the same restrictions as in Phase 1.

• Guess: The adversary outputs a guess b′ of b.

The advantage of the adversary in the above game is defined

as AdvA = |Pr[b′ = b]− 1
2 |.

5 LSED Construction

In this section, we show how to instantiate each algo-

rithm defined in Def. 4 based on range predicate(-only) en-

cryption scheme proposed in Sec. 3.5.

LSED Setup(1k, [0, T − 1]): on input a secu-

rity parameter 1k and a range [0, T − 1], it

runs SK1 ← RPE Setup1(1k, [0, T − 1]) and

SK2 ←RPE Setup2(1k, [0, T − 1]). Then it outputs

DO’s master private key mskDO ← {SK1, SK2}.
LSED Encrypt(mskDO, t,m): DO, on input mas-

ter key mskDO, a value point t and a record

m, generates a random 128-bit session key k.

Then it runs c1 ←RPE Encrypt1(SK1, t), c2 ←
RPE Encrypt2(SK2, t, k) and c3 ← SEncryptk(m).
Last, it outputs C ← {c1, c2, c3}. If the input record

m is empty, i.e. only encrypting the key value in a

B+-tree node, only c1 is generated. In the security def-

inition, we assume m is nonempty.

LSED ExtractToken(mskDO,Q): DO, on input a mas-

ter key mskDO and a search range Q = [qs, qe],
constructs two seperate ranges Q− = [0, qs − 1]
and Q+ = [qe + 1, T − 1] and runs tkQ− ←
RPE ExtractKey1(SK1,Q

−), tkQ+ ←
RPE ExtractKey1(SK1,Q

+). Then it outputs a

search token tkQ ← {tkQ− , tkQ+}.
LSED ExtractKey(mskDO,Q): DO, on input a mas-

ter key mskDO and a search range Q, runs skQ ←
RPE ExtractKey2(SK2,Q) and outputs a decryption

key skQ.

LSED Test(tkQ, C): S, on input a search token tkQ =
{tkQ− , tkQ+} and a ciphertext C = (c1, c2, c3), out-

puts “<” if RPE Decrypt1(tkQ− , c1)=1 and outputs

“>” if RPE Decrypt1(tkQ+ , c1)=1. Otherwise it out-

puts “=”.

LSED Decrypt(skQ, C)): U , on input a decryption

key skQ and a ciphertext C = (c1, c2, c3), runs

k ←RPE Decrypt2(skQ, c2) and outputs m ←
SDecryptk(c3).

Note that, in the ciphertext C = (c1, c2, c3), we em-

ploy range predicate-only encryption for c1, range pred-

icate encryption for c2 and symmetric encryption for c3.

We use c1 for search purpose in LSED Test and use

c2, c3 for decryption purpose in LSED Decrypt. Since

RPE Encrypt can only encrypt short-length messages, we

use it to encrypt a random 128-bit session key as c2 and

use that key to further encrypt the real message as c3. In

LSED ExtractToken, two range query tokens are ex-

tracted – one for ranges smaller than Q and one for ranges

larger thanQ. Then, in LSED Test, we can know whether

the key embedded in a given ciphertext is smaller or larger

thanQ by running RPE Decrypt over these two tokens.

We have following theorems regarding security of our

LSED system and their proofs are provided in Appx. C.1

and C.2 respectively.

Theorem 4. If range predicate-only and predicate encryp-

tion has selectively secure plaintext privacy, then our LSED

scheme has selectively secure plaintext privacy.

Theorem 5. If range predicate-only encryption has selec-

tively secure predicate privacy, then our LSED scheme has

selectively secure token privacy.

6 Query Authentication

Since S is untrusted, U can not simply believe the result

from S. Instead, U wants a proof that the result is indeed

authentic, complete and fresh; this is called query authenti-

cation.

In order to achieve query authentication, we modify our

B+-tree to allow a Merkle tree-like hash in each node. Each

leaf node is associated with a hash which is computed over

the concatenation of the hash values of encrypted records

pointed to by that node and each non-leaf node is associ-

ated with one hash which is computed over the concate-

nation of the hash values of its children. For example, in

Fig. 3, the top node has f keys and f + 1 pointers. Its as-

sociated hash value is computed over the concatenation of

hash values of its f + 1 children nodes. Note the way we

embed Merkle tree into B+-tree is different from MB-tree

presented in [17] where one hash is associated with every

pointer, instead of every node. The reason why we choose

to associate one hash with every node is to allow authenti-

cated update (Sec.7).

During the encryption phase,DO also computes the hash

values for each node of the B+-tree. When the encrypted

Merkle B+-tree is fully constructed, DO stores a copy of

the root node’s hash. When U issues a query, DO gives U
the root hash value in addition to the search token and de-

cryption key. On input U’s search token, S searches for all

records whose key falls within the search range and con-

structs a proof for the result. In detail, S includes in the

proof one encrypted record to the immediate left and one

encryped record to the immediate right of the lower-bound

and upper-bound of the query result respectively. S also in-

cludes additional hash values necessary to help compute the

root’s hash, i.e. hashes of all left sibling nodes and right sib-

ling nodes of B+-tree left boundary traversal path and right

boundary traversal path respectively. When U receives the

proof and the query results, it first ensures that the encrypted

record to the immediate left of the lower-bound is smaller

than the query range and the encrypted record to the imme-

diate right of the upper-bound is larger than the query range

by running LSED Test with the help of the search token.

Then U recomputes the root hash in a bottom-up manner

based on all the query result and all additional sibling hash

values. Finally, U compares the computed root hash to the

one received from DO. If they are the same, then the query

result is authentic and fresh.

Note that we do not employ the common mechanism that

requires DO to sign the hash root and U verify the signa-

ture. Instead, we let U fetch the latest root hash fromDO in

each query. This is because the former mechanism cannot

guarantee query result freshness. If DO does some update

to the database and S still keeps the old copy, U cannot de-

tect that. However, our mechanism can guarantee query re-

sult freshness without introducing additional cryptographic

operation.

7 Provable Data Update

7.1 Data Insertion

Suppose DO wants to insert data record m∗ with at-

tribute k∗. First, DO generates a search token tk∗ for k∗

and encrypts m∗ as c∗. Next, DO constructs an insertion

request message Insert(tk∗, c∗) and sends it to S. Upon

receiving the insertion request, S first does aB+-tree traver-

sal to locate the leaf node where insertion should be exe-

cuted based on the search token. During the traversal, S
records information of all nodes P that are on the traver-

sal path. S also records all hash values H of those sib-

ling nodes of P . Next S performs B+-tree insertion oper-

ation, which may cause several nodes on the traversal path

to split. Then S updates all affected nodes’ hash value in

a bottom-up manner until it generates the new root hash

value h′
r. Finally, S responds to DO with the proof mes-

sage, ProofInsert(P ,H, h′
r).

After receiving the proof from S, DO generates the old

root hash value hr based on (P ,H), and authenticates it by

comparing it to the stored root hash value. If hr is authentic,

it means (P ,H) are authentic as well. Then DO can verify

whether S has performed the insertion correctly by simulat-

ing the insertion, regenerating the new root hash value using

(P ,H) and comparing it to h′
r. If h′

r is computed correctly,

DO stores a copy of h′
r and finishes this operation.

Fig. 4 shows an example of B+-tree insertion. The node

associated with hash values hr, h3, h1 are returned from S
to DO. The sibling hash values h0, h4 are also returned.

Based on these nodes on the traversal path, DO can sim-

ulate the insertion operation and further compute the new

hash values for h1, h2, h3, hr.

7.2 Data Deletion

Suppose DO wants to delete data record m∗ with at-

tribute k∗. First, DO generates a search token tk∗ for

k∗. Next, DO constructs a deletion request message

Delete(tk∗) and sends it to S. Upon receiving the dele-

tion request, S first does a B+-tree traversal to locate the

leaf node where deletion should be executed based on the

search token. During the traversal, S records information of

all nodes P that are on the traversal path. In addition, since

B+-tree deletion involves key redistribution and merging

between immediate sibling nodes. Therefore, those affected

sibling nodes information, B, is recorded as well. S also

records all hash valuesH of those sibling nodes of P . Next

S performs B+-tree deletion operation. Then S updates all

affected nodes’ hash value in a bottom-up manner until it

generates the new root hash value h′
r. Finally, S responds to

DO with the proof message, ProofDelete(P ,B,H, h′
r).

After receiving the proof from S, DO, based on

(P ,B,H), generates the old root hash value hr and authen-

ticates it by comparing it to the stored root hash value. If hr

is authentic, it means (P ,B,H) are authentic as well. Then

DO can verify whether S has performed the deletion cor-

rectly by simulating the deletion, regenerating the new root

hash value using (P ,B,H) and comparing it to h′
r. If h′

r

is computed correctly, DO stores a copy of h′
r and finishes

this operation.

Fig. 5 shows an example of B+-tree deletion. The node

associated with hash values hr, h3, h1, h0 are returned from

S to DO. The sibling hash values h2, h4 are also returned.

Based on returned nodes information,DO can simulate the

deletion operation and further compute the new hash values

for h1, h3, hr.

7.3 Data Modification

The data modification is just a combination of deletion

and insertion, i.e. deletion of old value and insertion of new

value. Thus we omit the detail here.

8 Extension

8.1 RealValues Attribute

Our scheme so far only supports integer attribute. In or-

der to support real-value attribute, we need to find a way to

transform them into integer values. An IEEE 754 single pre-

cision floating point number is represented in 32 bits. For

a system only dealing with positive floating point numbers,

simply using 32-bit integers to represent them preserves the

order. Then, LSED can be directly used for encrypting pos-

itive floating point values.

For a system involving both positive and negative float-

ing point values, however, direct interpretation as integers

yields an inverse order for negative floating point values.

In order to preserve the order, we subtract negative values

from the largest negative (231) and add 231 to each positive

floating numbers. Then, LSED can be used for encrypting

21

6

... 6 10 18

21

6

... 6 10

18

18 20

... ...
insert 20

Figure 4. B+tree insertion example

21

6

6 10

...
delete 2

18

2 18 20

21

6 10

...18

18 20

Figure 5. B+tree deletion example

both positive and negative floating point values. The same

adjustment is needed for U queries as well.

The same idea applies to encrypting 64-bit double preci-

sion floating point values.

8.2 String Attribute

Since one ASCII character takes 7 bits. Any length-l
ASCII strings can be encoded using integers [0, 27·l − 1].
After encoding, LSED can be used for encrypting string at-

tribute.

9 Limitation

There are several limitations with our LSED system.

First, if the distribution of domain is known, a malicious

cloud server can guess with high probability each plaintext

value since ciphertexts are sorted in B+-tree. This is an

inherent issue with any sorted encrypted database.

Second, the cloud server will learn the access patterns

of ciphertexts (i.e., which ciphertexts are more frequently

queried). However we don’t think leak of access pattern

of encrypted database is as serious as that of plaintext

database.

Third, all database update operation and query authoriza-

tion relies on the database owner which becomes a single

point of failure. One option is to let database owner store

its master key in a smartcard. The smartcard can be en-

coded in a way that it only allows certain queries. Then

database owner can safely hand the smartcard to users who

later interact with the smartcard to get search tokens and

decryption keys.

10 Performance Evaluation

We implemented our LSED system in C using PBC (ver.

0.57) [18] library. The following benchmark refers to ex-

ecutions on an Intel Harpertown server with Xeon E5420

CPU (2.5 GHz, 12MB L2 Cache) and 8GB RAM inside.

Each data point is averaged over 10 runs.

First, we show the comparison of asymptotic perfor-

mance of different range predicate encryption schemes in

Table 2. As we can see, the strawman scheme has linear

performance with respect to domain limit (T) in all opera-

tions. Even its ciphertext size is linear to T . SBCSP07 [22]

has O(log T) performance in all operations and ciphertext

size. However, it has less strong security model compared

to the strawman and our scheme. Our scheme is a trade-

off between the strawman and SBCSP07. It has O(log T)
performance in Encrypt operation and ciphertext size. And

it has O(log2 T) performance in Decrypt and ExtractKey

operations.

Next, we benchmark each algorithm of our symmetric-

key range predicate encryption scheme to see its real perfor-

mance. The result is shown in Fig. 6. The RPE Encrypt

algorithm takes a 128-bit session key as its message input.

As we can see, one encryption for 32-bit domain takes less

than half second. When benchmarking the decryption, we

try all the 2(logT−1) keys extracted by RPE ExtractKey,

which is the worst-case performance. As we can see, one

decryption for 32-bit domain takes less than one second. In

practice, we expect average cost to be half of that. The most

expensive operation comes from RPE ExtractKey which

needs around 20s for 32-bit domain. We will discuss how

to improve that later.

Then, we benchmark each algorithm of LSED sys-

tem. Fig. 7 shows the performance of each algorithm

with respect to different logT . As we can see, the cost

of LSED Encrypt is two times as expensive as that of

RPE Encrypt. Again, we use 128-bit session key as

its input. The cost of LSED ExtractToken also dou-

bles that of RPE ExtractKey. LSED ExtractKey and

RPE ExtractKey are equally expensive. When bench-

marking LSED Test, we use encryption of uniformly sam-

pled attributes and tokens for small ranges as input. It turns

 0.01

 0.1

 1

 10

 100

 1000

8 16 32 64 128

T
im

e
 (

s
)

number of bits (logT)

RPE_Encrypt
RPE_ExtractKey

RPE_Decrypt

Figure 6. Performance of each algorithm in
symmetrickey range predicateonly encryp

tion scheme.

 0.01

 0.1

 1

 10

 100

 1000

8 16 32 64 128

T
im

e
 (

s
)

number of bits (logT)

LSED_Encrypt
LSED_ExtractToken

LSED_ExtractKey
LSED_Test

LSED_Decrypt

Figure 7. Performance of each algorithm in
LSED system

 10

 100

 1000

 10000

8 16 32 64 128

T
im

e
 (

m
s
)

number of bits (logT)

RPE_ExtractKey
LSED_ExtractToken

LSED_ExtractKey

Figure 8. Performance of extraction algo
rithms after hardware acceleration.

 0

 10

 20

 30

 40

 50

 60

1 20 40 60 80 100

N
u

m
b

e
r

o
f

m
in

im
u

m
 c

o
v
e

r
n

o
d

e
s

Test case number

Test overhead

Figure 9. Number of nodes inMCS

out that LSED Test is around 1.5 times as expensive as

RPE RangeDecrypt. LSED Decrypt is as expensive as

RPE Decrypt, which again shows the worst-case scenario.

From the benchmark of range predicate encryption and

LSED system, we can see that the extraction of token and

key is quite expensive. Since the extraction algorithm

mainly consists of exponentiation operation, we can em-

ploy the accelerator chip supporting elliptic curve cryptog-

raphy to improve its performance. We use the results pre-

sented in [1] to estimate the cost of our schemes. The cost

of exponentiation reduces from 2.48ms1 to 30µs. Fig. 8

shows the performance of algorithm RPE ExtractKey,

1We consider Type A pairing family in [18] with a base field size of

512 bits here.

LSED ExtractKey and LSED ExtractToken after the im-

provement. As we can see, for logT = 32, the cost of

LSED ExtractToken can reduce from 41s to 681ms. The

cost of RPE ExtractKey and LSED ExtractKey can re-

duce from 21s to 34ms.

Extraction algorithm can be further improved through

precomputation. Recall that, in RPE ExtractKey, only

those u(v) where v ∈MCS(Q) are useful. The random in-

tegers appended toU are for confusion purpose only. There-

fore, we can precompute those keys corresponding to those

appended random integers. To see how much percentage of

performance we can gain, in Fig. 9, we plot the number of

nodes inMCS(Q) for random chosen ranges Q in the full

32-bit domain. As we can see, compared to |U |, the aver-

 10

 100

 1000

10
3

10
4

10
5

10
6

10
7

T
im

e
 (

s
)

number of records (N)

32 bits
64 bits

128 bits

Figure 10. Performance of search.

 0.001

 0.01

 0.1

 1

 10

 100

 1000

10
3

10
4

10
5

10
6

10
7

T
im

e
 (

m
s
)

number of records (N)

32 bits
64 bits

128 bits

Figure 11. Performance of search time per
record.

Scheme Security Model Encrypt Cost Decrypt Cost ExtractKey Cost Ciphertext Size

Strawman (Sec. 3.3) Match Concealing O(T) O(T) O(T) O(T)
SBCSP07 ([22]) Match Revealing O(log T) O(log T) O(log T) O(log T)

Our scheme (Sec. 3.5) Match Concealing O(log T) O(log2 T) O(log2 T) O(log T)

Table 2. Asymptotic performance of different range predicate encryption.

ageMCS(Q) goes around logT − 1 which is half of |U |.
This means that roughly half of the keys can be precom-

puted, which implies the cost shown in Fig. 8 can be further

halved. In case of single value search, only one node is use-

ful for LSED ExtractKey and thus it can take as less as

5ms through precomputation.

In order to benchmark LSED search performance, we

first build an encrypted B+-tree with different number of

records. Then we let user issue queries for arbitrary ranges.

We measure the time it takes cloud server to find the correct

range of nodes in the encrypted B+-tree. Fig. 10 shows the

cost of a range search with respect to the number of records

in the database. As we can see, the cost increases sublin-

early with the number of records. Recall that a range search

involves two B+-tree traversals, one for the left boundary

and the other for the right boundary. Therefore, a single

value search takes half of the time shown in Fig. 10. We

further show the total search time divided by the number of

records in Fig. 11. The search time per record decreases

below 0.1ms for all three different domain sizes when total

number of records in B+-tree reaches 10 million. In other

words, a linear search mechanism needs to spend less than

0.1ms on each record in order to beat our scheme when

there are 10 million records. Further increasing the number

of records can further reduce search time per record.

11 Conclusion

In this paper, we proposed a cloud storage LSED sys-

tem comprising three entities – data owner, data user and

cloud server. Data owner stores its data in encrypted form

at cloud server. Data user gets query authorization from

data owner through search token and decryption key. Cloud

server can use the search token to do logarithmic search to

locate matching data. During the query, cloud server learns

nothing about plaintext data, nor about user’s query con-

tent. User learns nothing more than what it is entitled to.

In order to build LSED system, we proposed a range predi-

cate encryption scheme that is provably secure with regard

to plaintext privacy and predicate privacy. Based on that

scheme, we built and proved the security of LSED system.

Further, we extend LSED system to support query authenti-

cation and provable data update. Experiments show that our

construction is efficient in supporting range queries over en-

crypted data.

References

[1] The Elliptic Semiconductor CLP-17 high performance ellip-

tic curve cryptography point multiplier core: Product brief.

http://www.ellipticsemi.com/pdf/CLP-17_

High_Performance_ECC_Point_Multiplier_

Core_Rev1_0.pdf.

http://www.ellipticsemi.com/pdf/CLP-17_High_Performance_ECC_Point_Multiplier_Core_Rev1_0.pdf
http://www.ellipticsemi.com/pdf/CLP-17_High_Performance_ECC_Point_Multiplier_Core_Rev1_0.pdf
http://www.ellipticsemi.com/pdf/CLP-17_High_Performance_ECC_Point_Multiplier_Core_Rev1_0.pdf

[2] The federal health insurance portability and accountability

act. Public Law. 104-191, 1996.

[3] R. Agrawal, J. Kiernan, R. Srikant, and Y. Xu. Order pre-

serving encryption for numeric data. In Proceedings of the

2004 ACM SIGMOD international conference on Manage-

ment of data, SIGMOD ’04, pages 563–574, New York, NY,

USA, 2004. ACM.

[4] N. Attrapadung and B. Libert. Functional encryption for in-

ner product: Achieving constant-size ciphertexts with adap-

tive security or support for negation. In P. Nguyen and

D. Pointcheval, editors, Public Key Cryptography PKC

2010, volume 6056 of Lecture Notes in Computer Science,

pages 384–402. Springer Berlin / Heidelberg, 2010.

[5] M. Bellare, A. Boldyreva, and A. ONeill. Deterministic and

efficiently searchable encryption. In A. Menezes, editor, Ad-

vances in Cryptology - CRYPTO 2007, volume 4622 of Lec-

ture Notes in Computer Science, pages 535–552. Springer

Berlin / Heidelberg, 2007.

[6] J. L. Bentley. Multidimensional binary search trees used

for associative searching. Commun. ACM, 18:509–517,

September 1975.

[7] J. Bethencourt, A. Sahai, and B. Waters. Ciphertext-policy

attribute-based encryption. In Security and Privacy, 2007.

SP ’07. IEEE Symposium on, pages 321 –334, May 2007.

[8] C. Blundo, V. Iovino, and G. Persiano. Private-key hid-

den vector encryption with key confidentiality. In J. Garay,

A. Miyaji, and A. Otsuka, editors, Cryptology and Network

Security, volume 5888 of Lecture Notes in Computer Sci-

ence, pages 259–277. Springer Berlin / Heidelberg, 2009.

[9] A. Boldyreva, N. Chenette, Y. Lee, and A. ONeill. Order-

preserving symmetric encryption. In A. Joux, editor, Ad-

vances in Cryptology - EUROCRYPT 2009, volume 5479

of Lecture Notes in Computer Science, pages 224–241.

Springer Berlin / Heidelberg, 2009.

[10] D. Boneh, G. Di Crescenzo, R. Ostrovsky, and G. Persiano.

Public key encryption with keyword search. In C. Cachin

and J. Camenisch, editors, Advances in Cryptology - EURO-

CRYPT 2004, volume 3027 of Lecture Notes in Computer

Science, pages 506–522. Springer Berlin / Heidelberg, 2004.

[11] D. Boneh and B. Waters. Conjunctive, subset, and range

queries on encrypted data. In S. Vadhan, editor, Theory of

Cryptography, volume 4392 of Lecture Notes in Computer

Science, pages 535–554. Springer Berlin / Heidelberg, 2007.

[12] M. de Berg, M. van Kreveld, M. Overmars, and

O. Schwarzkopf. Computational Geometry: Algorithms and

Applications. Springer Berlin / Heidelberg, 1997.

[13] M. T. Goodrich and M. Mitzenmacher. Mapreduce paral-

lel cuckoo hashing and oblivious ram simulation. CoRR,

abs/1007.1259, 2010.

[14] V. Goyal, O. Pandey, A. Sahai, and B. Waters. Attribute-

based encryption for fine-grained access control of en-

crypted data. In Proceedings of the 13th ACM conference

on Computer and communications security, CCS ’06, pages

89–98, New York, NY, USA, 2006. ACM.

[15] H. Hacigümüş, B. Iyer, C. Li, and S. Mehrotra. Execut-

ing sql over encrypted data in the database-service-provider

model. In SIGMOD’02, 2002.

[16] J. Katz, A. Sahai, and B. Waters. Predicate encryption sup-

porting disjunctions, polynomial equations, and inner prod-

ucts. In Proceedings of the theory and applications of cryp-

tographic techniques 27th annual international conference

on Advances in cryptology, EUROCRYPT’08, pages 146–

162, Berlin, Heidelberg, 2008. Springer-Verlag.

[17] F. Li, M. Hadjieleftheriou, G. Kollios, and L. Reyzin.

Dynamic authenticated index structures for outsourced

databases. In Proceedings of the 2006 ACM SIGMOD in-

ternational conference on Management of data, SIGMOD

’06, pages 121–132, New York, NY, USA, 2006. ACM.

[18] B. Lynn. PBC: The Pairing-Based Cryptography Library.

http://crypto.stanford.edu/pbc/.

[19] R. Ostrovsky, A. Sahai, and B. Waters. Attribute-based en-

cryption with non-monotonic access structures. In Proceed-

ings of the 14th ACM conference on Computer and commu-

nications security, CCS ’07, pages 195–203, New York, NY,

USA, 2007. ACM.

[20] A. Sahai and B. Waters. Fuzzy identity-based encryption. In

R. Cramer, editor, Advances in Cryptology EUROCRYPT

2005, volume 3494 of Lecture Notes in Computer Science,

pages 557–557. Springer Berlin / Heidelberg, 2005.

[21] E. Shen, E. Shi, and B. Waters. Predicate privacy in encryp-

tion systems. In O. Reingold, editor, Theory of Cryptogra-

phy, volume 5444 of Lecture Notes in Computer Science,

pages 457–473. Springer Berlin / Heidelberg, 2009.

[22] E. Shi, J. Bethencourt, T.-H. Chan, D. Song, and A. Per-

rig. Multi-dimensional range query over encrypted data. In

Security and Privacy, 2007. SP ’07. IEEE Symposium on,

pages 350 –364, May 2007.

[23] D. X. Song, D. Wagner, and A. Perrig. Practical tech-

niques for searches on encrypted data. In Proceedings of

the 2000 IEEE Symposium on Security and Privacy, pages

44–, Washington, DC, USA, 2000. IEEE Computer Society.

A Proof of theorem 1

Proof. We useMCS∗T to denote theMCS(Q) with maxi-

mum cardinality for a tree T with height h = logT . We use

rootl and rootr to denote the left and right child of the root.

Tl and Tr refers to the left and right subtree of the root. We

prove |MCS∗T | = 2 · (h− 1) for h ≥ 2 below.

First, we show that it is possible to construct a Q such

that |MCS(Q)| = 2 · (h − 1). This Q can be the range

accross all leaf nodes except the left most and right most

leaf. The corresponding MCS(Q) can be constructed as

follows: We select nodes intoMCS(Q) in a top-down man-

ner. For nodes at depth 2, we put the two most inner nodes

intoMCS(Q) and then remove the two subtrees rooted at

these two nodes. Now, there are only 4 nodes left at depth 3.

For example, in Fig.2(a), nodes with binary label ’01’, ’10’

are selected and nodes left at depth 3 are ’000’, ’001’, ’110’,

’111’. Repeat the above procedure for depth 3, . . . , h. It is

obvious thatMCS(Q) is computed correctly.

Next, we show that, from each depth of the tree, at most

two nodes are in MCS∗T . At each depth, for each pair

http://crypto.stanford.edu/pbc/

of closest nodes inMCS∗(T) (not necessary to be neigh-

bors), the left one must be its parent node’s right side child.

Otherwise, instead of this left node, its parent should be in

MCS∗T . This is because using parent node instead of its

left node and some nodes in the right subtree can reduce

the size of MCS∗T without affecting coverage. The same

reason explains why the right node of the closest pair must

be its parent node’s left side child. If there are more than

two nodes at the same depth, there must be a pair of closest

nodes such that either left node is left child or the right node

is right child, which is impossible.

Last we argue that the two nodes at depth 1, rootl, rootr ,

are not inMCS∗T if h > 2. It is obvious that they cannot

be both inMCS∗T . Without loss of generality, we assume

rootl is inMCS∗T and rootr is not. Now we consider two

cases: (1)MCS∗T contains nodes from both Tl and Tr. Note

that, in MCS∗T , rootl is the only node from Tl. Assume

that the number of nodes inMCS∗T from Tr is larger than

1. Then by symmetric mapping, the same number of nodes

can appear inMCS∗T from Tl, which means, by ruling out

rootl, |MCS
∗
T | can be larger. This is contradictory to the

assumption that |MCS∗T | is already maximum. Note that if

the number of nodes inMCS∗T from Tr is equal to 1, rootl
can still be in MCS∗T , which is only possible when h =
2. (2)MCS∗T contains only rootl, which is only possible

when h = 1.

To sum up, from each depth of the tree except the

first depth, at most two nodes are in MCS∗T , which

means |MCS∗T | ≤ 2 · (h − 1). Considering there exists

|MCS(Q)| = 2·(h−1), we have |MCS∗T | = 2·(h−1).

B Security proof of Range Predicate Encryp-

tion

B.1 Proof of Theorem 2

Proof. First we change the game described in Def. 2 and

show that the view of A in the original game and the new

game is the same. The new game is as follows: The chal-

lenger constructs three vectors ~v0 = {a0, . . . , ah}, ~v1 =
{b0, . . . , bh} and ~c = {c0, . . . , ch} such that 〈~a,~c〉 = 0

and 〈~b,~c〉 = 0. In phase 1 and 2, if A submits Qi such

that t0 /∈ Qi ∧ t1 /∈ Qi, the challenger still follows orig-

inal game. If t0 ∈ Qi ∧ t1 ∈ Qi, the challenger con-

structs a set Y with ~c and 2 logT −3 random vectors inside.

Then challenger shuffles set Y . Next, for each ~yi ∈ Y ,

the challenger runs SSW ExtractKey and returns results

{ski}1≤i≤2(log T−1) to A. In the challenge phase, chal-

lenger flips a coin b and runs SSW Encrypt over ~vb and

returns result eb to A.

We argue that A cannot computatinally differentiate the

view in the original game and the new game. What A
gets at the end is eb and {ski}1≤i≤2(log T−1) one of which

decrypts eb. Since we have predicate privacy from SSW,

{ski}1≤i≤2(log T−1) in the new game are indistinguishable

from those in the original game. Due to plaintext privacy

from SSW, A cannot see the difference between eb in the

new game and that in the original game.

Now we start to prove the new game is still secure based

on SSW plaintext privacy. Suppose an adversary A wins

the new game for ciphertext challenge with advantage ǫ.
We can define an adversary B that wins the selective sin-

gle challenge security game for SSW scheme with advan-

tage ǫ as follows. When A makes a key query for Qi, B
constructs vectors {~yi}1≤i≤2(log T−1) according to the new

game. Then, for each ~yi, B submits it to B’s challenger

as key query and responds to A with the keys it receives.

Note that, if t0 ∈ Qi ∧ t1 ∈ Qi, ~c is always submitted,

which guarantees returned key matches both ~v0 and ~v1. In

the challenge phase, B outputs ~v0 and ~v1 to its challenger

and responds to A with the answer it receives. B outputs

the same guess b′ as A does. It is clear that B wins SSW

single challenge security game with the same advantage ǫ
with whichA wins the single ciphertext challenge selective

security game.

B.2 Proof of Theorem 3

Proof. Let U0 = {u(v)}v∈MCS(Q0) and U1 =
{u(v)}v∈MCS(Q1) If U0 or U1 size is smaller than

n′ = 2(logT − 1), append enough random num-

bers bigger than 2 · T to that size. As a re-

sult, U0 = {u0,0, u0,1, . . . , u0,n′−1}, and U1 =
{u1,0, u1,1, . . . , u1,n′−1}.

To show that our symmetric-key range predicate-only

scheme is secure, we make a hybrid argument. We de-

fine a series of games Game0, · · ·Gamei, · · · , Gamen′

with Gamei defined as follows: During query phase, chal-

lenger honestly answers A’s queries. During challenge

phase, the challenger constructs n′ decryption keys as fol-

lows. For 0 ≤ j < i, challenger constructs ~yj =
{u0

1,j, . . . , u
h
1,j} and, for i ≤ j < n′, challenger con-

structs ~yj = {u0
0,j, . . . , u

h
0,j}. Then, for 0 ≤ j <

n′, challenger calls skj ← SSW ExtractKey(SK, ~yj).
It is obvious that Game0 is equivalent to the case

where challenger answers RPE ExtractKey1(SK,Q0) and

Gamen′ is equivalent to the case where challenger answers

RPE ExtractKey1(SK,Q1). Suppose the negligible ad-

vantage of an adversary in SSW game is ǫssw.

For each 0 ≤ i < n′, we construct a simulator Bi
that reduces Gamei to Gamei+1 as follows: During query

phase, Bi forwards both key and ciphertext queries to SSW

oracles and returns answers to A. During the challenge

phase, Bi receives Q0,Q1 from A. Then Bi constructs

U0 = {u(v)}v∈MCS(Q0) = {u0,0, u0,1, . . . , u0,n′−1} and

U1 = {u(v)}v∈MCS(Q1) = {u1,0, u1,1, . . . , u1,n′−1}. For

j < i, Bi queries SSW predicate oracle for vector ~yj =
{u0

1,j, . . . , u
h
1,j} and, for j > i, Bi queries SSW predicate

oracle for vector ~yj = {u0
0,j, . . . , u

h
0,j}. As a result, Bi

gets back sk0, · · · , ski−1, ski+1, · · · , skn′−1. Then B out-

puts ~x0 = {u0
0,i, . . . , u

h
0,i} and ~x1 = {u0

1,i, . . . , u
h
1,i} to

the SSW challenger in the challenge phase and gets back

ski. After that, B outputs {sk0, · · · , skn′−1} to A. Last

B outputs the b′ that A outputs. When the SSW challenger

chooses b = 0, the view of A is equivalent to the view

in Gamei. When the SSW challenger chooses b = 1, the

view ofA is equivalent to the view in Gamei+1. Therefore

the advantage ofA differentiating the view between Gamei
and Gamei+1 is ǫssw. By induction, the advantage of A
in differentiating the view between Game0 and Gamen′ is

2 · (logT − 1) · ǫssw which is negligible.

C Security Proof of LSED System

C.1 Proof of Theorem 4

Proof. Let’s call the original game G0. We construct a

game G1 which is the same as G0 except that, in chal-

lenge phase, challenger responds C = (c1, c2) where

c1 = RPE Encrypt1(SK1, (t1 + t2)/2) and c2 =
RPE Encrypt2(SK2, tb,mb). We show a simulator B
which reduces breaking range predicate-only encryption to

distinguishing between G0 and G1. In the setup phase, B
generates SK2. In phase 1 and 2, B delegates the queries

to corresponding oracles. On input t0, t1, in the chal-

lenge phase, B flips a random coin b and creates c2 =
RPE Encrypt2(SK2, tb,mb). Then B submits tb and

(t1 + t2)/2 to its challenger which flips another coin b. If

b = 0, the challenger encrypts (t1 + t2)/2 and otherwise it

encrypts tb. Then it returns the result to B as c1. Finally,

B responds C = (c1, c2) to A. It is easy to see that, when

b = 1, the view of A is the same as that in G0. When

b = 0, the view of A is the same as that in G1. Therefore

the probability of differentiating G0 from G1 is negligible.

Now we construct another simulator B2 to reduce range

predicate encryption plaintext privacy game to G1. In the

setup phase, B2 creates SK1. In phase 1 and phase 2,

B2 honestly answers all token queries and forwards all key

queries to its challenger. In the challenge phase, B con-

structs c1 = RPE Encrypt1(SK1, (t1 + t2)/2) and for-

wards (t0, t1) to its challenger which outputs c2. B responds

C = (c1, c2) to A and outputs the bit A outputs. It is ob-

vious the advantage of A in G1 is the same as that in range

predicate game, which is negligible. Therefore, the advan-

tage of A in G0 is also negligible.

C.2 Proof of Theorem 5

Proof. Let’s call the original game G0. Let Q0 =
[q0,s, q0,e] and Q1 = [q1,s, q1,e]. Let Q′ denote

[(q0,s + q1,s)/2, (q0,e + q1,e)/2]. We construct a game

G1 which is the same as G0 except that, in challenge

phase, (tkQ′− , tkQ+

b
) instead of (tkQ−

b
, tkQ+

b
) is returned.

We show a simulator B1 which reduces breaking range

predicate-only encryption to distinguishing betweenG0 and

G1. In phase 1 and 2, B1 delegates the queries to cor-

responding oracles. On input Q0,Q1 in the challenge

phase, B1 flips a random coin b and poses Q+
b

to range

predicate-only token oracle which returns tkQ+

b

. Then B

sends (Q′−,Q−
b
) to its challenger which flips another coin

b and responds with Q−
b whereQ−

0 = Q′− andQ−
1 = Q−

b
.

B outputs (Q−
b ,Q

+
b
) to A. When A outputs its guess b′, B

outputs b′ as well. It is easy to see that, when b = 1, the

view of A is the same as that in G0. When b = 0, the view

of A is the same as that in G1. Therefore the probability of

differentiating G0 from G1 is negligible.

Similarly, we can construct another game G2 which, in

the challenge phase, returns (tkQ′− , tkQ′+) and we can

prove G2 is indistinguishable from G1. It is easy to see, in

G2, A’s advantage is negligible. Therefore, A’s advantage

in G0 is also negligible.

D Extension to Multi-dimensional Query

For a database with multiple searchable attributes, it is

easy to reuse the same algorithm shown in Sec. 5 as long as

the user is only doing search over one specific attribute. An

independent encrypted B+-tree needs to be constructed for

each attribute. Each internal node of B+-tree of a specific

attribute is encrypted under that attribute.

When the user wants to do a disjunctive query over

multiple attributes, the database owner can simply invoke

LSED ExtractToken and LSED ExtractKey algo-

rithm to generate tokens and keys for each attribute of the

query. Then the user can let cloud server try searching in

each attribute of the query. Whenever there is a match, the

user can use the matched attribute’s key to decrypt.

When it comes to conjunctive query, logarithmic search

is still possible if a k-d tree [6] is employed. Before encryp-

tion, the whole database’s records are organized into a k-d

tree. Recall that, in a k-d tree, each node is a k-dimensional

point that divides the space into two parts through one of

the k dimensions. Each dimension corresponds to each at-

tribute of the database table. Then we encrypt each internal

node of the k-d tree under every attribute and outsources the

encrypted k-d tree to the cloud. When the user poses a con-

junctive query, the database owner can generate the tokens

and decryption keys for each attribute of the query. Then

cloud server can use search tokens to go through the k-d tree

and efficiently locate the matching records whose attribute

values fall in the ranges of every attribute of the query. The

user can use the decryption keys for any attribute to decrypt

the matching records.

However, the above two methods pose some privacy

leaks. For disjunctive queries, the user learns which at-

tribute of the query matches the result. For conjunctive

queries, if the user and the cloud server collude, then the

cloud server can have decryption keys for each attribute of

the query and can decrypt records that match any attribute

in the query. In other words, the cloud server and the user

together learn more than what the user is entitled to.

E Inner-Product Predicate Encryption

Scheme (SSW)

We review the construction of SSW [21] symmetric-key

predicate-only encryption scheme for inner product queries.

Let G denote a group generator algorithm for a bilinear

group whose order is the product of four distinct primes.

SSW Setup(1k): The setup algorithm runs G(1k), where

k is a security parameter, to obtain (p, q, r, s,G,GT , e)
with G = Gp ×Gq ×Gr ×Gs. Next it picks generators

gp, gq, gr, gs of Gp,Gq,Gr,Gs, respectively. It chooses

(h1,i, h2,i, u1,i, u2,i) ∈ (Gp)
4 uniformly at random for

i = 1 to n. The secret key is

SK = (gp, gq, gr, gs, {h1,i, h2,i, u1,i, u2,i}
n
i=1).

SSW Encrypt(SK, ~x): Let N = pqrs. Let ~x =
(x1, . . . , xn) ∈ Zn

N . The encryption algorithm chooses

random (y, z, α, β) ∈ ZN , random (S, S0) ∈ (Gs)
2, and

random (R1,i, R2,i) ∈ (Gr)
2 for i = 1 to n. It outputs

the ciphertext

CT =

C = S · gyp ,
C0 = S0 · g

z
p,

{C1,i = hy
1,i · u

z
1,i · g

αxi
q · R1,i,

C2,i = hy
2,i · u

z
2,i · g

βxi
q ·R2,i}

n
i=1

SSW ExtractKey(SK,~v): Let ~v = (v1, . . . , vn) ∈ (ZN)n.

The token generation algorithm chooses random f1, f2 ∈
ZN , random (r1,i, r2,i) ∈ (ZN)2, random (R,R0) ∈
(Zr)

2, and random (S1,i, S2,i) ∈ (Zr)
2 for i = 1 to n.

It outputs the token

SK~v =

K = R ·
∏n

i=1 h
−r1,i
1,i · h

−r2,i
2,i ,

K0 = R0 ·
∏n

i=1 u
−r1,i
1,i · u

−r2,i
2,i ,

{K1,i = g
r1,i
p · gf1viq · S1,i,

K2,i = g
r2,i
p · gf2viq · S2,i}

n
i=1

SSW Decrypt(SK~v, C):

Let CT = (C,C0, {C1,i, C2,i}
n
i=1) and SK~v =

(K,K0, {K1,i,K2,i}
n
i=1) as above. The query algorithm

outputs 1 iff

ê(C,K)·ê(C0,K0)·

n
∏

i=1

ê(C1,i,K1,i)·ê(C2,i,K2,i)
?
= 1,

which is only possible when 〈~x, ~y〉 = 0 mod N .

	Introduction
	Related Work
	Searchable Encryption
	Order Preserving Encryption (OPE)
	Attribute-based encryption (ABE)
	Predicate Encryption

	Range Predicate Encryption (RPE)
	Definitions
	Security Definitions
	Strawman construction
	Efficient Representation of Ranges
	Improved Construction of Range Predicate Encryption

	Logarithmic Search on Encrypted Data (LSED)
	Problem Definition
	Adversary Model
	Security Definition

	LSED Construction
	Query Authentication
	Provable Data Update
	Data Insertion
	Data Deletion
	Data Modification

	Extension
	Real-Values Attribute
	String Attribute

	Limitation
	Performance Evaluation
	Conclusion
	Proof of theorem 1
	Security proof of Range Predicate Encryption
	Proof of Theorem 2
	Proof of Theorem 3

	Security Proof of LSED System
	Proof of Theorem 4
	Proof of Theorem 5

	Extension to Multi-dimensional Query
	Inner-Product Predicate Encryption Scheme (SSW)

